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Analytical model: Generalised arrangement of multiple spring types (semi-infinite 

assembly) 

A semi-infinite array of interlocked hexagon sub-units is assumed, with each keyway having a 

spring associated with it (the case of no spring in any given keyway thus corresponding to a 

spring type having zero spring stiffness). Each sub-unit has two edges of length l1 along the x 

direction, and four edges of length l2 oriented at an angle of  to the x direction. The 

parameters a , b1 and b2 define gaps between adjacent units (Figure 1). The total number of 

springs in the system is N, and the number of different spring types (i.e. spring stiffnesses) is 

m. Let Ni
v
 and Ni

o
 be the number of springs having stiffness ki located in vertical and oblique 

hexagonal key positions, respectively.  

The total work done by the springs in the vertical positions due to an infinitesimal change in 

the interlock gap perpendicular to the adjoining hexagonal faces, bi, to bi + dbi is given by 
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Similarly, the total work done by the springs in the oblique positions due to a change in b2 to 

b2 + db2 is 
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The total work done by all the springs in the assembly is given by, 

ov WWW           (S3) 

From Figure 1 

cot21 ab           (S4) 

csc2 ab           (S5) 

giving 

cot21 
da

db
         (S6) 

csc2 
da

db
         (S7) 

From Equation (S1)-(S3), (S6) and (S7) we get, 
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Now, the strain energy per unit volume for loading in the x-direction is given by, 
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where Ex is the Young’s modulus in the x direction, x is the true strain applied to the 

assembly in the x direction, given by 
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and XRVE and XRVE0 are the instantaneous and initial length of the representative volume 

element (RVE) in the x direction. XRVE is given by 

)cos(2 21 allX RVE          (S11) 

From Equation (S11): 

2
da

dX RVE          (S12) 

From the principle of conservation of energy, 

V

W
U           (S13) 

where V is the volume of the assembly.  

Since there are 6 keyways per RVE, there are N/6 RVEs in the semi-infinite assembly. 

Considering unit thickness in the z-direction, the volume of the assembly is then 

6

RVERVE YNX
V          (S14) 

where YRVE is the instantaneous length of the RVE in the y direction given by 

)cotsin(2 2  alYRVE         (S15) 

The strain energy per unit volume for loading in the x-direction is then given by Equation 

(S9), (S13) and (S14): 
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and from Equation (S8), (S11), (S12), (S15) and (S16), we get 



 Submitted to  

   4      4   













































cotsin

cos

sin

cos4

2

3

2

21

2

11

2

al

all
knkn

E

m

i

i

o

i

m

i

i

v

i

x    (S17) 

where ni
v
 = Ni

v
/N and ni

o
 = Ni

o
/N are the number densities of the spring having stiffness ki in 

the vertical and oblique locations, respectively. 

Similarly, the Young’s modulus in the y-direction can be shown to be 
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Finite assembly stiffness: reconciling assembly and single-element stiffnesses 

Recall that the instantaneous Young’s modulus is given by the slope of the stress-strain curve 

in the most general case: 
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where dy, dy, dFy and dY are the increments in stress, strain, force and displacement in the y 

direction, and X, Y and Z are the dimensions of the test specimen. Rearranging Equation (S19) 

the stiffness, ky, is given by: 

Y

XZE

dY

dF
k

yy

y          (S20) 

The stiffness is dependent on the dimensions of the test specimen, and the X, Y and Z lengths 

of the finite assembly in the x, y and z directions, respectively are: 
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RVEx XNX           (S21) 

RVEyYNY           (S22) 

Z = 1          (S23) 

where Nx, and Ny are the number of RVEs along the x and y direction, and unit thickness is 

assumed in the z direction of the assembly.  

Substituting Equation (S11), (S15), (S18) and (S21)-(S23) into (S20): 
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Equation (S24) relates the metamaterial (assembly) stiffness ky to the single element 

stiffnesses ki.  

