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Abstract 

A fuel cell is a device that converts energy in the fuel and reactant into electrical DC 

power. Fuel cell powered aircraft are generally characterised by a low power to weight 

ratio (W/kg). The propulsion system of an unmanned aircraft needs a large range of 

power and fast response to fulfil the requirements of different flight phases and to 

balance the variations in the load demand. 

A proton exchange membrane (PEM) fuel cell is considered as a potential power source 

for high altitude UAS (unmanned aircraft systems) operations. At altitudes in excess of 

10 km, very low atmospheric temperatures and pressures, and unexpected variations in 

the load demand put severe stresses on the operation and performance of PEM fuel 

cells. A stable and robust controller and fuel supply system that can provide fast and 

sufficient flow of hydrogen and air/oxygen to the reaction of the fuel cell is one of the 

critical objectives. 

In this research, a simplified mathematical model of the PEM fuel cell stack system is 

developed and validated with the commercially available 1 kW PEM fuel cell stack   

(H-1000) developed by Horizon Fuel Cell Technologies. Matlab-Simulink is used to 

implement the necessary design and simulations under various operational conditions. 

The implications of high altitudes on the operation and performance of a PEM fuel cell 

stack are investigated, and a PID controller is adopted to efficiently optimise and 

provide a sufficient flow of hydrogen and air/oxygen to the stack, in particular 

maintaining the flow rates of the reactants was deemed most critical at high altitudes 

operation. Also, in order to store the required oxygen and hydrogen, the design of 

storage vessels is considered. 

This research presents a design of a PEM fuel cell power system for unmanned aircraft 

systems with an integrated approach that enables estimation of required power for high 

altitudes UAS operation which is then used to determine the size and weight of the 

combined power-plant of fuel cell stack with hydrogen and air/oxygen vessels and the 

propulsion system of the UAS. This approach takes into the consideration the power 

capacity of fuel cell stack and the flight endurance as two main factors in designing the 

size and weight of storage vessels, and hence determining the overall weight of the 

UAS, which is a key requirement in the preliminary aircraft design phase. 

One of the research outcomes shows a potential in extending the flying duration and 

altitude for more than five hours and a half, reaching up to 11 km altitude, for a UAS 

with an overall weight of 32 kg, including a payload capacity of 2 kg, based on a 1 kW 

PEM fuel cell propulsion system. 

KEYWORDS: PEM Fuel Cell, Mathematical Modelling, Unmanned Aircraft Systems, 

High Altitude Operation, Performance and Evaluation, Pressure Vessel Design. 
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WH2,rct Mass flow rate of reacted hydrogen in the anode kg/s 

WO2,in Mass flow rate of oxygen enter the cathode kg/s 

WO2,out Mass flow rate of oxygen exit the cathode kg/s 

WO2,rct Mass flow rate of reacted oxygen in the cathode kg/s 

WN2,in Mass flow rate of nitrogen enter the cathode kg/s 

WN2,out Mass flow rate of nitrogen exit the cathode kg/s 

Wsm,in,an Mass flow rate of H2 enter the supply manifold of anode kg/s 

Wsm,in,ca Mass flow rate of air enter the supply manifold of cathode kg/s 

Wsm,out,an Mass flow rate of H2 exit the supply manifold of anode kg/s 

Wsm,out,ca Mass flow rate of air exit the supply manifold of cathode kg/s 

Ww,gen Mass flow rate of produced water in the cathode kg/s 

Ww,mbr Mass flow rate of water vapour across the membrane kg/s 

Ww,out Mass flow rate of water vapour exit the cathode kg/s 

ζn Empirical parametric coefficient of fuel cell - 

λ Water content in the membrane - 
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ρ Density of gas  kg/m3 

ρm Density of the material  g/cm3 

ρo Density of air at sea level kg/m3 

ρ
о
 Stagnation density of gas kg/m3 

∆Pf Rise in the pressure of air generated by the fan kPa 

∆V Change in fuel cell voltage  Volt (V) 

Φan Relative humidity in the anode  - 

Φca Relative humidity in the cathode  - 

ηm Efficiency of the motor - 

σL Stress applied in the longitudinal direction psi 

σt Stress applied in the tangential direction psi 
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Chapter One: Introduction 

 

1.1 Overview 

A fuel cell is a device which converts energy in the fuel and the reactant into direct 

current. Origins of the fuel cell can be traced to the early nineteenth century. William 

Grove demonstrated his fuel cell for the first time in 1839. However, it remained in an 

experimental state until 1932 when Francis Bacon manufactured the first prototype fuel 

cell [1]. 

The lack of advanced manufacturing technologies and the high prices of catalyst 

materials, such as platinum, along with readily available fossil fuels at low cost, have 

limited the interest in fuel cells as the main or auxiliary source of power. Consequently, 

commercial uptake in the technology has been low. But, with recent developments in 

manufacturing technologies of electrolyte membranes, electrode materials, effective use 

of catalyst materials, and with advances in solid state power electronics and control 

systems, these factors have rejuvenated the interest in the use of fuel cells as a prime 

source of power [2]. 

The increasing demand for electrical energy has resulted in increased production which 

in turn has increased harmful emissions. Natural reserves of fossil fuels are being 

depleted at an accelerated rate. Awareness of global warming, and the need for 

alternative sources of energy that are reliable, safe and environmentally clean with low 

cost has led to accelerated research [3, 4]. 
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The efficiency of energy conversion-production for a fuel cell is comparatively higher 

than combustion engines, both internal and gas turbines, because there is no 

intermediate thermal conversion process that converts heat energy to mechanical 

motion, which is ultimately used to drive electrical generators [5]. 

The pollutants such as carbon dioxide, nitrous oxides, and sulphur dioxide which are 

produced from combusting hydrocarbon fuels are eliminated when using fuel cells. 

Also, the absence of the intermediate mechanical conversion process makes a fuel cell a 

quiet device [3]. 

Compared to conventional storage elements such as lead acid, and some other forms of 

batteries, fuel cells produce higher energy density. In practical applications, batteries 

need to be charged, and this process is time consuming. In contrast, recharging of the 

fuel cell reactants, namely oxygen and hydrogen, is a quick process [2]. 

Fuel cells are deployed in many industries such as transportation, aviation, navy, 

microelectronics, and combined heat and power (CHP) applications, and their 

applicability in diverse application areas is on the increase [6]. However, fuel cells are 

characterised as highly energy dense devises, but with low power density, therefore a 

heavy and large size of stack is required to fulfil an application with a high power 

demand [7]. 

Furthermore, fuel cells respond slowly to sudden changes in power demands which 

limit their dynamic performance. Thus, to enhance the performance of the power source 

using a fuel cell system, an electric storage device, such as rechargeable batteries or 

super capacitors, must be connected in parallel with the fuel cell stack in order to boost 

and improve the transient behaviour of the fuel cell system [8, 9]. 
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1.2 Types and Applications of Fuel Cells 

Fuel cells are usually classified according to the type of the electrolyte that has been 

deployed, the reactants, or the operating temperature [3]. Commonly there are six types 

of fuel cells, as presented in Table 1.1 below [1]: 

 

Table 1.1: Basic details of different types of fuel cells 

Fuel Cell Type 
Mobile 

Ion 

Operating 

Temperature, °C 
Applications 

Direct Menthol 

Fuel Cell 
H+ 20-90  

Suitable for portable electronic 

systems running a slow and steady low 

power consumption for long periods.  

PEM Fuel Cell H+ 30-100  
Vehicles, mobile application, and for 

low power CHP systems. 

Alkaline Fuel Cell OH- 50-200 Used in space shuttles (Apollo). 

Phosphoric Acid 

Fuel Cell 
H+ ~ 220  

Large numbers of 200 kW CHP 

systems. 

Molten Carbonate 

Fuel Cell  
CO3

2- ~ 650  
Suitable for medium to large scale 

CHP systems up to MW capacity. 

Solid Oxide Fuel 

Cell  
O2- 500-1000  

Suitable for all sizes of CHP systems,      

2 kW to multi MW. 

 

The proton exchange membrane (PEM) fuel cell, also known as a polymer electrolyte 

membrane fuel cell requires a high purity of hydrogen fuel and operates at low 

temperatures ranging between 30 °C and 100 °C. One of the alternative solutions to 

replacing the use of pure hydrogen in the PEM fuel cell is to supply the fuel cell directly 
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with liquid menthol, such a fuel cell is called a direct menthol fuel cell (DMFC), where 

the hydrogen is extracted from menthol. The problem of a slow reaction rate is avoided 

by using an alkaline fuel cell (AFC) which has the ability to operate at high pressures 

and temperatures of about 200 °C, AFC requires pure oxygen and hydrogen [1]. 

The phosphoric acid fuel cell (PAFC) operates at a fairly high temperature 220 °C, 

which results in an increased reaction rate. The issue of hydrogen fuelling is solved by 

reforming natural gas (mostly methane) to hydrogen and carbon dioxide, but this 

process adds more cost, size and complexity to the fuel cell. PAFC can operate for long 

periods with very minor maintenance and high reliability, with an opportunity to be 

integrated to the combined heat and power (CHP) systems [1]. 

Molten carbonate fuel cells (MCFC) operate at temperatures of around 650 °C and 

require carbon dioxide in the air in order to operate. While solid oxide fuel cells (SOFC) 

operate at temperature levels of 500-1000 °C and can be supplied with low purity 

hydrogen (i.e. hydrogen containing carbon monoxide). These high temperatures offer 

high reaction rates without the need to use an expensive catalyst. Hydrocarbon fuel such 

as propane, kerosene, methane, and coal gas can be used after a reforming process. 

Reforming and filtering processes work to break the bonds between the molecules of 

hydrocarbon fuel in order to separate hydrogen molecules from carbon monoxide and 

carbon dioxide molecules in order to produce the desired purity level of hydrogen. 

However, this technique introduces extra costs, complexity, weight and volume to the 

system. Moreover, as they operate at very high temperatures, the costs of heat tolerant 

materials and the associated cooling system costs make the system very expensive and 

complex [1, 10]. 

PEM fuel cells and SOFCs are currently attracting the greatest interest and 

development. SOFCs offer higher overall system efficiency but lower power density 

and lower load dynamic responses in comparison with PEM fuel cells. SOFCs take a 
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longer time to reach high operational temperatures, which make these more convenient 

for stationary power generation applications [10]. 

When compared with other types of fuel cells, PEM fuel cells have several features, 

such as high power density, high conversion efficiency, long operational life hours, low 

corrosion, low weight and compact size, low operational temperature, and faster 

transient response, which makes PEM fuel cells suitable for transport and can also be 

used in stationary applications. Therefore, research and development are on-going in 

academia and industry in order to produce commercially viable PEM fuel cell systems 

for different applications [11-14].  

Despite increased efforts to develop PEM fuel cells technology, durability and cost 

remain the major barriers against PEM fuel cell commercialisation and exploitation. The 

target of the US Department of Energy toward fabrication cost and operational lifetime 

of a PEM fuel cell for transportation applications is $30/kW and 5000 hours by 2015, in 

order to compete effectively with the conventional technology of internal combustion 

engines [15]. 

1.3 Structure of a PEM Fuel Cell 

A PEM fuel cell is an electrochemical device where hydrogen is fed to the anode, and 

air/oxygen is fed to the cathode. In the most elemental state, the fuel cell consists 

mainly of one electrolyte and two electrodes. But practically a fuel cell may consist of 

more than these two components in order to increase its efficiency and output power, 

which makes the fuel cells commercially viable. A schematic structure of a single PEM 

fuel cell is shown as Figure 1.1. It consists of a membrane electrode assembly (MEA) 

sandwiched by two parallel flow field plates called bipolar plates, which serve as 

current collectors and to connect cells in series for greater stack voltage. The MEA 

consists of three layers, (1) polymer electrolyte membrane layer (i.e. proton exchange 
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membrane), (2) catalyst layer and, (3) gas diffusion layer (GDL). The electrolyte is a 

proton conduction polymer, bonded by a catalysed porous electrode on each side. The 

anode, electrolyte, and cathode are assembled as one very thin piece. Usually, these 

components are manufactured individually and then pressed together at high 

temperature and pressure [16]. 

 

 

Figure 1.1: Schematic structure of a single PEM fuel cell 

 

The electrolyte plays an important role in a PEM fuel cell, as it conducts protons from 

the anodic electrode catalyst layer to the cathode one while blocking electrons. The 

electrical ohmic resistance properties and the protonic conductivity of the membrane 

has a great impact on the voltage and performance of a PEM fuel cell [17]. 

As a result of continuous development, in the late 1960s, a new polymer membrane 

Nafion® (registered trademark of Dupont) became a standard electrolyte membrane for 



7 
 

a PEM fuel cell [1]. Development of catalysts, membrane electrolyte assembly (MEA) 

components, and bipolar plates are vital for overcoming the concerns of cost and 

durability. Materials with higher degradation and corrosion resistance and low platinum 

loading are essential to achieve lifetime and cost targets. Improvement and optimisation 

of the materials used in the gas diffusion layer (GDL) and gas flow channel (GFC) 

interfaces are also important, so as to provide efficient water removal and flow of gases 

and to avoid flow misdistribution, hence achieving and maintaining high fuel cell 

performance [15]. Figure 1.2 shows different sizes of H-series 100W-5kW PEM fuel 

cell stacks produced by Horizon Fuel Cell Technologies. 

 

 

 

Figure 1.2: Different sizes of H-series 100W-5kW PEM fuel cell stacks produced by 

Horizon Fuel Cell Technologies (cited from[18]) 
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1.4 Historical Background of Electrical Aircraft  

Aviation transportation was recently noted to have contributed 4.2% toward global CO2 

emissions and the rate is expected to have increased to approximately 5.7% by the end 

of 2015 due to growing demand on global travel [19]. Boeing Research and Technology 

Europe, in collaboration with other industrial partners, are working towards reducing 

airplane emissions, not only through investing in and developing an efficient fuel for 

aircraft, but also through developing propulsion systems and power generating 

technologies that are environmentally friendly, by accepting the possibility of 

integrating fuel cell systems and batteries in aerospace applications [20]. 

Typically, control surfaces on aircraft are actuated using servo hydraulic actuators. The 

hydraulic fluid is pressurised using engine driven pumps. The power required places an 

additional burden on the engine, which requires hydro-carbon fuels, thus increasing 

emissions. One of the specific characteristics of the electric aircraft is that it deploys 

electric motors and local electro-hydraulic actuators. All electric aircraft employ 

brushless DC motors instead of internal combustion engines. Different technologies are 

used to supply power to the electric motors, such as electrical generators, fuel cells, 

solar cells, and batteries and ultra-capacitors. Electric aircraft can be mainly divided into 

two main categories: the all-electric aircraft (AEA), where electricity produced from 

different power systems is the only driving power for the aircraft, and more-electric 

aircraft (MEA), where a combination of an internal combustion engine with other 

electrical power supply systems is most likely used on board the aircraft, with 

increasing roles of electrical systems on board among the other systems employed in the 

aircraft [21]. 

However, an increase in the payload capacity and/or the increase in the flight duration 

(range) impose several challenges, and necessitate an increase in the power and energy 

densities of the on-board power system. Hence, MEA can be considered to make an 
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attempt to overcome the challenges associated with AEA. It has been estimated that 

MEA technology is capable of reducing the empty weight of a typical airliner by about 

10%. A reduction of moving parts also reduces maintenance costs and increases the 

overall reliability of the system [21]. 

An electrical propulsion exhibits high efficiency and reliability, low noise and heat 

radiation, and low cost compared to the small internal combustion engines typically 

used for small unmanned aircraft [8]. Also, using induction motors to drive the 

propellers contributes toward elimination of sparks [21]. 

The first electrical airplane propulsion system using poly-phase synchronous generators, 

and a number of poly-phase motors driving a number of propellers, was proposed in 

1943 [21]. 