When  = 60°: 
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Similarly, it can be shown that in the x direction we have 
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Application to the ‘Control’ (positive spring) assembly case 
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For the 7-sub-unit assembly of 6 sub-units surrounding a central sub-unit we consider the 

number of RVEs along the x direction to be equal to one (since there are no sub-units 

connected to the outside of the ring of 6 sub-units). Hence Nx = 1. From Figure 4a (main text) 

the jaw-to-jaw separation of the mechanical testing machine corresponds to ~2.5 repeat units 

along the y direction of the assembly. Hence Ny = 2.5. The finite assembly therefore 

corresponds to NxNy = 2.5 repeat units. Each repeat unit contains 6 keyways, corresponding to 

a total of N = 2.5 x 6 = 15 ‘springs’ (keyways) in the assembly, of which 8 and 4 positive 

stiffness springs (k1) are located in oblique (n1
o
 = 8/15) and vertical (n1

v
 = 4/15) positions, 

respectively. The remaining keyways contain no springs (i.e. m = 2, k2 = 0, n2
o
 = 2/15 and n2

v
 

= 1/15). 

In this case, Equation (S25) becomes: 

1
1 92.1

15

12

5.2

6
k

k
k y          (S27) 

From the slope of the force-displacement curve in Figure 3a for the single spring test 

specimen, the stiffness of a single spring element is k1 = 3.2 N mm
-1

, giving a predicted value 

of ky = 6.1 N mm
-1

 from Equation (S27). This is in excellent agreement with the average value 

of ky = 6.3 ± 0.4 N mm
-1

 from the slope of the force-displacement curve in three tests on the 

assembly. This is also demonstrated in Figure 4 where the predicted ‘control’ metamaterial 

force-displacement data assuming a straight line with slope given by ky = 6.1 N mm
-1

 is 

shown for comparison with the measured data for the assembly. 

Application to the PMI foam assembly case 

Following a similar consideration of the actual finite assembly (Figure 4b), and assuming the 

stiffness of the PU foams is negligible in comparison to the PMI foams, we find in this case 

the following parameters: 
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Nx = 1, Ny = 3, N = 18, n1
o
 = 0, n1

v
 = 1/9, m = 2, k2 = 0, n2

o
 = 2/3 and n2

v
 = 2/9. 

In this case, Equation (S25) becomes: 

9

2 1k
k y           (S28) 

Since the PMI foam inserts in the assembly were of different dimensions to the individual 

PMI foam compression specimens it is necessary to determine the stiffness of the inserts from 

the measured stiffness of the compression samples. In region 1 of the compression specimen, 

k1 ~ 2889 N mm
-1

 for the compression sample of dimensions 35 mm (rise direction) × 25 mm 

× 25 mm (Figure 3b). Using an equivalent expression to Equation (S20) the PMI foam 

Young’s modulus in region 1 is then Es = (2889/0.025
2
)/(1/35) = 162 N mm

-2
 (= 0.162 GPa). 

The assembly PMI foam insert dimensions are 5 mm (rise direction) × 10mm × 10mm. Hence, 

the region 1 stiffness of the foam insert in the assembly is k1 = Es×10
2
/5 = 3236 N mm

-1
, 

giving a metamaterial stiffness in region 1, calculated from Equation (S28), of ky = 719 N 

mm
-1

. This is in reasonable agreement with the measured value, determined from the slope of 

the force-displacement data of the assembly, in region 1 of ky = 686 N mm
-1

 (see comparison 

of the predicted force-displacement trend, shown by the dot-dashed line, with the actual data 

between initial ‘settling in’ of the sub-units at low strain and the onset of the NS response in 

region 2 of Figure 4). 

The transition to negative stiffness (beginning of region 2) occurs after ~ 3 mm displacement 

of the 35 mm thick compression sample (Figure 3b). So for the combined 10 mm total 

thickness of the two PMI inserts in the assembly, we would expect negative stiffness to 

commence ~ 1 mm after engagement of the sub-units (i.e. following the initial settling in at 

low strain). This agrees well with the data for the assembly. 
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In region 2, the negative stiffness of the compression sample, taken from the slope of the 

force-displacement data in this region (Figure 3b), is k1 = -443 N mm
-1

. Hence the region 2 

PMI foam Young’s modulus is Es = (-443/0.025
2
)/(1/32) = -23 N mm

-2
 (= -0.023 GPa). From 

the equivalent expression to Equation (S20), the stiffness of the assembly PMI foam insert in 

region 2 is k1 = Es×10
2
/4.5 = -511 N mm

-1
, which using Equation (S28), corresponds to an 

assembly stiffness of ky = -114 N mm
-1

. Again, this is in reasonable agreement with the actual 

value of ky = -160 N mm
-1

 from the slope of the force-displacement curve of the assembly in 

region 2 (Figure 4). 