In the seventies, NASA and AeroVironment, Inc. initiated the first research programme 

into a solar-powered electric airplane, and the first test flight was made in 1974 as the 

world’s first solar-powered airplane. The first official manned flight of a solar-powered 

aircraft deploying solar cells, batteries, an electric motor and a propeller was made in 

1980. About a decade later, the U.S. Government launched a programme of high 

altitude solar energy (HALSOL) to explore the feasibility of solar-electric flight above 

65,000 ft., which contributed to the first unmanned aircraft that was able to fly to 

altitudes of 50,500 ft., reaching an altitude of 71,530 ft. in 1997. However, NASA’s 

solar-powered aircraft research was only a fraction of the extensive research work 

carried out worldwide for this aim [21]. 

Interest prevails in the research community to investigate the design methods for fuel 

cell powered aircraft in order to determine the design trade-off and to characterise the 

optimum configurations of fuel cell power-plant, and also to identify appropriate 

techniques for developing and improving the performance of unmanned aerial vehicles 
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(UAV). Naturally, the benefits need to be seen in comparison with conventional aircraft 

[22]. 

The replacement of conventional power units with a fuel cell power system offers 

several advantages for aircraft applications, such as: reducing noise and harmful 

emissions, reducing ground support and maintenance, on-board water generation, and 

further weight reduction [23]. 

Leading commercial aircraft manufacturing companies, such as Boeing and Airbus, 

have started significant research into the use of fuel cells as an alternative source of 

electric power to drive several systems, for example the nose-wheel undercarriage 

system and also to provide on-board water production facilities. However, in recent 

years, small-powered airplanes have successfully been flown using fuel cells as the 

primary source of power [9]. 

The first use of fuel cells as an auxiliary power source device was in the 1960s. The 

device was used in the Gemini space flights programme directed by NASA. In 

particular, PEM fuel cells were developed and deployed for this programme [16]. Early 

fuel cells proposed to produce electricity as an alternative technology for the electric 

aircraft were suggested in 1974, where the configuration employed fuel cells and 

batteries for driving the motors of propellers [21]. 

The first fuel cell powered aircraft was built and tested by AeroVironment, Inc. in 2003, 

using PEM fuel cells run by hydrogen extracted from sodium borohydride. It had a very 

short flying endurance of less than 15 minutes. Then, in 2005, AeroVironment, Inc. 

demonstrated a second version of UAV using PEM fuel cells operated by liquefied 

hydrogen; this had an endurance of about 2.4 hours. A solid oxide fuel cell powered 

UAV using propane fuel was constructed in 2006 by Advanced Materials, Inc. with a 

flying endurance of about 4 hours. However, since 2003, a significant increase has been 

observed in the research and investigations into the use of fuel cells in aviation [22, 24]. 
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In the literature, the acronym UAV is an abbreviation for unmanned 

aircraft/aerospace/aerial vehicles. However, the aviation industry has now adopted UAS 

rather than UAV as a preferred acronym for unmanned aerial/aircraft systems, “as UAS 

encompasses all aspects of deploying these aircraft and not just the platform itself” [25]. 

1.5 Motivation of the Project 

Fuel cell powered aircraft are generally characterised by low specific power (power to 

weight ratio W/kg), where the power to weight ratio is an important indicator of aircraft 

performance, leading to several limitations between the power consumption and the 

total weight of the aircraft [26]. 

The propulsion system of the UAS is required to have a large range of power in addition 

to a fast response, in order to fulfil the requirements of different flight phases and to 

balance the variations in load demand. 

PEM fuel cells suffer from limited power density and slow dynamic responses when a 

sudden change in power demand is presented, which limits their performance 

particularly for high altitude long endurance (HALE) UAS applications, where a very 

low atmospheric temperature and pressure, altitude turbulences, and unexpected 

variations in the load demand put severe stresses on the operation and performance of 

PEM fuel cells. A stable and robust controller which can optimise PEM operation and 

provide fast and sufficient flow of hydrogen and air/oxygen to the reaction chamber of 

the fuel cell is one of the critical objectives [8, 27]. 

In order to supply sufficient hydrogen and oxygen to the PEM fuel cell when operating 

at high altitudes, fuel and reactant need to be stored in pressurised cylinders. The size 

and weight of the storage vessels play an important role in determining the endurance of 

the UAS flight [28]. 
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However, in the published literature to date, there appears to be no particular study that 

determines or specifies the size and weight of the combined power-plant of the fuel cell 

stack with hydrogen and air/oxygen vessels and the propulsion system of UAS for high 

altitude flight operation; or takes into consideration the power capacity of the fuel cell 

stack and the flight endurance as the main factors in designing the size and weight of the 

storing vessels, and hence determining the overall weight of the UAS. 

The weight of the power-plant has a direct impact on the wing loading (W/S), and that 

in turn determines the wing area, and technologies needed to produce a structure 

capable of being produced [28, 29]. 

1.6 Aim and Objectives 

The aim of this project is to develop and design a PEM fuel cell power system for high 

altitudes UAS operation; and to determine the overall weight of the UAS based on 

determining the size and weight of the combined power-plant of the fuel cell stack with 

hydrogen and air/oxygen vessels, and the propulsion system. The objectives can be 

summarised as follows: 

1. To carry out a critical literature review of the relevant published literature 

relating to using fuel cells as a power source for aircraft and UAS applications, 

and the techniques of managing and controlling output power of the fuel cell 

stack, and managing operational variables of PEM fuel cells under load 

variations. 

2. To develop a mathematical model for the PEM fuel cell stack, and using Matlab-

Simulink to implement the necessary design and simulations. 

3. To validate and tune the developed mathematical model of the stack with the 

commercially available 1 kW PEM fuel cell stack (H-1000) developed by 

Horizon Fuel Cell Technologies. Where, simulations will be applied to examine 
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all of the operational and performance variables under various operational 

conditions, and fuel cell losses are considered as well. 

4. To investigate the implications of high altitudes on the operation and 

performance of the PEM fuel cell stack. 

5. To propose and examine a controller that can efficiently optimise and supply a 

sufficient flow of hydrogen and air/oxygen to the PEM fuel cell stack. 

6. To develop and design a technique that can determine the size and weight of the 

combined power-plant of the fuel cell stack with hydrogen and air/oxygen 

vessels and the propulsion system of the UAS for high altitude operation. Taking 

into consideration the power capacity of the fuel cell stack and the flight 

endurance as the main factors in designing the size and weight of the storing 

vessels, and hence determining the overall weight of the UAS. 

1.7 Scope-Format, and Software Definition 

Related literature about the developed models of PEM fuel cells associated with 

managing and controlling their operation and performance, and the use of fuel cells for 

aircraft and UAS applications, will be presented in Chapter Two of this thesis. In 

Chapter Three, the thesis will look at modelling voltages of PEM fuel cells. Chapter 

Four will examine mathematical modelling of gases flow in PEM fuel cells, while 

Chapter Five will validate the PEM fuel cell and controller design models. Chapter Six 

will examine the implications of high altitudes on the operation of PEM fuel-cell-based 

UAS and then Chapter Seven will discuss hydrogen fuel and static thrust for UAS. 

Chapter Eight examines pressure vessel design and power-plant mass estimation, and 

finally, Chapter Nine presents the conclusion and discusses future work. 

However, some important related literature will be specifically presented in each 

chapter separately based on the related work of concern. Also, any findings and 
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contributions to the body of knowledge proposed in this research will be highlighted in 

bold-italic font. 

 
Matlab and Simulink are registered trademarks of The MathWorks, Inc. Matlab is a 

high level language and interactive environment used by scientists and engineers for 

technical computing integrates computation, programming, and visualisation where 

problems and solutions are expressed in a familiar mathematical form. “Simulink is a 

block diagram environment for multi-domain simulation and model-based design. It 

supports system-level design, simulation, automatic code generation, and continuous 

test and verification of embedded systems. It provides a graphical editor, customisable 

block libraries, and solvers for modelling and simulating dynamic systems. Simulink is 

integrated with Matlab, enabling to incorporate Matlab algorithms into models and 

export simulation results to Matlab for further analysis” [30]. 

LabVIEW program is a registered trademarks of National Instruments and is described 

as a virtual instruments software because their operation and appearance and imitate sort 

of physical instruments, such as multi-meters and oscilloscopes. LabVIEW consist of a 

set of comprehensive tools for acquiring, displaying, storing, and analysing data, as well 

as tools to help the user to troubleshoot the codes. 

1.8 Summary 

This chapter presented a historical overview relating to the use and development of fuel 

cells. A summary of the major six types of fuel cells and their applications in different 

fields of stationary and transportation sectors was demonstrated. The structure of the 

PEM fuel cell, along with the materials used in manufacturing of such a device, was 

also discussed. Furthermore, a historical background regarding the use and development 

of electrical aircraft was presented. 
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Fuel cell powered aircraft are generally characterised by a low power to weight ratio 

(W/kg). The propulsion system of an unmanned aircraft needs a large range of power 

and fast response to fulfil the requirements of different flight phases and to balance the 

variations in the load demand. PEM fuel cells suffer from limited power density and 

slow dynamic responses when a sudden change in power demand is presented, which 

limits their performance particularly for high altitude long endurance (HALE) UAS 

applications, where a very low atmospheric temperature and pressure, altitude 

turbulences, and unexpected variations in the load demand put severe stresses on the 

operation and performance of PEM fuel cells. A stable and robust controller and fuel 

supply system that can provide fast and sufficient flow of hydrogen and air/oxygen to 

the reaction of the fuel cell is one of the critical objectives. 

In the next chapter, the literature relating to many developed models of PEM fuel cells, 

different techniques of managing and controlling the output power of a fuel cell stack, 

and managing the operational variables of PEM fuel cells under steady and transient 

states of load variations will be reviewed and presented. Also, the deployment of fuel 

cells as primary or auxiliary power sources for aircraft and UAS applications will be 

presented and critically discussed.  
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Chapter Two: Literature Review 

 

2.1 Introduction 

Many researchers and development programmes have carried out extensive 

investigations in order to develop fuel cells. Material characteristics, design and 

implementation, performance and control of the fuel cells have been studied. Some 

researchers have focused on the geometrical design parameters and their impact on the 

performance of the fuel cell. Others have focused on the operational parameters and 

variables and their relations to the performance and output power of the fuel cell. 

The power generated by the PEM fuel cell is a function of the size of the fuel cell stack, 

while the energy capacity is a function of the availability and storage capacity of 

hydrogen and oxygen vessels [31]. 

Also, Barbir et al. [31] reported that the efficiency of the fuel cell is related to its size, 

for two different sizes of fuel cells to generate the same level of power, the fuel cell 

which has a larger total active area is more efficient than a fuel cell with a smaller active 

area. A larger active area leads to lowering the current density and hence increases the 

cell potential, which is directly proportional to the fuel cell efficiency. Thus, maximum 

stack efficiency leads to a heavier stack weight. 

Steady state performance of fuel cells is usually presented in the form of a polarisation 

curve (V-I curve) which specifies the relation between the fuel cell stack output voltage 

and stack output current. The relationship between the air supply, water management 

and cooling process leads to a non-linear relationship in the stoichiometry of air in the 
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cathode, membrane humidification, and stack temperature which is reflected in the 

performance of the polarisation curve [8]. 

Pukrushpan et al. [32] reported that a fuel cell control system could be subdivided into 

three main subsystems that deal with: 

• Regulation of the supply of air and hydrogen. 

• Management of the produced water. 

• Management of heat produced from the reaction.  

Larminie and Dicks [1] proposed many ways to overcome the slow reaction rates that 

can lead directly or indirectly to improving the performance of the fuel cell operation by 

one or more of the following methods:  

• Using catalysts such as platinum. 

• Raising the reaction temperature. 

• Increasing the electrode contact area with the reactants. 

• Adjusting the flow rate and/or pressure of the fuel and reactant.  

Improvement of the transient response performance and synchronisation of the power 

output of the fuel cell to the power demand could be achieved by the following [33-35]: 

• managing the operational variables and parameters such as pressures and 

concentrations, mass flow rate of the fuel and reactant, temperature of the fuel 

cell, and water content in the membrane, or 

• managing the DC output power of the fuel cell stack via controlling the power 

conversion unit (PCU) and associated energy storage device (ESD) such as 

battery or super-capacitor. 

Bordons et al. [13] proposed a constrained model predictive control, in order to control 

the operational process of the fuel cell to fulfil one of three main objectives 

individually: 

 



18 
 

• Achieving maximum efficiency.  

• Controlling fuel cell voltage. 

• Preventing oxygen starvation. 

In the next sections, the literature review relating to many developed models for PEM 

fuel cells is presented. In particular, the following aspects will be presented and 

critically discussed: 

• Management of the operational variables of PEM fuel cells under steady and 

transient states. 

• Management and control of the output power of fuel cells, and their operation 

under load variations. 

• Deployment of fuel cells as primary or auxiliary power sources for aircraft and 

UAS applications. 

2.2 Modelling of PEM Fuel Cells  

The steady state behaviour of the PEM fuel cell can be predicted through estimating the 

equilibrium cell voltage for a particular set of operating conditions, such as 

concentration of gases, associated pressures, operating temperatures, and the drawn 

current. Transient behaviour is an important aspect, particularly when operating 

conditions change with time; such as starting up or shutting down, or when there is a 

large sudden change in the load current accompanied with changes in the cell 

temperature or gas concentration on the surface of electrodes [36]. 

Amphlett et al. [36] developed a model that predicts the transient response of a fuel cell 

stack based on adopting the steady-state electrochemical model previously developed by 

a group of developers [37-39] for 5 kW Ballard Mark V stack fuel cell. By coupling the 

steady state model and the thermal model, the transformed integrated model was used to 
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determine the transient cell voltage as a complex function to the operating current, stack 

temperature, flow rates and partial pressures of oxygen and hydrogen. 

Pathapati et al. [11] devised a novel dynamic model, incorporating the capacitive impact 

of a charged double layer to the electrochemical model of the group of Ballard 

developers [36-39], in order to simulate and predict the transient response of cell 

voltages, flow rates of hydrogen and oxygen, temperature of the cell, and 

temperatures/pressures of the anode and cathode channels under sudden changes in the 

load current of the PEM fuel cell. 

Mann et al. [40] reported that a steady-state electrochemical model (SSEM) developed 

by group of developers [37-39] is specific to the Ballard Mark IV and Mark V that were 

developed between 1988 and 1990. By adopting the SSEM to modify and develop a 

generic model (GSSEM), it is possible to not only accept operating variables such as 

cell temperature, current density, pressure and flow rates of the reactants, but also to 

extend this model to accept higher current densities above 500 mA.cm-2. New 

parameters such as dimensions of the electrolyte membrane, water content level in the 

membrane, and the level of aging and degradation of the membrane with operating time 

were also included in the model. However, based on the electrochemical reaction 

theories and proposed model by Amphlett et al. and Berger [38, 41], the equations of 

activation overvoltage and the empirical parametric coefficient values for the generic 

steady-state electrochemical model have been derived by Mann et al [40]. Also, by 

adopting the recommendations of Springer et al. [42] and data given by Büchi and 

Scherer [43], it was possible to develop an empirical relationship of membrane protonic 

resistivity as a function to the characteristics of the membrane, temperature, water 

contents and its distribution in the membrane, and current density. 

Seyezhai and Mathur [44] developed a mathematical model for a 750 W PEM fuel cell 

to predict the behaviour of fuel cells under steady-state and transient conditions. The 
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dynamics of the charged double layer capacitance, dynamics of anode and cathode 

channel are all integrated into a single model and the transient responses of the PEM 

fuel cell model under a resistive load and for short-long operation times are analysed. 

Yuan et al. [45] developed a three-dimensional multi-phase fuel cell model to predict 

the impacts of operating parameters such as operating pressure and temperature of the 

fuel cell, relative humidity of reactant gases, and air stoichiometric ratio on the 

performance of PEM fuel cells operating under steady-state conditions.  

A dynamic model for a 1.2 kW PEM fuel cell that can be used for optimal operational 

strategies development and control design of fuel-cell-based power systems was 

developed by del Real et al.[46]. The model parameters are adjusted and validated with 

the 1.2 kW Ballard fuel cell stack, the proposed model allows prediction of both steady 

and transient behaviour due to variable loads, and also the impact of water flooding and 

purging of hydrogen. 

A non-linear dynamic model of PEM fuel cells was proposed by Pukrushpan et al. [2, 

32] to examine the behaviour associated with the flow of oxygen, using 

electrochemical-thermodynamics and zero-dimensional fluid mechanics principles (i.e. 

the anodes and cathodes of the stack are lumped as one anode volume and one cathode 

volume, respectively, and similarly for the supply and return manifolds of the stack, 

hence the dimensions of the stack have no impact on changing the properties of the 

flowing fluids).The output voltage of the stack is modelled based on load current, fuel 

cell operating temperatures, air pressure and partial pressure of oxygen, and humidity of 

the membrane. 

Park and Choe [47] presented a new dynamic model of a stack comprising 20 cells, that 

considers the impact of temperature and the two phases of water (gas and liquid) in the 

gas diffusion layer. This layer plays a significant role in the transportation of water and 

gases. The model revealed the starting up and transient behaviour under different 
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conditions of load current, temperature, and coolant flow rate. The transient analyses of 

the model considered the dynamics of vapour and oxygen concentration in the gas 

diffusion media, liquid water saturation, temperature, and the changes of water content 

in the membranes at multistep load variations. 

Youssef et al. [48] proposed a lumped model for PEM fuel cells based on zero-

dimensional linear algebraic equations to determine the impact of various operating and 

design parameters such as input temperature, pressure, stoichiometric ratio, thickness of 

membrane and gas diffusion layer on the performance of the fuel cell. The published 

experimental results were used to validate the developed model. 

Rowe and Li [49] developed a non-isothermal one-dimensional model of PEM fuel cells 

in order to investigate and examine the effect of design and operating conditions upon 

the performance, water management, and thermal response of PEM fuel cells. 

Pasricha and Shaw [50] proposed a simple dynamic electrical model of PEM fuel cells 

by extending the steady state current-voltage behaviour of the model to incorporate the 

impact of temperature on the performance of the fuel cell. The model performance has 

been validated using experimental data of a 500 W commercial PEM fuel cell stack. 

Golbert and Lewin [5] adopted the model developed by Yi and Nguyen [51] in order to 

produce a time dependent model for a fuel cell. The model details the heat transfer 

between the fuel cell body, gas channels, cooling water, condensation and evaporation, 

the water content and water through the membrane and, water at the cathode. Dynamics 

of the electrochemical and the transient response of fluids in the anode, cathode and 

coolant channels are assumed to be instantaneously related to the thermal transient 

response of the cell core, while all other parts of the entire system are considered in the 

quasi steady state. Hence, the complexity of the system is reduced to a one-dimensional 

model. 
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Springer et al. [42] developed a one-dimensional isothermal steady-state model for PEM 

fuel cells using the Nafion117 membrane, to determine the impact of water content on 

the performance of the fuel cell. The membrane conductivity is determined as a function 

of water content and current densities. While, Büchi and Scherer [43] carried out 

another attempt to determine the conductivity of the membrane as a function of drawn 

current densities under various pressures and temperatures. 

Abul-Hawa et al. [35] presented a simplified model of relationships between the 

activation losses, ohmic losses, and concentration losses on one side and the operating 

temperature, pressure, and concentration of oxygen from another side, as determined for 

a PEM fuel cell. While, Mann et al. and Wang and Wang [40, 52] determined the 

impact of the water content of the electrolyte membrane and the membrane specific 

resistivity on the output power of the fuel cells. 

2.3 Managing Operational Variables of PEM Fuel Cell 

The response of the PEM fuel cell owing to the rapid changes in the current load 

demand tends to be slow. This is because operation of the PEM fuel cell depends on 

monitoring and controlling the flow rates and pressures of air and hydrogen, stack 

temperature, management of the produced heat and water as a result of the 

electrochemical reaction, and also maintaining of the proper hydration level of the 

membrane [35]. However, designing and implementing a control system that efficiently 

controls all these parameters and variables under a steady state and transient state of 

loads is a complex issue. 

Furrutter and Meyer [53] reported that control of the flow rates of hydrogen and air has 

a significant impact on the performance of the fuel cell, particularly in self-humidified 

fuel cell systems, where the risk of under humidification is most likely to occur, 

particularly at low current densities as the amount of produced water in the cathode is 
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too small. Although a high flow rate of air leads to enhanced performance of the fuel 

cells, it would also contribute to removing the accumulated water or water vapour in the 

cathode side, which leads to an increased drying impact on the fuel cell. Thus, finding a 

balance in the flow rate of air and the fuel cell performance is a challenging issue. 

When a fuel cell stack is supplied with dry gases, the level of membrane hydration 

depends on the production and evaporation rates of water inside the fuel cell, which are 

dependent on the load current, electrochemical reaction rate, operating temperature, and 

period of operation. Moreover, the fuel cell temperature affects the activity of the 

catalyst, the hydration level of the membrane, the saturation of the gas diffusion layers, 

and diffusion of gases through the membrane. Therefore, both the membrane 

humidification and stack temperature influence the dynamic performance of the fuel cell 

[8]. 

Two operational phenomena were reported by Bordons et al. [13] to adversely affect or 

even destroy the membrane of the fuel cell, namely: water flooding and reactant 

starvation. Water flooding is related to the temperature and humidity, while reactant 

starvation is the worst phenomenon and is related to the amount of oxygen in the 

cathode, particularly when the amount of oxygen drops below the certain limit. 

Pukrushpan et al. and Bordons et al. [2, 13] reported that the issue of oxygen starvation 

cannot be controlled by only controlling the oxygen flow rate because the dynamics of 

the electrochemical reaction are much faster than the performances of fluid flow when a 

step change in current occurs. Therefore, an auxiliary storage device such as batteries or 

super-capacitors must be used to buffer the fuel cells system during the transient current 

demands. However, these additional components introduce additional weight, 

complexity and cost to the system. Meanwhile, Abul-Hawa et al. [35] reported that in 

order to prevent starvation, a PEM fuel cell is almost supplied with hydrogen and air or 
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oxygen higher than the level of the reaction rate. This would mean unreacted gases and 

therefore extra cost. 

Abul-Hawa et al. and Amphlett et al. [35, 36] examined the performance of PEM fuel 

cells under different temperatures and pressures of oxygen, and they found that 

increasing either the temperature or pressure of oxygen will lead to reducing the 

activation losses via improving the exchange current density, and hence increasing the 

output power of the fuel cell. However, increasing the temperature of the fuel cell might 

not be the proper solution for improving its output power, because this will dehydrate 

the membrane. Also, increases in the pressure of the reactant inside the fuel cell must be 

determined during the design stage, as the high difference in pressures between cathode 

and anode will damage the membrane of the fuel cell. 

Increasing the water content of the membrane to a certain limit was observed to reduce 

the value of membrane specific resistivity and hence increase the output power of the 

fuel cell [40, 52]. 

Barbir et al. [31] reported that there is a voltage gain when increasing the operating 

pressure of the fuel cell. Operating at high pressures can improve the diffusion of gases 

and reduce the concentration losses, but high pressure operation requires a thicker 

polymer membrane to avoid membrane damage, which leads to high ionic resistivity 

results due to the increase in the thickness of the membrane. They also reported [31] 

that using pure oxygen instead of air to feed the fuel cell stack leads to increasing the 

cell output voltage; this relates back to the fact that pressure and diffusion rates of pure 

oxygen in the cathodes are higher than the partial pressure and diffusion rate of oxygen 

in the mixture of nitrogen-oxygen of air. However, using pure oxygen is critical, as the 

entire system requires certain procedures in terms of maintenance and safety. Operating 

a fuel cell stack with air requires a pumping device such as a blower or a compressor, 
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resulting in further parasitic losses. Thus, the decision for using pure oxygen or air is 

debatable and dependent on the application. 

Shih et al. [54] reported that there is a significant power increase of up to 32% from the 

fuel cell stack fed by pure oxygen in comparison with a stack fed by atmospheric air. 

In a PEM fuel cell, the fuel (H2) and reactant (O2) are supplied by mechanical systems 

of pumps and valves. The mechanical adjustment time for these elements is 

comparatively longer than the reaction time. This mismatch between the two times 

causes a real shortage in the fuel and reactant (starvation of fuel and reactant), which 

consequently leads to a breakdown in the chemical reaction and to a rapid drop in the 

output power of the fuel cell. These problems have been addressed by researchers [12, 

55] in the control models of fuel cell power systems for hybrid vehicles. 

2.3.1 Managing the Flow Rate of Hydrogen 

Thounthong et al. [55] reported that a flow of hydrogen must be maintained 

corresponding to the maximum rated current of the fuel cells stack, so that the fuel cells 

always have enough fuel, the flow is usually adjusted based on the feedback reference 

current signal which is varied according to the changes in load power. While Hauer et 

al. and Pukrushpan [56, 57] reported that the flow rate of fuel must be controlled 

simultaneously in reference to the drawn current from the fuel cell. 

Hauer et al. [56] reported that a small fuel utilisation factor (~2) is necessary to be 

applied in order to ensure a faster and better response against sudden changes in the 

load demand, and also to reduce the size of the energy storage device. But, this will lead 

to extra hydrogen not being used in the reaction, which leads to more losses. Therefore, 

a compromise between the fuel utilisation factor and the size of the energy storage 

device must be considered. 



26 
 

El-Sharkh et al. [3] reported in their proposed dynamic model of 5 kW PEM fuel cell 

system, that a quick response of the fuel cell against step increases-decreases in the load 

current could be gained via controlling the mass flow of hydrogen. 

Heinzel et al. [58] proposed that the unreacted hydrogen from the anode side can be 

reused in order to increase the gross efficiency of the combined reformer and fuel cell 

system by 30%. But, this increases both the cost and the consumed power, as the 

hydrogen has to be refined before it can be re-pumped back into the storage cylinder, 

which means extra cost and complications. This solution enhances the performance of 

the fuel cell partially, but it does not improve the responses of fuel cells towards sudden 

changes in the load demand. 

Rodatz et al. [12] proposed a technique of powertrain in order to control the fuel cells in 

vehicles, mainly by controlling the mass flow rate of hydrogen. When the current is 

drawn from the fuel cell, voltages and currents are used in a feedback scheme and the 

controller determines the exact amount of fuel required by the reaction, and the mass 

flow rate is adjusted accordingly. Such a controller is quite complicated but it does 

provide efficient results. 

Kim et al. [7] reported that in order to maintain stable stack performance, a fuel cell 

stack must be operated with closed ended anodes by using a purge valve instead of an 

open ended anode. A purging anode is important to maintain the internal pressure of 

hydrogen inside the anode of the fuel cell at appropriate levels, also to flush the anodes 

from residual unreacted hydrogen and any traces of formed water [8]. 

Semiz et al. [59] reported that the use of a hydrogen purge valve noticeably improved 

the performance of the fuel cell stack. When the valve is off, the pressure of hydrogen in 

the anode channel increases, which increases the concentration of hydrogen at the 

membrane electrode assembly surface and therefore increases the reaction rate, hence 

improving the performance of the fuel cell. The on and off periods of the purge valve 
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are optimised according to the size and power capacity of the fuel cell stack in order to 

achieve the highest performance. 

Furrutter and Meyer [53] reported that in order to allow fresh hydrogen to enter the 

anode of the fuel cell, Horizon Fuel Cell Technologies used a purging technique for the 

H-100 PEM fuel cell stack that enables the hydrogen purging process to frequently take 

place every 10 seconds for a duration of 10 ms. However, this process has a negative 

impact on the performance of the fuel cell as this leads to a sharp drop in the output 

voltage, and hence power delivered by the fuel cell. Since the drop in voltage lasts for a 

very short period of time 10 ms, the controller is unable to cope with such a fast 

transition. A special controller was built by Horizon to switch the fuel cell stack on/off 

at almost every 10 seconds to overcome the issue of frequent purging of hydrogen, in 

order to maintain the maximum rated power from the fuel cell stack. However, the 

proposed controller technique might cause further problems as a continuous cycle of 

turning on/off for the stack, in a cycle of 10 seconds, would lead to unstable 

performance and in the worst-case scenario damage the stack after a period of 

continuous operation. It also might lead to further delay in the response of the stack 

toward the change in the load demand. 

Verstraete et al. [8] reported that in order to prevent fuel cells from fuel starvation and 

membrane dehydration, the stack should be prevented from operating at levels of high 

concentration losses (i.e. high current demand), and the fuel utilisation of the stack set 

above 90% when the load varies from 25% to 100% of power capacity of the fuel cell 

stack. 

2.3.2 Managing the Flow Rate of Air/Oxygen 

Zhang et al. [60] reported that due to non-linear behaviour and time varying properties 

of the air supply subsystem, it is difficult to keep the oxygen excess ratio within the 
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required level, particularly during transitions. Therefore, an adaptive control algorithm 

is proposed which involves an estimation of time varying parameters and pole 

assignment of a closed loop system, in order to dynamically stabilise the excess ratio of 

oxygen. The operating points of the fuel cell system are adjusted via regulating the 

airflow and the stack current. 

Pukrushpan et al. [2, 32] proposed a non-linear dynamic model of PEM fuel cells to 

examine and analyse the dynamic behaviour of a fuel cell, associated with the flow of 

oxygen, using electrochemical-thermodynamics and zero-dimensional fluid mechanics 

principles. Based on setting the instantaneous limit of the oxygen excess ratio (λo2 = 2), 

a combination of a non-linear feed-forward and linear-feedback controller was designed 

to determine and regulate the oxygen excess ratio during step changes in the current 

load demand based on: 

1. Fuel cells stack current. 

2. Pressure and humidity of the supplied oxygen. 

3. Stack temperature. 

This is primarily done to increase the controller robustness against device degradation 

and against uncertainty in ambient conditions. A non-linear feed-forward controller 

determines the input voltage of the compressor motor, this is done in order to control 

and maintain the required amount of oxygen in the cathode based on the drawn current 

from the fuel cell stack. This allows the desired net power output from the fuel cell 

stack to be maintained. The supplied hydrogen flow rate is regulated by using a high 

gain proportional control. The reference signal from the supply manifold pressure 

sensor is used in order to control the inlet valve of hydrogen and to retain a small 

pressure difference across the membrane. The operating temperature and humidity 

inside the cells are assumed to be efficiently controlled and literally considered 

constant. However, a high oxygen excess ratio improves the net power produced by the 



29 
 

fuel cell stack, but part of the produced power is used to derive the compressor motor, 

thus there is a trade-off between minimising the parasitic losses and providing fast 

airflow regulation, and these are considered conflict objectives. 

Bradley et al. [26] proposed the use of two diaphragm compressors controlled by pulse-

width modulation in order to manage and control the flow rate of the supplied air to the 

cathode. This involves turning off one compressor when a low flow rate is required at 

low current demand, and turning on two compressors when a high flow rate is required 

at high current demand. The cathode stoichiometric ratio between 2.0 and 3.0 is 

provided by the compressors as a function of stack current. 

2.3.3 Managing Temperature  

PEM fuel cells produce electrical power, water and heat as a result of the 

electrochemical reaction; released heat increases the temperature of the cell which leads 

to a reduction in water content in the membrane, hence reducing the conductivity of the 

membrane and increasing ohmic losses. Therefore, an adequate thermal management 

system plays a vital role in controlling the temperature of the stack, hence increasing 

and maintaining the performance and durability of the fuel cell stack [19]. 

It has been noticed that the fuel cells assembly stack has a non-homogenous temperature 

distribution as the temperature in the centre of the stack is higher than its ends, 

particularly in a cold operation environment [27]. 

A water cooling system shows a decent cooling performance in maintaining the 

performance of the fuel cell; however, it needs a coolant tank, pump and heat 

exchanger, which leads to an increase in the size, weight, and complexity of the entire 

system. Therefore, an air cooling system can be considered as an adequate alternative 

option for cooling a fuel cell stack [7]. 
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Bégot et al. [27] reported that it is a complicated task to start-up and operate the fuel cell 

stack with sub-zero ambient temperatures, as the water produced in the cathode can turn 

to ice which can block the passage of the reactants to the reaction interface. The frozen 

water can change the conductive properties of the electrodes, membrane and in worst 

cases can damage the membrane. It was found that the formation of ice reduces the 

active surface of the electrode-catalytic layer which leads to a reduction in the rate of 

the electrochemical reaction, yielding a considerable drop in fuel cell output power. 