Hence the experimentally measured stiffnesses of the individual inserts and assemblies for the 

control and PMI foam cases validate the analytical model expressions. 
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Supporting Information Figures 

 

 

 

Figure S1. Dependency of mechanical metamaterial properties and strain on sub-unit length l1. 

Poisson’s ratio (xy) as a function of global applied compressive strain (x) for an assembly of 

sub-units of edge length l2 = 1,  = 60°, infinitesimally narrow keyways having depths 1 = 

2 = 0.5l2, containing a buckled beam spring type (k1 as in Figure 2a and 2c) occupying all 

vertical key locations (n1
v
 = 0.333 and n1

o
 = 0) and a constant stiffness spring type (k2) 

occupying all oblique key locations (n2
v
 = 0 and n2

o
 = 0.667). Solid contours correspond to xy 

vs x data when Ex = 0 (for l1 > 0.366l2) for k2 = -0.2k10, 0 and 0.2k10, and define enclosed 

regions of simultaneous negative Poisson’s ratio and negative stiffness response. The 

boundaries are defined by inter-sub-unit geometrical constraints (fully expanded and fully 

densified structures) and intra-sub-unit constraints (when one female keyway intersects with 

another female keyway or another sub-unit edge). 
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Figure S2. Dependency of mechanical metamaterial properties and strain on sub-unit length l2. 

Poisson’s ratio (xy) as a function of global applied compressive strain (x) for an assembly of 

sub-units of edge length l1 = 1,  = 60°, infinitesimally narrow keyways having depths 1 = 

2 = 0.5l1, containing a buckled beam spring type (k1 as in Figure 2a and 2c) occupying all 

vertical key locations (n1
v
 = 0.333 and n1

o
 = 0) and a constant stiffness spring type (k2) 

occupying all oblique key locations (n2
v
 = 0 and n2

o
 = 0.667). Solid contours correspond to xy 

vs x data when Ex = 0 (for l2 > 0.2886l1) for k2 = -0.2k10, 0 and 0.2k10, and define enclosed 

regions of simultaneous negative Poisson’s ratio and negative stiffness response. The 

boundaries are defined by inter-sub-unit geometrical constraints (fully expanded and fully 

densified structures) and intra-sub-unit constraints (when one female keyway intersects with 

another female keyway or another sub-unit edge). 
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Figure S3. Dependency of mechanical metamaterial properties and strain on sub-unit angle. 

Poisson’s ratio (xy) as a function of global applied compressive strain (x) for an assembly of 

sub-units of edge lengths l1 = l2, infinitesimally narrow keyways having depths 1 = 2 = 0.5l1, 

containing a buckled beam spring type (k1 as in Figure 2a and 2c) occupying all vertical key 

locations (n1
v
 = 0.333 and n1

o
 = 0) and a second buckled beam spring type (k2) occupying all 

oblique key locations (n2
v
 = 0 and n2

o
 = 0.667). Curves with symbols correspond to xy vs x 

data when Ex = 0 (for 22.5 <  < 90°) and define enclosed regions of simultaneous negative 

Poisson’s ratio and negative stiffness response for k2 = -f2, 0 and +f2, where f2 is the stiffness 

function derived from the differential of the force-displacement function of spring 2 in Figure 

2e. The boundaries are defined by inter-sub-unit geometrical constraints (fully expanded and 

fully densified structures) and intra-sub-unit constraints (when one female keyway intersects 

with another female keyway or another sub-unit edge). 
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Figure S4. Single buckled beam and holder with rigid connector linking to moveable cross-

head of mechanical testing machine. 
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Figure S5. Design of sub-unit for PMI foam assembly. 
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Figure S6. Design of sub-unit for Buckled beam assembly. 
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Figure S7. Design of sub-unit for Magnet assembly. 
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Figure S8. Components of sub-unit for ‘Control’ assembly. 

 

 