Horizon Energy Systems developed a controller for a self-humidified PEM fuel cell 

stack, where the controller regulates the temperature of the stack by controlling the 

rotational speed of the cathode air supply fans, and also regulates the periodic purging 

process of the anode in order to maintain the pressure of hydrogen and to keep high 

levels of hydrogen utilisation in the anode, thus extending the stability of the stack 

performance [8, 61]. 

The performance evaluation of the fuel cell stack system presented by Kim and Kwon 

[24], showed that at a constant load, the temperature of the stack varied approximately 

between 22 °C and a maximum of 35 °C for the first 30 minutes of the stack’s 

operation, and the controller of the fuel cell stack managed to maintain its stack 

temperature at around 35 °C for the remainder of the five hours test. 

2.3.4 Managing Water 

Van Nguyen and Knobbe [62] reported that the reactant gas (air or oxygen) and water 

management are the main factors in achieving a good performance for a PEM fuel cell 

stack. The gain in performance is due to managing the exhaust water control technique 

depending on the flow of reactant gas when removing the extra water from each 

individual cell, and separately from other cells in the stack. The experiment was applied 

on a stack of three cells operating at ambient pressure and temperature and the results 
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showed an improvement in peak power from 0.26 W/cm2 per cell without exhaust 

control and up to 0.5 W/cm2 per cell when using a sequential exhaust control technique. 

However, the design is good for a stack with a small number of cells and becomes more 

complicated for a high number of cells, because of the difficulty in establishing a 

uniform gas flow for each individual cell. 

Santamaria et al. [63] reported that water management strategies are very important for 

the development of PEM fuel cell systems. Parallel and interdigitated are the most 

common types of gas flows for PEM fuel cell design, each of which have advantages 

and disadvantages depending on the operating conditions. Parallel flow depends mostly 

on the diffusion process to transport reactants and to remove water and other residual 

gases. While, an interdigitated flow relies on forcing the cross flow through porous gas 

diffusion layers, which has a significant water removal impact and leads to higher cell 

performance, but requires a high inlet pressure, several times greater in magnitude than 

that for a parallel flow, resulting in higher pumping losses. 

Santamaria et al. [63] designed and tested a novel technique that is capable of providing 

efficient water removal and improving the performance and output power of a fuel cell 

through switching between parallel and interdigitated flows as a function of fuel cell 

current density, taking into account pumping losses. It has been found that at a certain 

flow rate, the parallel flow increases the system power output under low current density 

operation. This is due to the fact that there is less water is produced and hence no need 

for an interdigitated flow which is found to be very effective at higher current density, 

leading to maximising the output power and improving the performance of fuel cells. 
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2.4 Managing and Controlling the Output Power of the Fuel Cell 

Stack 

To enhance the performance of the power source that uses a fuel cell system, an electric 

storage device such as rechargeable batteries or super-capacitors must be connected in 

parallel with the fuel cell stack, in order to boost and improve the output power of the 

fuel cell system [9]. In particular, at high levels of power demand, the battery plays a 

vital role in providing a substantial portion of the requested load and improving the 

stack’s response to dynamic load changes and protecting fuel cells from fuel starvation 

and membrane dehydration [8]. 

Lithium-ion rechargeable batteries have high energy to weight ratio and the ability to 

maintain charge levels, even when left without use for a long period of time. These 

properties promote this type of battery for common use as an auxiliary power source 

with fuel cell applications [20]. 

In a hybrid power system, where the fuel cell stack and batteries, with their individual 

characteristics, are connected in parallel, the dynamic response of the fuel cell system 

which is relatively slower than the batteries, would lead to an imbalance in the load and 

the DC bus voltage. Therefore, a DC-DC convertor needs to be installed in series with 

the fuel cell stack in order to regulate the output voltage of the stack, hence achieving a 

power balance with the batteries and optimising the system weight and size [20]. 

The technique of combining power sources is adopted for solving the problem of 

limitations associated with the single power source, such as low power density or a slow 

dynamic response. Therefore, multi-source or hybrid power systems are very common 

for stationary and mobile power applications. Practically, the configuration of multiple 

power sources requires multi-converter systems to synchronise and regulate the flow of 

power amongst these sources. [64]. 
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Nishizawa et al. [9] proposed a passive hybrid system based on a two diode 

configuration used to connect the PEM fuel cell stack and the storage device directly to 

the DC bus. The hybrid system does not use any DC-DC power convertor which 

reduces the cost of the entire system and minimises electrical losses when compared to 

using the DC-DC convertor in the active hybrid system. However, in the passive hybrid 

system, it is important to follow a special operating procedure in order to avoid 

inconsistencies in the current-voltage behaviour of the fuel cell and the storage devices, 

such as batteries or super-capacitors. 

Rodatz et al. and Thounthong et al. [12, 55] proposed in their control models of fuel cell 

power systems for hybrid vehicles, that in order to overcome the problem of reactant 

starvation, fuel cells must run near steady state conditions. The dynamics of the load 

must be limited to a conservative 2.5 kW/s in order to limit the current of the fuel cell. 

These must be supplemented by using super-capacitors to match the extra demand for 

power during transient modes. By applying real time control on the power distribution 

between the fuel cells and power storage system with respect to the changes in the 

current load, the fuel cell runs as the primary source of power, while the super-

capacitors are sized to the peak level of power in order to: 

1. Support the fuel cells during the transient hard acceleration and to overcome the 

sudden change in load demand and also to avoid the impact of fast changes in 

fuel cell current. 

2. To avoid the mechanical stresses of the fuel cell system. 

3. And to increase the lifetime of the fuel cell stack. 

Jiang et al. [65] reported that for power sharing between fuel cells and batteries, the 

current of the fuel cell must be limited to a safe level. The charging current of the 

batteries must be controlled in order to achieve maximum fuel cell power output and 
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maximum efficiency. While, Nishizawa et al. [9] reported that operating a fuel cell stack 

at a zero load current must be avoided because this tends to damage the fuel cells. 

In order to manage and balance the flow of power between the power sources and the 

load, and also to overcome the issue of slow dynamic response of fuel cells, Lapena-

Rey et al. [20] reported that a throttle control input can be used to ensure that the steady 

state electric motor power demand is not higher than the available power, by reducing 

the motor request commands through a slew ramp limiter, in order to ensure a smooth 

change in the demanded power rate. 

Chen and Khaligh [66] proposed the use of a Proportional-Integral (PI) controller to 

control the flow of currents between the load, fuel cell/electrolyser stack, and the 

rechargeable batteries for a hybrid energy storage system involving a solar photovoltaic 

panel with fuel cell/electrolyser stack and rechargeable batteries for an unmanned 

aircraft system. 

Golbert and Lewin [5] examined the impact of a step change in the fuel cell voltage 

upon the cell power density. Setting up a steady state gain (∆P/∆V) as a function to the 

average current density, a fixed gain integral controller is used to determine the sign 

change of the steady state gain from negative to positive. However, this method leads to 

difficulty in stabilising the controller, and in order to avoid using a fixed gain controller 

with integral action, two alternatives are proposed: 

1. using an adaptive controller, or  

2. using a non-linear model predict control system (MPC). 

In the second approach, the system order can be reduced and optimised to predict the 

behaviour of the system with acceptable accuracy. This is done by predicting the effects 

of past inputs on future outputs, with multivariable control improving the performance. 

However, as an adaptive controller depends on many variables (flow rates, 
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temperatures, etc.), it is difficult to design and function all of these inputs 

instantaneously, leading to restricted performance and robustness of the controller. 

Zhong et al. [67] proposed an adaptive controller, which can trace the locus of the 

unique maximum power point (MPP) when the internal impedance of the fuel cell is 

equal to the load impedance. It does this by estimating the real time of the MPP to 

maintain fuel cell operation at the MPP and to continuously deliver the highest power to 

the load under various operational conditions, which reduces the entire system 

efficiency. 

Verstraete et al [8] reported that in order to increase the efficiency of a self-humidified 

PEM stack, the controller developed by Horizon Energy Systems is connected across 

the stack output terminals. The controller short circuits the stack output every 10 

seconds through a solid-state switch. During the short-circuiting process, load is 

disconnected from the fuel cells stack for about 50 ms, terminating the power to the load 

or to the stack’s controller. Alternatively, to ensure providing continuous power, a 

lithium polymer battery is incorporated in the circuit. The stack’s controller has a built-

in capacitor to smooth the output power, but its capacity is insufficient to completely 

bridge the gap of the 50 ms short-circuiting process to ensure a constant power output. 

2.5 Fuel Cells as a Power Source for Aircraft and UAS Applications 

Fuel cell power systems offer several advantages for aircraft applications, for instance 

reduction of noise and harmful emissions, reduced ground support and maintenance, on-

board water generation, and potential weight reduction [23]. In comparison with gas 

turbine or internal combustion engines, fuel cells have advantages of high specific 

energy (Wh/kg), high efficiency, low noise, low cost and weight, low thermal radiation, 

and are friendly to the environment. They are associated with the capability to be 

integrated with an efficient electrical rechargeable storage system which has promoted 
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interest and concern for fuel cells in aviation applications, as power-plants for aircraft 

and small to large scales of unmanned aircraft systems (UAS) for a wide range of 

endurances [10, 22, 68]. 

However, despite the remarkable advantages of fuel cells, fuel cell powered aircraft are 

generally characterised by low specific power (power to weight ratio – W/kg). Power to 

weight ratio is an important indicator of aircraft performance, for instance an 

overweight aircraft which is underpowered will have severe limitations in its 

performance. Therefore, to improve the performance of the fuel cell powered aircraft, 

several design measures must be adopted, such as low weight fuselage structure, high 

efficiency of airframes, high efficiency of the power-plant system, and low power 

payloads [26]. 

The propulsion system of an aircraft mainly requires a large specific power (W/kg) of 

fuel, in addition to a fast response, in order to fulfil the requirements of different flight 

phases and to balance the variations in load demand. Fuel cells suffer from limited 

power density and slow dynamic responses due to sudden changes in power demand, 

which limit their performance, particularly for UAS applications [8]. Moreover, the 

difficult operational conditions of high altitude flights where the ambient temperature 

and pressure are very low leads to distress in the operation of fuel cells, hence special 

measures and procedures must be taken in order to preserve the performance of the fuel 

cells [27]. 

The low level of energy density of the available commercial batteries, in comparison 

with fuel cells, limits the endurance of the UAS, while the high power densities of these 

batteries are ideal for a short duration of peak power demand. Moreover, the high 

energy density of a fuel cell enables it to play a significant role in extending flight 

endurance. Therefore, a hybrid system in which a fuel cell stack is combined with 

rechargeable batteries associated with a sophisticated controller system can offer 
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advantages in operating and extending the endurance of an unmanned aircraft system [8, 

53]. 

Barbir et al. [31] reported that the cycling efficiency of charging and discharging the 

existing rechargeable battery system is about 80%, while the achievable efficiency for a 

regenerative cycle of fuel cells (i.e. electricity and water to H2/O2, and vice versa) is 

much lower than the battery system. The operating life of a battery is very limited under 

continuous daily usage; also a battery is a heavy component. Therefore, the use of 

batteries in aerospace applications is very limited, if the weight of the aircraft is an issue 

of interest. A regenerative fuel cell system can provide an alternative solution in 

achieving higher specific energy densities in comparison with rechargeable batteries. 

Fuel cells can be used as a prime source of power for small-sized aircraft, and may also 

be used as an alternative reliable source of power to the auxiliary power unit APU (i.e. 

batteries) typically used on board large-sized aircraft. Reliability, performance, weight, 

and size reduction of the fuel cell system are very important factors for the operation 

and safety of electrical powered aircraft [19]. Solid oxide fuel cells (SOFCs) use 

hydrocarbon fuel at high temperatures to produce a power density higher than PEM fuel 

cells, which have an advantage of low operating temperatures, thus promoting PEM fuel 

cells to be widely used in aircraft and for long endurance UAS [24, 26]. 

Lucken et al. [23] recommended a parallel connection of several fuel cell stacks in order 

to maintain reliability and to increase power availability on the common electrical DC 

bus of the power system of the aircraft. This enables the controller to distribute the load 

demand equally among the fuel cell stacks, and to detect and reconfigure the failure 

among them, hence increasing the durability and reducing the maintenance cost. 

However, in order to integrate fuel cell power systems into the electrical network of 

modern aircraft, smart safety arrangements have to be developed to protect the entire 

network from power failure as a result of fuel cell system failure. 
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Most published work has focused on aircraft development and presented limited results 

on the flight test performance of propulsion systems. There is a lack of research in the 

investigations of the dynamic and steady state behaviour of the fuel cell power source 

and the performance of integrated hybrid power system of fuel cells and batteries for 

unmanned aircraft systems [8]. 

2.5.1 Fuel Cells for Aircraft  

Nishizawa et al. [9] proposed a design method of a direct hybrid system to be used for 

aircraft applications. A direct hybrid system consists of a PEM fuel cell stack, Li-ion 

batteries and two diodes which offers the ability to directly connect the fuel cell stack 

with the batteries, and recharge the batteries without the need to use a DC-DC 

convertor. The first diode connected in series with the battery pack protects the batteries 

from reverse charging, while the second diode connected in series with the fuel cell 

stack in order to protect the stack from the reverse current produced by the potential 

difference on the load terminals. The steady state and dynamic behaviours of the hybrid 

system were monitored and indicated an increase in the operational efficiency of the 

system, while the delay in fuel cell output response in providing the required level of 

current was compensated directly through the batteries. 

Lapena-Rey [20] developed a small manned airplane powered by two stacks of PEM 

fuel cells connected electrically in series to generate 200 V, 24 kW. This system drives 

a brushless DC motor and other support units such as an air compressor and humidifier. 

A 350 bar pressurised hydrogen tank is used to supply the required fuel, and air 

compressor to provide the required oxidant. During the cruise phase, the PEM fuel cells 

act as the only source of power, while during take-off and climbing the rechargeable Li-

ion batteries act as an auxiliary power source to boost the generated power from the 

PEM fuel cells. A throttle control is used to manage and to balance the power flow 
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between the power sources and the load. This methodology also overcomes the issue of 

the slow dynamic response of fuel cells. The scheme also prevents the steady state 

electric motor power demand from being higher than the available power, by reducing 

the motor request commands through a slew ramp limiter in order to ensure smooth 

power change rates. 

Correa et al. [19] presented an analytical model of a 20 kW PEM fuel cell power system 

for an ultra-light aircraft. The model predicts the temperature dynamics of the system as 

a function of ambient air temperature, and the generated heat by the stack which is a 

function of the electrical power demand. Uncertainty/sensitivity analysis is implemented 

in order to identify which components affect the reliability and the safety of the system, 

with a focus on evaluation of the system’s uncertainty due to uncertain signals of 

temperature sensors, which are considered to be input parameters to the control system. 

Hence, any malfunction or error in one of these sensors will lead to instability in the 

control loops and cause damage to the fuel cell stack. Sensitivity analysis for the system 

shows that the sensor signal of the cathode inlet temperature has the highest impact on 

the stack temperature, while the sensor signal of the coolant inlet temperature to the 

stack shows the highest impact on the energy balance of the fuel cells, and therefore, a 

great influence on the stack temperature control. 

Barbir et al. [31] proposed the use of a unitised regenerative PEM fuel cells system 

(URFC) using oxygen and pure hydrogen for aerospace applications. URFC can be 

operated as an alternative to the fuel cell to generate DC power, or as an electrolyser to 

produce hydrogen and oxygen and compress it to the storage tanks. The URFC system 

is integrated with a photovoltaic array. The performance and the efficiency of both the 

electrolyser and the fuel cell are determined according to their polarisation curves. 

Maximum roundtrip efficiency for the unitised regenerative fuel cell system is about 

34% when the effect of the parasitic losses is considered, and 43% for an ideal case. The 
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efficiency for both the fuel cell and the electrolyser is a function of the size and weight. 

The analysis shows no significant advantages between a unitised regenerative fuel cell 

system and a separate regenerative fuel cell system (i.e. two stacks work individually, 

one as a fuel cell and a second as an electrolyser). The unitised design would offer 

lower stack weight, while a separate design would offer better stack efficiency. 

Radmanesh et al. [6] proposed a hybrid power-plant system composed of a 240 W PEM 

fuel cell stack, DC-DC and DC-AC converters, ultra-capacitor, electrolyser and 

hydrogen tank, and multiple controllers. A PID controller is used to regulate the system; 

the output voltage is at 48 V via controlling the flow rate of hydrogen and oxygen. The 

proposed hybrid power system is intended to replace the auxiliary power supply 

generator for a C-130 Hercules aircraft that has several disadvantages of high cost, 

maintenance issues and a high rate of failure. The results showed that using fuel cells as 

an electrical backup system improves the reliability of the electrical system and the 

flight performance of the aircraft. 

2.5.2 Fuel Cells for UAS 

In the last few years, small numbers of successful flight tests of light unmanned aircraft 

systems (UAS) powered by fuel cells have been reported. However, most of these tests 

were restricted to short duration low altitude flights [28]. 

Bradley et al. [22] categorised the power supply system of UAS into fuel cell power-

plant and fuel cell subsystem. A fuel cell power-plant consists of a fuel cell stack, air 

and hydrogen supply, regulating systems, and a cooling system. While, a fuel cell 

subsystem consist of an electrical distribution bus, and power management system. 

Kim et al. [7] developed a hybrid power system that consisted of a 100 W PEM fuel cell 

(H-100) from Horizon Fuel Cell Technologies combined with a hydrogen generator 

system. The system also included a DC power management unit with auxiliary lithium 



41 
 

batteries in order to improve the flight endurance for a UAS. Hydrogen gas is produced 

from a catalytic hydrolysis of an alkaline solution of sodium borohydride (NaBH4) and 

cobalt alumina as a catalysis. The proposed prototype small plane was designed to be 

launched by hand with a gross weight of 2.5 kg including fuel. The performance of the 

hybrid power system was evaluated in terms of measuring the performance of the 

hydrogen generation rate and the output power of the fuel cell. The performance of the 

UAS and power system was evaluated based on performing two and a half hours of 

ground flight tests and two hours of low altitude (30 m) flying test. It was found that the 

fuel cells system is more efficient in extending the endurance of the UAS in comparison 

with lithium batteries, and the fuel cell stack must be operated with dead-ended anodes 

using a purge valve to maintain stable stack performance, instead of open-ended anodes. 

Kim and Kwon [24] adopted the system of a PEM fuel cell combined with a hydrogen 

generator proposed by Kim et al. [7] as an alternative source of power to the existing 

batteries. About 42% of the weight of the fuel cell stack was reduced after certain 

modifications involving replacing the aluminium end plates with lighter materials. A 

steady state power output was at a constant load of 50 W for five hours. The total 

combined weight of the fuel cell stack and the hydrogen supply system was about 

45.5% of total the aircraft’s weight, which was 2.2 kg. However, the authors did not 

consider the impact of the temperature and air density changes due to the changes in 

altitude. Moreover, the process of extracting hydrogen was performed in the laboratory 

under normal room temperatures, where the impact of low pressure-temperature on the 

performance of the hydrogen generator was not considered. 

Huang et al. [69] developed a design involving a 300 W PEM fuel cell stack integrated 

with a sodium borohydride (NaBH4) based hydrogen generator. The stack of 15 cells, 

each of 140 cm2 active reaction area, was built in a configuration of combined inlets of 

cathodes with two air fans for air supply and stack cooling and open-cathode outlets. 
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The reactant solution consisting of 20 wt.% NaBH4 and 3 wt.% NaOH was pumped into 

the structured catalyst at a constant flow rate using a liquid pump. The conversion 

efficiency of the hydrogen generator was found to be 87%. It was found that the 

performance and power output of the fuel cell using hydrogen extracted from NaBH4 

hydrogen generator was the same as produced from a conventional pressurised 

hydrogen cylinder. The hydrogen produced from a sodium borohydride based hydrogen 

generator contains saturated water vapour, hence does not need further humidification 

before entering the fuel cell stack, which could offer a quick start-up in comparison with 

the dry hydrogen from a gas cylinder that requires humidification. 

Semiz et al. [59] proposed performance optimisation for a manufactured air berating 

PEM fuel cell producing 150 W for an unmanned aircraft system application. Air fans 

supplied the air to the cathode, while hydrogen gas was generated from the reaction 

between sodium borohydride and the catalyst. It was found that rate of hydrogen 

production depends mainly on the catalytic activity of the catalyst rather than the 

concentration of the sodium borohydride solution. However, there is a threshold catalyst 

concentration for the maximum available reaction rate; hence increasing the 

concentration of the catalyst above this threshold does not increase the hydrogen 

production. It was observed that the stack could provide 165 W continuously for four 

hours without any noticeable decline in its performance, which is considered an 

encouraging outcome in deploying PEM fuel cells as a prime power source for UAS 

applications. However, the fuel cell stack tests were carried out under normal room 

temperatures and pressure and did not consider the performance of a PEM fuel cell at 

high altitude operation. 

Seo et al. [61] designed and developed an advanced ammonia borane-based hydrogen 

(NH3BH3) power pack to continuously drive an unmanned aircraft system, using a 

200W PEM fuel cell stack. The power pack was developed to produce pure hydrogen 
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with an average flow rate of 3.8 L.min-1, auto-thermal H2 released from ammonia 

borane with tetra ethylene glycol dimethyl ether as a promoter. During take-off, a 

hybrid power system consisted of the fuel cell stack, an auxiliary lithium-ion battery, 

and a controller used to supply the full power of 500 W to launch the UAS, having a 

maximum total weight of 7.5 kg. The fuel cell stack provided 180-200 W of the 

required power. The proposed UAS was flown up to 200 m altitude with cruising speed 

of 60 km/hour. The obtained results showed the ability of the power pack to 

continuously drive the UAS for 57 minutes. The fuel cell stack with the power pack 

production system was found to efficiently provide extra power to recharge the auxiliary 

battery during the cruising phase. The stack controller was responsible for controlling 

the rotational speed of the air fans and hydrogen purging valve, in order to manage the 

stack temperature and to build-up hydrogen pressure in the anode. However, the work 

ultimately focused on enhancing the continuity and the rate of hydrogen generation 

from the reactor for powering a 200 W PEM fuel cell stack. 

Bradley et al. [26] proposed a 500 W, 32-cell self-humidified PEM fuel cell as the main 

and only source of power for an unmanned powered aircraft with a 310 bar compressed 

hydrogen tank, which provides 0.192 m3 storage volume capacity. The power-plant for 

the aircraft is composed of a fuel cell stack, thermal management system, air and 

hydrogen management system, hydrogen storage, and controller units. The fuel cell 

stack provides power to the propulsion system through the DC bus. The propulsion 

system consists of an electric motor, motor controller, and a propeller. The performance 

of the entire system, using data captured from the flight and the laboratory tests, was 

analysed and indicated an improvement in the system performance. However, the 

proposed aircraft system was designed without consideration to the payload or 

endurance requirements. Also, to overcome the problem of a very low power to weight 

ratio for the fuel cell aircraft, when compared to conventionally powered small aircraft, 
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the entire proposed fuel cell powered aircraft is designed to be operated at a low speed, 

stable altitude flight level, with slow manoeuvrability. Moreover, the proposed aircraft 

was tested at 30 m maximum flying altitude, and for less than three minutes total flying 

time. 

Furrutter and Meyer [53] proposed a design of a power-plant system as a prime source 

of power for a small-scaled fixed wing UAS, using a 100 W PEM fuel cell developed 

by Horizon Fuel Cell Technologies, to provide enough power to maintain a steady and 

stable flying level. The total weight of the demonstrated aircraft was 5.3 kg with 13 m/s 

maximum flight velocity. The lightweight aluminium vessel, weighing 0.255 kg, was 

filled with 30 bar pressurised hydrogen enough for nine minutes of flying time. The 

aircraft was tested at approximately 100 m cruising altitude, and the tests showed that 

the power delivered by the fuel cell stack was sufficient to maintain level flight at the 

required altitude with limited manoeuvrability. 

Verstraete et al. [8] proposed an advanced hybrid AeroStack power system developed 

by Horizon Energy Systems; the power-plant system comprised a 200 W self-

humidified PEM fuel cell stack and its controller, lithium-polymer battery, and power 

management board to enable higher endurance for a small electrical powered UAS. A 

series of tests were done to characterise the hybrid power-plant system. The results 

demonstrated a considerable difference between the dynamic and steady state 

performances of the fuel cell power system. At high power demand, the battery plays a 

vital role on the stack’s response to the dynamic load changes and protects the fuel cells 

from fuel starvation and membrane dehydration, by providing a substantial portion of 

the requested load. The controller protects the stack from operating at levels of high 

concentration losses, and fuel utilisation of the stack was set above 90% when the load 

varied from 50 W to 200 W. Electrical efficiency of more than 50% was obtained for 

this power range. 
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Aguiar et al. [10] proposed a solid oxide fuel cell combined with gas turbine as an 

alternative power system for a high altitude long endurance (HALE) UAS. A liquid 

hydrogen tank was used to supply hydrogen in the form of gas to the fuel cell stack. 

Different system configuration models were investigated to improve the efficiency and 

reducing the fuel consumption to achieve a one-week operational endurance target. It 

was found that the configuration of connecting three separate fuel cell stacks in parallel 

and feeding fuel distribution in parallel, while the air is fed in series increases the 

system efficiency in comparison with a single stack configuration with the same power 

capacity. It was observed that a power system composed of a single stack has the ability 

to achieve efficiency of 54.4% (LHV) by using a large air compressor to cool the stack. 

System efficiency of 66.3% (LHV) was achieved for a three stacks system. This 

increase is primarily due to the use of air intercoolers between the three stacks system 

configuration which leads to a reduction in system losses and improves the overall 

efficiency. 

Cooley et al. [64] explored and investigated the feedback control designs and the 

linearization of a converter for a hybrid solid oxide fuel cell stack for electrically 

propelled UAS. The technique of combining power sources was adopted for 

overcoming low power density or slow dynamic response power characteristics 

associated with a single power source. Therefore, multi-source or hybrid power systems 

are very common for stationary and mobile power applications. Practically, the 

configuration of multiple power sources requires a well-controlled multi-converter 

system to synchronise and regulate the flow of power amongst these sources. However, 

feedback regulated multi-converter systems impose several design challenges. 

Chen and Khaligh [66] proposed a hybrid energy storage system, consisting of a solar 

photovoltaic panel with fuel cell/electrolyser stack and rechargeable batteries as an 

alternative power source to a conventional fuel-powered internal combustion engine, in 
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order to extend the endurance of UAS. During the day, the PV panels are the main 

source of power to drive both the UAS and the electrolyser. The produced hydrogen is 

stored in order to be consumed by the fuel cells during night operation. The 

rechargeable batteries compensate any fluctuations in the power demand of the hybrid 

power system during day and night operation. During night operation, air is extracted 

from the ambient source and fed to the electrochemical reaction of the fuel cell stack. It 

is considered that the peak load demand is more critical than expanding flight 

endurance, hence maintaining the full charge level of the batteries, particularly during 

day operation is a higher priority than supplying power to the electrolyser to generate 

sufficient hydrogen for night operation. A Proportional-Integral (PI) controller is used to 

control the flow of currents between the load, fuel cell/electrolyser stack, and the 

rechargeable batteries. The power demand of the load during steady state cruising is 

500W, while the peak power demand for 2.5 hours for the taking off mode is 800 W. 

However, the proposed work did not determine by any means the implications of the 

volume and weight of hydrogen gas and its storage vessel, or the overall weight of the 

UAS with 8 m2 of photovoltaic panels. 

Verstraete et al. [70] presented a series of tests that are used to characterise the role of 

the battery and power-management system for a hybrid AeroStack Horizon Energy 

System, combining a battery and a fuel-cell-based propulsion system for small 

unmanned aircraft systems. The obtained results demonstrate that the battery plays a 

vital role on the response of the system to the dynamic changes of the load; the system 

response is highly influenced by the storage capacity of the battery and the rate of 

current. Also the results showed a limitation in the charging process of the battery, as 

the power-management board of the AeroStack can only recharges the battery to 70% of 

its capacity, for about 2 hours of a continuous charging. As the charging process 



47 
 

requires more fuel to be consumed by the fuel cells, a compromise is needed between 

the charging capacity of the battery and the whole endurance of the mission. 

Omar [71] presented an experimental study to investigate the performance of the hybrid 

power system for low flying altitude of a small UAS PiperCub J3 aircraft. The power 

system consisting of a combined 1.2 kW Nexa PEM fuel cell stack and 12 volt 

rechargeable lead acid batteries, as a main source of power to drive an electric DC 

motor. The flight scenario was designed in order to enable the aircraft to climb to the 

altitude of 10 m and perform 30 m radial circling mission before landing, for a total 

flying time of 5 minutes. The results of the experiments revealed that the hybrid power 

system can fulfil the requirement of the power demand for different flight phases (take-

off, climb, cruise, descent, and landing), with a fuel cell stack efficiency of 38% and 

total consumption of hydrogen of 48.5 litres, while a maximum power demand occurred 

during take-off and climb. 

2.5.3 High Altitude Long Endurance UAS 

Long endurance UAS has attracted more attention and interest among the aerospace 

community because of the capability to accomplish a variety of tasks and missions, such 

as surveillance and exploration, targeting and remote sensing for both commercial and 

military applications. In comparison to space satellites, unmanned aircraft systems 

exhibit lower costs, faster cycle times of missions, and high adoptability [22, 26].  

A long endurance flight is identified as a main flight performance characteristic for a 

UAS [72]. However, in recent years, there has been an increase in focus on the design 

of a combined system of solar array and hydrogen fuel cells for very long endurance 

UAS applications [73]. 

Several restrictions and challenges exist in the use of small scale UAS, particularly for 

environmental remote sensing [74]: 



48 
 

• Structure of small scale aircraft. 

• Low weight and narrow centre of gravity margins. 

• Limited energy and power density of the on-board power sources. 

• Harsh flying environment and safety regulations. 

High altitude long endurance (HALE) unmanned aircraft systems are typically designed 

to fly at altitudes between 15 and 20 km, cruising at low speeds and circling the area of 

interest. They play a vital role in providing high-resolution surveillance due to their 

closeness to the earth. A HALE UAS needs to have a lightweight, high lift-low drag, 

low power consumption, and highly efficient propulsion and power system, in order to 

increase the mission endurance. Eliminating the mechanical couplings between the 

propulsion system and the power generation system would lead to enhancing the overall 

efficiency of the system and hence extending its endurance, as the privilege of 

deploying a fuel cell power system in comparison with turbo jet and combustion 

engines [10, 73]. 

Flight endurance is an important factor in improving the performance of the mission; 

higher energy density and efficiency of the power supply system are very important in 

increasing flight endurance of the UAS [7]. 

Due to the low efficiency of gas turbines and reciprocating engines, particularly for 

small scale UAS, batteries are used as a secondary power source. The energy density 

(i.e. energy capacity per unit volume or weight) of the available batteries is too low to 

power a small UAS to have long endurance. A lithium polymer battery can provide 

energy of (200 W-hr/kg), which can offer an endurance of 60-90 minutes for a small 

UAS. A hydrogen fuel cell system has high energy density and is more efficient in 

extending the endurance of a UAS in comparison with lithium batteries, hence can be 

considered as an ideal power alternative to existing batteries [7, 24, 53]. 
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The UAS consumes more power during take-off and climb than in cruise mode. 

Combining fuel cells and rechargeable batteries in a configuration of hybrid propulsion 

systems offers a significant increase in the UAS endurance, where the fuel cell is 

normally used for cruise flight, while the auxiliary batteries provide the additional 

power required for taking-off, climbing, and the increase in power demand of transient 

loads [7, 68]. The take-off phase is considerably shorter than the cruise phase. The 

batteries can provide maximum power and then during cruise the fuel cell can recharge 

the batteries [9]. 

Romeo et al. [73] reported that continuous flight for several months is possible, using an 

integrated closed loop power system, composed of a solar array that is used during the 

day time to generate the required power to drive the plane’s electric motors. Excess 

power is used to run the electrolysis unit that generates a sufficient amount of oxygen 

and hydrogen, in order to store it in pressurised form and re-use it during the night 

through the fuel cell stack. The water produced from the fuel cells is stored and re-used 

again during the day by the electrolyser. 

Renau et al. [28] presented a study to determine the capability of a small UAS, under 

specific aerodynamic characteristics, powered by an electric motor and light PEM fuel 

cell stack with a power capacity of 650 W and current of 36.58 A, to reach a service 

ceiling of 10 km, carrying on-board the required amount of hydrogen and oxygen. A 

small and light UAS was used, with a total airframe mass of 3 kg, a 4 m wing span and 

0.8 m2 surface area, which offers a maximum UAS mass up to 16 kg, where 9 kg 

corresponds to the fixed elements and only 7 kg is available for the carried payload and 

oxygen-hydrogen storage cylinders. To simplify the calculations, the UAS is assumed to 

move along two axes only (x and z), in order to determine the minimum required power 

for the flight to fly at a certain horizontal altitude, where thrust is equal to the drag and 

lift is equal to the UAS weight. Moreover, due to the losses caused by the DC-DC 



50 
 

converter, electric motor, transmission, and the propeller, the total efficiency of the 

power-plant is assumed to be equal to 65%, hence net power of 422.5 W was supplied 

to the propeller. At a maximum power capacity of 650 W, the total consumption of 

hydrogen is (55 g/h) and oxygen is (436.7 g/h), as determined based on the theoretical 

specific reacted amount of hydrogen and oxygen per cell, which were found to be 

(0.0376 g/A.h) of hydrogen and (0.2985 g/A.h) of oxygen with respective 

stoichiometric factors of 1.0 and 1.2. 

In order to ascend to 10 km, two different flight strategies were proposed by the authors 

[28]: first, an ascending strategy based on a constant climb rate of 0.88 m/s and variable 

power supply; hence the climb angle is decreased with altitude as the velocity increases 

due to the change in air density. Consequently, the required power of the propeller will 

increase from about 300 W at sea level to 422.5 W at maximum altitude. It has been 

observed that the task required 2.8 hours and energy of 1200 Wh with a fixed volume of 

hydrogen to reach a maximum altitude slightly below 9.5 km. 

Second, an ascending strategy based on constant propeller power of 422.5 W and 

variable climb rate, which decreases with the climbing altitude from 1.5 m/s at sea level 

to 0.88 m/s at 10 km. It has been observed that the task required 2.2 hours and energy of 

930 Wh for the same fixed volume of hydrogen as at a climbing rate of 0.88 m/s to 

reach above an altitude of 10 km. Hence, the required mass and volumes of hydrogen 

and oxygen for 2.2 hours of operation are determined to be equal to 121 g (1,346 L) of 

hydrogen (equivalent to 2.7 L under compression pressure up to 500 bar), and 960 g 

(672 L) of oxygen (equivalent to 1.34 L under compression pressure up to 500 bar). 

A storing gas cylinder with dome ends, with filament winding and plastic liner wrapped 

with composites over the entire sidewall, is selected to store 500 bar pressurised gas. 

The hydrogen cylinder storing capacity is up to 4 L and has a gross weight of 1.91 kg. 
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The oxygen cylinder storing capacity is up to 2 L and has a gross weight of 1.84 kg (i.e. 

mass of empty oxygen cylinder is 0.88 kg). 

However, from the presented results in [28]; it is clear that these calculations are valid 

for a fuel cell stack under the assumption of a theoretical reaction amount of hydrogen 

and oxygen, and no consideration has been given to the changes in the thermodynamic 

properties of the gases inside the stack and the manifolds upon the performance of the 

stack. Also, the proposed UAS is limited by specific aerodynamic characteristics (as the 

airplane is allowed to displaced along only x and z axes, for a maximum mass of 16 kg 

with a maximum climb rate of 1 m/s), where any climb rate above this value will need 

further power from the propeller, which is higher than the power capacity of the fuel 

cell stack. Moreover, no valid justifications have been shown regarding the selection of 

a small mass of storing cylinders under the proposed high compression pressure of 500 

bar, neither are there calculations to determine the total mass of UAS and the required 

volumes of hydrogen and oxygen for cruising operation. 

Barroso et al. [75] proposed using a high temperature PEM fuel cell stack under 

operating temperatures above 140 °C for small and light UAS capable of ascending to 

an altitude of 10 km, in order to overcome the low atmospheric temperature          

(below -50 °C) at high altitudes. Heat transfer coefficients were determined in order to 

identify the optimal design of cooling system to cool the stack down to the 

recommended temperature of the manufacturer. However, the proposed cooling system 

will add extra weight and complexity to the entire system and will consume more power 

from the fuel cell power-plant. 

2.6 Other Applications for PEM Fuel Cells 

Shih et al. [54] proposed a hybrid PEM fuel cell stack with batteries as a prime and 

silent source of power for air-independent propulsion for an underwater vehicle for 
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naval operations. The power-plant system consists of a 1 kW fuel cell stack, oxygen and 

hydrogen cylinders, four lead-acid batteries, water cooler, pressure and temperature 

sensors, solenoid valves, and an operational controller. Results of the tests confirm the 

feasibility and the functionality of a PEM fuel cell power system for underwater vehicle 

operation with a maximum cruising speed up to 1.05 knots. Moreover, it has been found 

that there is a significant power increase of up to 32% from the fuel cell stack fed by 

pure oxygen in comparison with a stack fed by atmospheric air. 

Khan and Iqbal [76] proposed and developed a model of a small wind-fuel cell hybrid 

power system, using a PID controller to control the fuel cell system. While, Kim et al. 

[77] designed and assembled an ultra-compact direct hydrogen PEM fuel cell system as 

an alternative power source for a Li-ion battery in a mobile phone. The fuel cell system 

consists of eight thin PEM fuel cells, and an air-breathing planar stack which has a total 

volumetric power density of 335 W/L. The hydrogen tank has a storage capacity of 4 L 

in an 8 ml tank volume, a tiny pressure regulator, and a high efficiency DC-DC voltage 

convertor circuit. The fuel cell system provides an estimated energy density of about 

205 Wh/L which is sufficient to provide approximately six hours of continuous voice 

calling. 

2.7 Summary 

A critical review of the literature considering the related aspects took place in this 

chapter. Many developed models of PEM fuel cells reported in the existing literature 

were reviewed and presented. Operation of the fuel cell under steady and transient states 

of load variations was discussed. The effects of the flow rate of air-hydrogen, the 

pressure of the supplied fuel and reactant, the stack temperature, management of the 

produced heat and water as a result of the electrochemical reaction, and also proper 

hydration of the membrane were outlined and presented. 
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Different techniques for managing and controlling the output power of the fuel cell 

stack and managing operational variables of the PEM fuel cell were presented. 

Moreover, the deployment of fuel cells as primary or auxiliary power sources for 

aircraft and UAS applications was presented with a greater focus on UAS applications. 

Although many of the fuel cell models are available in the literature, most of these 

models estimate the output voltage of the fuel cell for a particular set of operating 

conditions and some often for limited dynamic variations. But, developing a PEM fuel 

cell model that considers the major electric and thermodynamic variables and 

parameters involved in the operation, and taking into the consideration the impact of 

environmental conditions during fuel cell operation, is an important objective. 

Most published work has focused on aircraft development and presented limited results 

on the flight test performance of propulsion systems. There is a lack of research in the 

investigations of the dynamic and steady state behaviour of the fuel cell power source 

and the performance of integrated hybrid power system of fuel cells and batteries for 

unmanned aircraft systems. Moreover, most of the research literature focuses on the 

design of hydrogen vessels for low altitude and low speed UAS applications, and for 

supplying air extracted directly from the surroundings, hence no oxygen pressure vessel 

has been used in the application. At a high altitude of 11 km (~36,000 ft.), atmospheric 

temperature, pressure and density of air are very low, these are severe conditions for a 

fuel cell to operate. Also, published experimental data for such operating conditions are 

very limited, therefore air or oxygen pressure vessel becomes a most vital issue relating 

to providing sufficient oxygen to the fuel cell power system. 

Furthermore, in the published literature to date, there appears to be no particular study 

that determines or specifies the size and weight of the combined power-plant of the fuel 

cell stack with hydrogen and air/oxygen vessels and the propulsion system of UAS for 

high altitude flight operation; or takes into consideration the power capacity of the fuel 
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cell stack and the flight endurance as the main factors in designing the size and weight 

of the storing vessels, and hence determining the overall weight of the UAS. 

In the next chapter, the principle of the electrochemical reaction and the mathematical 

modelling of voltages for a PEM fuel cell will be presented, along with all related 

parameters. 
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Chapter Three: Modelling Voltages of the PEM 

Fuel Cell 

 

3.1 Introduction 

The steady state behaviour of the PEM fuel cell can be predicted through estimating the 

equilibrium cell voltage for a particular set of operating conditions, such as 

concentration of gases, associated pressures, operating temperatures and the drawn 

current. Transient behaviour is an important aspect, particularly when operating 

conditions change with time; such as starting up or shutting down, or when there is a 

large sudden change in the load current, accompanied with changes in the cell 

temperature or gas concentration on the surface of electrodes [36]. 

The output power of a fuel cell can be determined by predicting the cell voltage as a 

function of the operating current, stack temperature, flow rate and partial pressures of 

oxygen and hydrogen, as proposed in the model of Amphlett et al. [36]. While Mann et 

al. [40] proposed using dimensions of the electrolyte membrane, level of water content 

in the membrane, and the level of aging and degradation of the membrane with 

operating time. 

Pukrushpan et al. [2, 32] proposed modelling the output voltage of the PEM fuel cell 

stack based on the parameters proposed by Amphlett et al. and Mann et al. [36, 40], and 

considered the impact of the two phases of water (vapour and liquid) in the gas 

diffusion layer and their impacts on the transport of gases on the performance of the fuel 

cell. 
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The impact of the water content of the electrolyte membrane and the drawn current 

densities on the membrane specific resistivity and the conductivity of hydrogen ions, 

and hence on the output power of the fuel cells under various pressures and 

temperatures have been determined in various models [40, 42, 43, 52]. 

Although many of the fuel cell models are available in the literature, most of these 

models estimate the output voltage of the fuel cell for a particular set of operating 

conditions and some often for limited dynamic variations. But, developing a PEM fuel 

cell model that considers the major electric and thermodynamic variables and 

parameters involved in the operation, and taking into the consideration the impact of 

environmental conditions during fuel cell operation, is an important objective. 

3.2 Principle of Electrochemical Reaction for the PEM Fuel Cell 

A PEM fuel cell is a device that converts energy in the fuel and reactant into electrical 

DC power after a sequence of electrochemical reactions. When hydrogen and air (or 

oxygen) is continuously supplied to the fuel cell, the electrochemical reaction starts at 

the interfaces of the polymer electrolyte membrane [1]. At the anode side of the PEM 

fuel cell, hydrogen will be ionised in the existing platinum catalyst to release electrons 

and ions H+ in a process called oxidisation, each molecule of hydrogen H2 will produce 

two free electrons and two positive ions (protons). The existence of the platinum 

catalyst is important to accelerate the reaction and reduce the activation energy. The 

mass of platinum in the electrode will not be depleted with time because it does not 

contribute to the reaction [16]. 

The protons and electrons are not produced immediately on the first instance of contact 

between hydrogen and the catalytic electrode. The process is more complicated and it 

passes though many stages. The H2 molecule adsorbs on the surface of the electrode, the 

energy of the interaction between the hydrogen and platinum surface will contribute in 
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breaking the bonds between the hydrogen atoms. Hence, the hydrogen molecule is 

separated into two adsorbed hydrogen atoms (Had), and then each adsorbed atom will be 

dissociated into one electron and one proton, the equations below describe the 

adsorption and dissociation process [78]. 

 

H2 → 2Had 

2Had → 2H+ + 2e- 

 

The electrolyte membrane conducts protons to the cathode electrode, but it will not 

allow the electrons to be conducted through as the electrolyte has high resistivity toward 

electrons. Therefore, the electrons will flow as an electrical current to the connected 

load via the interconnections of bipolar plates [1]. 

At the cathode side, the oxygen reacts with the electrons and protons in the existing 

platinum catalyst to produce water in a process called a reduction [16]. The 

electrochemical reaction of the PEM fuel cell is exothermic and energy in the form of 

heat is released. The equations below represent the reaction. 

 

H2 → 2H+ + 2e-1                (at anode side) 

2H+ + 2e-1 + 
2

1
O2 → H2O    (at cathode side) 

 

The output power of the fuel cell depends on its current–voltage relationship at any 

operating point. The output voltage of the PEM fuel cell depends on the pressure and 

mass flow rates of fuel and reactant, operational temperature, relative humidity and 

concentrations of gases in the reaction interface, and on the level of water content in the 

electrolyte membrane. The output voltage drops when the current is drawn from the fuel 

cell, and also due to three main irreversible losses [5, 35]: 

1. Activation losses.  

2. Ohmic losses. 

3. Concentration losses. 
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The magnitude of the output voltage of the fuel cell is less than the open circuit voltage 

due to the losses mentioned above. 

Simplified models of relationships between the activation, ohmic, and concentration 

losses and the operating temperature, pressure, and concentration of oxygen are 

presented in various sources [35, 36].  

It is important to understand the mechanisms of these losses and how they influence the 

design and operation of the fuel cell. There are various factors that can influence the 

output power of the PEM fuel cell. Amongst them is the design of an efficient stack 

system that maximises the output power for a range of operating conditions – a focus of 

much research. 

3.3 Activation Losses and a Charged Double Layer 

In electrochemical systems, the phenomenon of a charged double layer is fundamental. 

The charge layer builds up as a result of charge diffusion and charge collection, due to 

applied voltage across the fuel cell. Electrical voltage is generated due to the 

accumulation of electrons on the surface of the electrode and ions on the surface of the 

electrolyte. The rate of reaction is influenced by the density of the charges that are built. 

Thus, a part of the generated voltage will be lost in driving the electrochemical reaction 

responsible for moving the electrons to or from the electrodes [1]. 

The phenomenon of a charged double layer gives an explanation of why the activation 

overvoltage occurs. The collection of charges at the electrode/electrolyte interface forms 

a storage layer of electrical charges which act as an electrical capacitor and thus 

generate an electrical voltage. In this case, it is the activation overvoltage that results in 

slowing the electrochemical reaction at the electrodes surface. As a result of capacitive 

behaviour, if the drawn current from the fuel cell is increased, it will need more time to 

build up extra charge, and if the drawn current is reduced, it will take some time for the 
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charge (and its associated voltage) to dissipate. Therefore, activation overvoltage does 

not immediately follow the current in the way that the ohmic voltage drop does. The 

effect of this makes the voltage rise gently and smoothly, but fairly slowly to a new 

level in response to the change in current demand [1]. 

When a fuel cell is open circuit (i.e. no current drawn by the load), the rate at which 

electrons are being released at the anode and recombined with ions at the cathode will 

be the same, hence equilibrium occurs. The rate of the electron production at the anode 

or recombination at the cathode is called exchange current density. For a PEM fuel cell, 

the exchange current density at the cathode electrode is much smaller than its value at 

the anode electrode; sometimes 105 times smaller. Therefore, activation loss at the 

cathode is higher when compared with activation loss at the anode which can be 

ignored. Hence, a cathode’s exchange current density is the most vital factor affecting 

activation losses. However, an efficient catalyst would increase the likelihood of a 

reaction, so that a higher current can flow without such a build-up of charges, and thus 

decreasing the activation loss [1]. 

In order to determine the impact of activation loss of cathode upon the output voltage of 

a PEM fuel cell, the empirical electrochemical relationship developed by Amphlett et al. 

and Mann et al. [36, 40] will be used, in order to determine the impact of temperature, 

concentration of oxygen, and the drawn current on the activation voltage loss, as 

presented by Equations (3.1) and (3.2). 

 

)(ln . .)ln( . . . 4 321 2
ITCTTV

Oact ζζζζ +++=        (3.1) 

 
Where, T is the stack temperature in kelvin (K) which is nearly equal to cell 

temperature, I is the drawn current in ampere (A), CO2 is the concentration of oxygen at 

the catalyst interface (mol.cm-3), and ζn represents the empirical parametric coefficient 

based on the experimental data, which may vary from one stack to another, or one cell 
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to another, depending on the geometrical design and the materials used in the 

construction of a PEM fuel cell [35]. The values of ζn can be found from the 

experimentally determined data tables developed by Amphlett et al. and Mann et al. [36, 

40]. 

 

ζ1 = - 0.944 V ζ3 = 7.80 x 10-5 V/K 

ζ2 = 3.54 x 10-3 V/K ζ4 = - 1.96 x 10-4 V/K 

 

The value of CO2 in Equation (3.1) above can be determined based on Henry’s Law [76]. 

 

)/498exp(*10*08.5 6

2

2
T

P
C O

O −
=          (3.2) 

 

Where, PO2 is the partial pressure of oxygen in the cathode of the fuel cell. The 

implementation of activation overvoltage in Simulink is shown in Figure 3.1. 

 

Figure 3.1: Simulink block diagram of activation overvoltage 
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3.4 Ohmic Losses  

Ohmic losses are caused by two types of resistivity: the ionic resistivity of the 

electrolyte membrane towards the ion conduction and the electronic resistivity which is 

the resistance of both electrode materials and interconnections of bipolar plates towards 

the flow of electrons [1]. The electronic resistivity depends on the materials of 

electrodes and bipolar plates, and it is considered to be approximately constant, 

particularly over a temperature range 50 °C to 90 °C of PEM fuel cell operation, and 

hence can be ignored. Ionic resistivity is more complicated and is not constant over 

operating temperatures, because the resistance of the electrolyte to the conduction of 

ions depends on many factors, including material characteristics of the membrane, water 

content and its distribution in the membrane, fuel cell temperature, and drawn current 

from the fuel cell [40]. 

Theoretically, for PEM fuel cell, the flow of electrons is equal to the flow of ions. 

Therefore, the voltage drop due to ohmic losses is defined as the sum of electronic and 

ionic resistance losses. 

 

( )electronsionsohm RR.IV +−=            (3.3) 

 
Where, I is the current drawn from fuel cell in ampere (A), Rions and Relectrons are the 

ionic and electronic resistivity in ohm (Ω), respectively. By ignoring electronic 

resistivity in order to determine the impact of membrane resistivity on the output 

voltage of the PEM fuel cell, Equation (3.3) becomes: 

 

ionsohm R.IV   −=            (3.4) 

 
The negative sign in Equation (3.4) represents a loss. Mann et al. and Wang and Wang 

[40, 52] developed an empirical model of ionic resistivity of the membrane Rions as a 
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function to the membrane specific resistivity Rm (ohm.cm), membrane active area of the 

fuel cell Afc (cm2), and thickness of the membrane L (cm). 

 

fc

m
ions

A

LR
R  . =            (3.5) 

 
Where, Rm is a function of the cell temperature in kelvin (K), the current drawn from the 

fuel cell in ampere (A), membrane active area, and λ which is a semi-empirical variable, 

represents water content in the membrane. The value of Rm is not unique; it changes 

from one membrane to another based on the membrane dimensions and membrane 

preparation procedure. 
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The parameter λ represents the number of water molecules per sulfonic group in the 

structure of the membrane (H2O/SO3
-H+). At an ambient temperature of 30 °C and 

under the condition of equilibrium of saturated water vapour, the measured value of λ is 

14 water molecules per sulfonic group [42]. The value of λ is influenced by: membrane 

fabrication processes, operation time (i.e. time being in service), cell relative humidity, 

and the stoichiometric ratio of the supplied gases [40]. 

Values of λ are calculated equal to zero for a dry membrane, 14 for saturated, and 23 for 

supersaturated membrane. A higher temperature would dry the membrane and increase 

its resistivity to ionic conduction and hence increase the ohmic losses, unless water is 

added to the reactant gases to increase the water content in the electrolyte membrane 

[42, 52]. The implementation of ohmic overvoltage in Simulink is shown in Figure 3.2. 
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Figure 3.2: Simulink block diagram of ohmic overvoltage 

3.5 Concentration Losses  

During fuel cell operation, and when current is drawn from it, oxygen and hydrogen are 

consumed at the electrodes causing a reduction in their concentrations and pressures. 

Hence, the concentration losses occur as a result of the reduction in the concentration of 

the gases at the surface of the electrodes. In addition, the failure in maintaining the 

required mass flow rate of reactant and fuel to reach the electrode interface will lead to a 

drop in the concentrations and consequently cause drop in the cell voltage. The 

magnitude of change in the concentration of reactant and fuel depends on the following 

[1, 11, 35]: 

1. Drawn current from the fuel cell. 

2. How fast the gases can be replenished (flow rate of the gases). 

3. Geometrical design of the flow channels. 
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4. Diffusion characteristics of other components such as the gas diffusion layer and 

the electrodes. 

5. Efficient recirculation of air around the cathode in order to remove the extra 

water. 

At higher currents, if the flow rates of the reactant and fuel become insufficient to meet 

the requirements of the reaction rate, it leads to a decline in the concentration of the 

reactant and the fuel, hence a drop in the cell voltage. The process of providing 

sufficient flow according to the reaction rate is a design and operational challenge. 

Oxygen starvation occurs when the partial pressure of oxygen falls below a critical level 

at any location in the air channel of the cathode, this leads to a rapid drop in the cell 

voltage, which in severe cases can cause hot spots or burn the surface of membrane [2]. 

In order to determine the impact of drawn current upon the concentration losses, it is 

presumed that the drawn current density i (A.cm-2) from the fuel cell cannot exceed the 

maximum current density im of the cell, and the gases cannot be supplied higher than the 

predesigned maximum flow rate. If P1 is the pressure when the current density is zero 

(no current drawn), and by assuming that at maximum current density im, the pressure in 

the anode and cathode will fall linearly down to zero and the voltage will consequently 

drop sharply to zero as well, then the pressure P2 at any current density i can be 

determined as given below [1]: 
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By adopting the equation of open circuit voltage for a PEM fuel cell given by Larminie 

and Dicks [1], if the pressures for the hydrogen, oxygen, and the produced water are 

changed from P1 to P2, then the voltage of the PEM fuel cell will change by the amount 

of ∆V, as given in the equations below: 

 

 ∆∆∆ wateroxygenhydrogencon VV VV ++=         (3.7) 
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Where, Vcon is the voltage drop due to concentration losses, R is the universal gas 

constant (8.31441 kJ/kmol.K), T is the temperature in kelvin (K), and F is Faraday’s 

constant (96485 coulombs/mol). By considering water pressure to be unity, and 

substitution of (3.8) and (3.9) in (3.7), yields Equation (3.11) after rearrangement, which 

describes the impact of concentration losses upon the output voltage of a hydrogen-

oxygen PEM fuel cell when useful current is drawn from it. 
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In the case of a fuel cell that is supplied with fresh air rather than pure oxygen, which is 

the most common, and in order to simplify our calculations, it is assumed that at 

maximum current density im, the partial pressure of oxygen in the cathode will fall 
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linearly down to zero and the voltage will drop sharply to zero as well. Air contains 

21% oxygen, and the remaining 79% of the gasses do not contribute towards the 

reaction and will residue in the cathode chamber, hence the partial pressure of oxygen in 

the cathode at zero current drawn from the fuel cell is PO2 = 0.21 Pair = 0.21 P1.Then, the 

pressure P2 at any current density i will be as given below: 
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By substituting the above in Equation (3.9) and by considering water pressure to be 

unity and rearranging for air, this yields Equation (3.12) which describes the impact of 

concentration losses upon the output voltage of a hydrogen-air PEM fuel cell when 

useful current is drawn from it, and it can be noticed that the concentration losses in the 

case of using fresh air instead of pure oxygen are remarkably higher. 
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The implementation of concentration overvoltage in Simulink is shown in Figure 3.3. 
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Figure 3.3: Simulink block diagram of concentration overvoltage 

 

3.6 Total Losses of PEM Fuel Cell 

The output voltage of a PEM fuel cell is subject to various losses which can be 

expressed by the equation below [1]: 

 

( )conohmactocfc VVVVnV +++= *        (3.13) 

 
Where, n is the number of cells connected in series in the stack, VOC represents the open 

circuit voltage of the PEM fuel cell as it has been derived previously for a liquid state of 

water produced by the fuel cell and given by Saleh et al. [79]: 

 

( ) ( )( )2/1

22

53 ).(ln . *10*3086.4)15.298(*10*85.0228.1
OHoc PPTTV −− +−−=  (3.14) 

 
The implementation in Simulink for the open circuit voltage as given in Equation (3.14) 

is shown in Figure 3.4. While Figure 3.5 shows the fuel cell voltage model as given in 

Equation (3.13) for a single PEM fuel cell. 
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Figure 3.4: Simulink block diagram of open circuit voltage for a PEM fuel cell 

 

 

Figure 3.5: Simulink block diagram of voltage model for a single PEM fuel cell 
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3.7 Summary 

In this chapter, the major variables and parameters related to the potential losses of the 

PEM fuel cell were identified, and their influence upon the operation, and hence, the 

performance of the PEM fuel cell. Impacts of load current, pressure and concentration 

of oxygen, cell temperature, level of water content in the electrolyte membrane, 

thickness of the membrane and the membrane active area on the performance and 

output power of the fuel cell stack were determined. Also, a modified equation was 

derived to determine the impact of using air to supply a PEM fuel cell instead of pure 

oxygen upon the concentration losses and the output voltage when useful current is 

drawn from it. 

For a PEM fuel cell, the exchange current density at the cathode electrode is much 

smaller than its value at the anode electrode; sometimes 105 times smaller. Therefore, 

activation loss at the cathode is higher when compared with activation loss at the anode 

which can be ignored. Hence, a cathode’s exchange current density is the most vital 

factor affecting activation losses. 

The electronic resistivity depends on the materials of electrodes and bipolar plates, and 

it is considered to be approximately constant, particularly over a temperature range 

50°C to 90°C of PEM fuel cell operation, and hence can be ignored. While, ionic 

resistivity is more complicated and is not constant over operating temperatures, because 

the resistance of the electrolyte to the conduction of ions depends on many factors, 

including material characteristics of the membrane, water content and its distribution in 

the membrane, fuel cell temperature, and drawn current from the fuel cell. 

The failure in maintaining the required mass flow rate of reactant and fuel to reach the 

electrode interface will lead to a drop in the concentrations and consequently cause drop 

in the cell voltage. 
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In the next chapter, the major thermodynamic variables and parameters involved in the 

operation of a PEM fuel cell will be modelled. The impact of influencing environmental 

conditions during fuel cell operation will be considered, along with the incorporation of 

the effects of different dynamic conditions, such as changes in the dynamical properties 

of the fluids in the supply-return manifolds, and inside the anodes and cathodes of the 

PEM fuel cell stack will be determined and modelled. 
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Chapter Four: Mathematical Modelling of Gases 

Flow in the PEM Fuel Cell 

 

4.1 Introduction 

The flow rate of fuel along with that of air/oxygen needed for reaction, and temperature 

are the most vital dynamic properties of the PEM fuel cell, and prediction of the 

transient dynamics will help in analysing the behaviour of the system at the design stage 

and developing a reliable and efficient control strategy [11]. 

Yuan et al. [45] determined the impacts of operating parameters such as operating 

pressure, cell temperature, relative humidity of reactant gases, and air stoichiometric 

ratio on the performance of PEM fuel cells operating under steady-state conditions for a 

three-dimensional multi-phase fuel cell model. While, del Real et al. [46] attempted to 

predict the steady and transient responses for a dynamic model of a 1.2 kW PEM fuel 

cell due to load changes associated with the impacts of water flooding and purging 

hydrogen. 

Yousef et al. [48] proposed a zero-dimensional lumped model of PEM fuel cells to 

determine the impacts of various operating and design parameters, such as input 

temperature, pressure, stoichiometric ratio, thickness of membrane and gas diffusion 

layer on the performance of the fuel cell. While, Pasricha and Shaw [50] proposed the 

impact of temperature on the performance of a fuel cell in the simple dynamic electrical 

model of a PEM fuel cell. 
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Golbert and Lewin [5] developed a time dependent model of a fuel cell to consider the 

heat transfer between the fuel cell body, gas channels, and the cooling water, with 

determining the condensation and evaporation rates. Also, they modelled the water 

content, water dragged through the membrane, and water at the cathode. 

The stack of PEM fuel cells must be operated with other components in order to form an 

integrated fuel cell power system. These components are mainly divided into four 

systems as reported by Pukrushpan et al. [80]. 

• Hydrogen supply system. 

• Air supply system. 

• Cooling system. 

• Humidification system. 

A fuel cell stack model can be sub-divided into five interacting sub-models: 

• Stack voltage model. 

• Manifold flow model. 

• Cathode flow model. 

• Membrane hydration model. 

• Anode flow model. 

The stack voltage model was presented in Chapter Three, while other four sub-models 

will be modelled and presented in the following sections of this chapter. 

4.2 System Description and Assumptions 

In this research, a commercially available 1 kW Horizon (H-1000) fuel cell stack is 

adopted as an experimental device, which was designed by the manufacturer to be a 

self-humidified fuel cell stack. Therefore, water will not be added to the streams of 

supplied hydrogen and air in order to humidify the fuel cells [81]. 
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In order to maintain flow rate and pressure of hydrogen and air within the desired level, 

hydrogen and air must be replenished via hydrogen-air supply systems. A hydrogen 

supply system consists of a tank of pressurised pure hydrogen, an inlet flow control 

valve, and an outlet purge valve. While an air supply system consists of air supply fans, 

and the connections of main supply manifolds. Figure 4.1 shows the mechanical 

components and flow variables associated with the Horizon (H-1000) fuel cells stack 

system at sea level operation. 

 

 

Figure 4.1: Mechanical components and flow variables associated with the Horizon fuel 

cells stack system (H-1000) at sea level operation 

 
The Horizon fuel cell stack system (H-1000) is designed to have four fans installed at 

the exit outlet of the return manifolds of cathodes. Hence, fans are configured as a 

ducted inlet-free outlet, working as suction devices at the outlet of the return manifolds 

of cathodes [81]. For the Horizon (H-1000) fuel cell stack system, the rotational speed 

of four axial fans and the frequency of purging for the outlet hydrogen valve are 
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controlled by an inbuilt stack’s controller, in order to maintain enough operational 

pressure at the cathode and anode, and also to provide a sufficient flow of air and 

hydrogen leading to maintaining a certain level of stack temperature and retaining the 

continuity of the electrochemical reaction. 

Pukrushpan et al. [2] reported that the flow control valve of hydrogen must be 

controlled simultaneously in order to maintain a sufficient flow of hydrogen, and also to 

keep the minimum pressure difference across the membrane. This could be 

implemented by using a high gain proportional controller in order to keep the pressure 

in the anode tracking the pressure in the cathode. 

It is assumed that all the gases inside the stack of fuel cells will behave as an ideal gas; 

also the properties of gases leaving the specific volume are the same as those inside that 

volume. The dimensions of the Horizon (H-1000) fuel cell stack are relatively small, 

hence, the distances between the supply-return manifolds and anodes-cathodes of the 

fuel cell are small, therefore it is assumed the impact of heat radiation or conduction 

between anodes-cathodes and supply-return manifolds are very small and can be 

ignored. Hence, the temperature of gases in the anodes-cathodes and also along the 

supply-return manifolds will be uniform and equal to the stack temperature. Moreover, 

because of the small size of the stack, it is assumed that the flow of gases within any 

cross sections in the stack will have approximately zero flow fractions. 

The dynamic behaviour of the PEM fuel cell associated with the variations in 

temperature and heat dissipation of the stack are noticeably slower than the dynamics 

associated with the changes in pressures or flow rates of the reactants as reported by 

Pukrushpan et al. [2]. However, this research mainly focuses on the dynamic behaviour 

of the PEM fuel cell associated with changes in pressures or flow rates of the reactants, 

hence the slower dynamics associated with variations in temperature and heat 

dissipation are neglected. Therefore, it has been assumed that the average stack 
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temperature and relative humidity inside the cathode and anode are well regulated and 

maintained for all stages of modelling, analysis and control design. 

The rate of changes in mass flow inside the stack system are governed by mass 

conservation principles, while the rate of changes in the pressures are governed by 

energy conservation principles [2, 82]. The values of the parameters used in our model 

are either drawn from the freely available literature or determined based on the 

dimensions and properties of the Horizon (H-1000) fuel cell stack system, as presented 

in Appendix A. 

4.3 Air Fan Flow Calculations 

The rotational speed of the fan has a significant impact upon the generated air flow and 

the performance of the fan [83, 84]. The governing equations of pressure rise and flow 

rate of supply air can be determined based on the pressure-flow performance curve for 

the axial fan model (Delta FFB-0912-EHE) installed in the Horizon (H-1000) fuel cell 

stack as presented in Figure A.1 in Appendix A. The pressure-flow performance has 

been regenerated with an approximation in terms of (kPa) and (m3/min) as presented in 

Figure 4.2. Equation (4.1) determines the relationship between the rise in the pressure 

and the flow rate of air through the fan. 
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Where, Wf represents the air flow rate through the fan (m3/min), while ∆Pf represents 

the rise in the pressure (kPa) of air generated by the fan, which represents the velocity 

(or dynamic) pressure at the fan outlet corresponding to its kinetic energy. Velocity 

pressure is always positive in the direction of airflow which represents the pressure 

required to accelerate the air from zero velocity to a certain value. Total pressure of air 

stream (Pt) is the algebraic sum of the fan static pressure (Psf) and velocity pressure, as 

defined by a simplified Bernoulli’s theorem [85]. 

 

fsft PPP ∆+=            (4.2) 

 

 

Figure 4.2: Pressure-flow performance curve for the axial fan used by Horizon (H-1000) 

fuel cell stack 
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ambient pressure of air at sea level (101.325 kPa) and ∆Pf of the axial fans, as designed 

for the Horizon fuel cell stack (H-1000), as given below: 

 

fcainsm PP ∆+= 325.101,,           (4.3) 

 
The output power for the fuel cell stack, with respect to the flow rates of the supply of 

hydrogen and air, is given in the user manual of the Horizon fuel cell stack, as shown in 

Figures A.2 and A.3 in Appendix A. Table 4.1 presents the values of the output voltages 

and currents, and the flow rates of the supplied hydrogen and air to the fuel cell stack 

[81, 86]. 

From Table 4.1, hydrogen flow rates (L/min) and air flow rates (m3/min) with respect to 

fuel cell current in ampere (A) for the Horizon (H-1000) fuel cell stack are drawn in 

Figures 4.3 and 4.4 respectively. By finding the slopes of the lines, the linear relation 

between the values of flow rates with respect to the current of the fuel cell stack can be 

determined, as given in the Equations (4.4) and (4.5) below: 
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Table 4.1: Output power of Horizon (H-1000) fuel cell stack with respect to the flow rates 

of supply hydrogen and air 

Output Current 

(Ampere), A 

Output Voltage 

(Volt),V 

Output Power 

(Watt), W 
H2 Flow (L/min) 

Air Flow 

(m3/min) 

1 63.5 63.5 0.71 0.237 

2 61 122 1.37 0.455 

3 59.5 178.5 2.01 0.625 

4 58.5 234 2.63 0.703 

5 57.5 287.5 3.23 0.778 

6 57 342 3.85 0.855 

7 56.5 395.5 4.45 0.930 

8 56 448 5.04 1.004 

9 55.5 499.5 5.62 1.076 

10 55 550 6.19 1.147 

11 54.5 599.5 6.74 1.217 

12 54 648 7.29 1.285 

13 53.5 695.5 7.82 1.352 

14 53 742 8.35 1.417 

15 52.5 787.5 8.86 1.481 

16 52 832 9.48 1.544 

17 51 867 10.01 1.593 

18 50.5 909 10.64 1.652 

19 50 950 11.25 1.710 

20 49.5 990 11.85 1.766 

21 48.5 1018.5 12.28 1.806 
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Figure 4.3: Hydrogen flow rate with respect to current for the Horizon (H-1000) stack 

 

 

Figure 4.4: Air flow rate with respect to the current for the Horizon (H-1000) stack 
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The implementation in Simulink for Equations (4.1) and (4.3), which represent the 

pressure of the air at the supply manifold of the cathode, based on the supplied air flow 

by fans, is shown in Figure 4.5. While Figures 4.6 and 4.7 represent the implementation 

in Simulink for Equations (4.4) and (4.5), respectively, which represent the required 

flow rates of supplied hydrogen and air to the fuel cell stack, based on fuel cell stack 

current demand. 

 

 

Figure 4.5: Simulink block diagram of the pressure of air at the supply 

manifold of cathode 
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Figure 4.6: Simulink block diagram of the required supply hydrogen to the fuel cell stack 

 

 

Figure 4.7: Simulink block diagram of the required supply air to the fuel cell stack 
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4.4 Thermodynamic Properties of Gases Flow in the PEM Fuel Cell 

In thermodynamics, when the flow system is specified to be in a steady state, there are 

no changes in the properties of the flowing fluid through any section of the entire flow 

passage. When the flow system is described to be in steady flow, there will be no 

change in the mass flow rate through all cross sectional areas of the flow passage, hence 

the mass flow rate is assumed as a constant, irrespective of changes in direction or 

elevation of the flow or in the cross sectional area of the flow system [87]. 

 

xxxA vAvAvW  . .... . . . 22211 .1 ρρρ ====         (4.6) 

 
Where, W is the mass flow rate (kg/s), ρ is the density (kg/m3), A is the flow area (m2), 

and v is the velocity of the fluid (m/s). Static properties of the fluid represent the 

properties of the fluid when there is no relative motion between the fluid and the 

measuring device. High velocity fluid may produce a significant change in the static 

properties of the fluid. For high velocity flows, if the potential energy of the fluid is 

negligible; hence the summation of the static enthalpy and kinetic energy represents 

stagnation enthalpy (ho), which represents the total energy (kJ/kg) of the flowing fluid 

per unit mass [88]. 

The properties of the fluid when its velocity is brought to rest (i.e. zero velocity) 

adiabatically and in an isentropic manner are called stagnation properties. During the 

isentropic stagnation process, the kinetic energy of the fluid undergoes enthalpy, which 

results in an increase in the pressure and temperature of the fluid. If the entropy of the 

fluid remains constant and the fluid flows with approximately zero fraction, then its 

enthalpy can be expressed as given below [87, 88]: 
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Where cp is the specific heat of the fluid (kJ/kg.K), and Rs is the specific constant of the 

fluid. For an ideal gas (dh = cp.dT), ho- h = cp.(T
o- T). With a datum temperature of 0K, 

yields with (h = cp.T) [87]. For a steady state flow of fluid flowing adiabatically through 

a flow system with a constant passage flow area, where there are no heat or work 

interactions and no changes in the potential energy or elevation of the fluid, the 

stagnation enthalpy of the fluid remains constant during a steady-state flow process   

(ho
1 = ho

2). 
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When the flowing fluid is brought to a complete stop; then stagnation enthalpy at state 2 

will be equal to the fluid static enthalpy at this state, as given below: 
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The density of the fluid varies as it moves down toward the downstream side of the flow 

system, from the definition of stagnation properties, total temperature (stagnation 

temperature T
о), total pressure (stagnation pressure P

о), and total density (stagnation 

density ρо) of the fluid at a certain point can be determined, as given below [87, 88]: 
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Where, T, P, and ρ represent static properties of temperature, pressure and density of the 

fluid respectively; and To, Po, and ρo represent the properties of temperature, pressure, 

and density of the fluid under an isentropic stagnation state. k is the constant of specific 

heat ratio (cp/cv) for air at temperature 15 °C which is equal to 1.4 for dry air and 1.409 

for hydrogen. The term (v2/2cp) is the dynamic temperature of the fluid which is 

equivalent to the temperature rise during such a process. For low-speed flows, the static 

temperature and stagnation temperature are approximately the same [88]. 

In case of fluid that flows through a continuous flow system having a non-consistent 

passage area, such as diffuser or nozzle, due to high rates of flow through the system, 

there will be no significant heat transfer between the fluid and the surroundings, and the 

flow may be considered to be adiabatic. Also if it is assumed that the flow is frictionless 

with negligible elevation impact, then the flow can be considered to be isentropic. 

Hence, under these conditions, the stagnation enthalpy will remain constant along the 

flow passage, as presented in Equation (4.15) below [87]. 

 

Constant21 ==== °°°
xh...hh         (4.15) 

 
The change in the flow area of the nozzle will change the pressure of the fluid and 

hence flow velocity. If the flow is assumed to be steady and unidirectional, and the gas 

is assumed to behave in an adiabatic and isentropic manner, stagnation enthalpy will 

remain constant at any point through the nozzle. Then, the velocity of the fluid at any 

point in the nozzle is determined below [87]: 
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Substituting Equations (4.8) and (4.14) in Equation (4.16) and rearranging, yields the 

following: 

 




















−








=

−

°
°

/kk

P

P
TR

k-

k
 v s

)1(

1 . . . 
1

2       (4.17) 

 
Since the flow of the fluid is assumed to be adiabatic and isentropic, and the stagnation 

enthalpy remains constant, the stagnation temperature and pressure will remain constant 

as well. Thus, the velocity of the fluid in Equation (4.17) can be determined in terms of 

initial stagnation temperature and pressure. For a steady flow flowing through a 

constant passage area with constant temperature, then Equation (4.6) above can be 

represented as: 

 

2211  . . vv ρρ =          (4.18) 

 
However, the density of ideal gas can be determined as given in Equation (A.2) in 

Appendix A, yielding the following: 
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Due to the lack of experimental data and the difficulties in measuring the variation of 

pressures, densities, and temperatures of the flowing gases in the supply-return 
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manifolds, anodes, and cathodes of the fuel cell stack, gases are assumed to behave as 

an ideal gas with a constant specific heat and zero flow fractions. Moreover, and 

particularly in the supply-return manifolds of the stack, gases are assumed to be subject 

to the isentropic stagnation state. Equations (4.11), (4.12), (4.13), (4.17), and (4.19) will 

be used to determine the pressure, temperature, and velocity of gas leaving the supply 

manifold of the anode and cathode of the fuel cell stack. While under an assumption of 

steady flow, the mass flow rate of gas entering the supply manifold is assumed to be 

equal to the mass flow rate of gas leaving it. 

4.4.1 Cathode Flow Model 

The dimensions of the Horizon fuel cell stack (H-1000) are relatively small and the 

distances between the supply-return manifolds and anodes-cathodes of the fuel cells are 

small as well. Hence, it is assumed that the multiple cathodes in the stack are all lumped 

as one stack cathode volume, which represents the sum of volumes of each individual 

cathode volume in the stack. And the supply manifold of the cathode (sm) lumps all the 

volumes of passages and connections between the inlet of air and the cathodes, while 

the return manifold (rm) lumps all the volumes of passages and connections between the 

cathodes of fuel cells and the exit of air of the fuel cell stack. 

The flow rate of supplied air to the manifold of cathode Wsm,in,ca is equal to Wf, while the 

pressure of supplied air Psm,in,ca is equal to (101.325 + ∆Pf), as determined in Equations 

(4.1) and (4.3) above. The temperature of air exiting the supply manifold of the cathode 

is assumed to be equal to the temperature of the supplied air, which is equal to the 

ambient temperature. While the temperature of the air at any cross section in the 

cathode is assumed to be equal to the exit air of the cathode, which is considered to be 

equal to the stack temperature Tst. 
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The flow rate of gas passing through a nozzle is a function of the upstream and 

downstream pressure of the nozzle. Thus, the mass flow rate of fluid between two 

volumes can be determined by using a linearized nozzle equation given in Pukrushpan 

et al. and Grujicic et al. [80, 82]. Hence, the mass flow rate of air flowing between the 

exit of the supply manifold and the cathode is determined as given in Equation (4.20): 

 

( )ca,incasm,outcasm,outcasm,out PPKW −= ,,,  .      (4.20) 

 
Where, Pca,in is the pressure of air entering the cathode, and Wsm,out,ca is assumed to be 

equal to Wsm,in,ca under a condition of steady flow. Ksm,out,ca is the nozzle constant of the 

supply manifold outlet (kg.s-1/kPa) which represents the ratio of mass flow rate of air to 

the pressure. The value of Ksm,out,ca for the Horizon (H-1000) fuel cell stack is 

determined and presented in Appendix A. The mass of a mixture of gases is equal to the 

sum of masses of individual components in the mixture [88]. The principle of mass 

conservation states that the rate of change of fluid mass inside the volume is equal to the 

net rate of fluid mass flowing into the volume. Hence, the rate of change in the mass of 

air inside the cathode of the fuel cell is determined as given below [32]: 
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Where, mca represents the mass of gases inside the cathode (kg), mO2, mN2, and mw 

represent mass of oxygen, nitrogen, and water vapour, respectively, in the cathode, 

Ww,gen represents the mass flow rate of produced water as a result of electrochemical 

reaction, WO2,rct represents the mass flow rate of reacted oxygen in the cathode, and 

Ww,mbr represents the mass flow rate of water vapour across the electrolyte membrane. 

The mass flow rate of air entering the cathode and the mass flow rate of air exiting the 

cathode are determined by the equations given below: 

 

inNinOinca WWW ,,, 22 +=         (4.25) 

 

outwoutNoutOoutca WWWW ,,,, 22 ++=       (4.26) 

 
Substituting Equations (4.22), (4.23), (4.24), (4.25), and (4.26) in Equation (4.21) and 

rearranging, yields the following: 
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Using ideal gas law, under constant T and V: 
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Where, M represents the molar mass of gas (kg/kmol), and W represents the mass flow 

rate of flowing gas (kg/s). 
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Where, Mair, MO2, and Mw represent the molar mass (kg/kmol) of air, oxygen, and water 

vapour respectively, R is the universal gas constant, Vca is the volume of the cathode 

(m3), and Ww,mbr represents the mass flow rate of water vapour across the membrane. 

The mass flow rate of reacted oxygen WO2,rct and produced water in the cathode Ww,gen 

are determined by Larminie and Dicks [1]: 
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Where, molar mass of oxygen is 32*10-3 kg/mol, molar mass of water is 18.02*10-3 

kg/mol, n is the number of cells in the stack, Ist is the current drawn from the stack in 

ampere (A), and F is Faraday’s constant. For a steady flow, the rate of change in the 

mass of flowing fluid through a specific area would be zero (i.e. dm/dt = 0), hence  

dP/dt = 0 [89], then by taking the Laplace transform for Equation (4.30) above and 

rearranging, yields the following: 

 











−

−
+=

2

2,,,
,,  .

 . 

O

rctO

w

mbrwgenw

ca

st
incaoutca

M

m

M

mm

V

TR
PP     (4.33) 

 
From Equations (4.31) and (4.32), if at any specific second of time, the mass flow rate 

(kg/s) of reacted oxygen WO2,rct and produced water in the cathode are equal to the mass 

of that component m (kg) at that time, it can be substituted in Equation (4.33) above, to 

determine the value of air pressure at the exit of the cathode. Since it is assumed that the 

multiple cathodes in the stack are all lumped as one stack cathode volume, and the flow 

of air supplied to the cathode mainly consists of 21% oxygen and 79% nitrogen, the 
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partial pressure of oxygen in the cathode is assumed to be approximately equal to 21% 

of the average sum of input and output air pressure of the cathode, as determined below: 
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The implementation in Simulink for the mass flow rate of reacted oxygen and produced 

water in the cathode of the fuel cell stack, as presented in Equations (4.31) and (4.32) 

are shown in Figure 4.8. And the implementation in Simulink for the flow of air and 

partial pressure of oxygen in the cathode of the fuel cell stack are shown in Figure 4.9.  

 

 

 

Figure 4.8: Simulink block diagram of the mass flow rate of reacted oxygen and produced 

water in the cathode of the fuel cell stack 
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Figure 4.9: Simulink block diagram of the flow of air and partial pressure of oxygen in the 

cathode of the fuel cell stack 
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4.4.2 Membrane Hydration Model 

Water content in the membrane and the mass flow rate of water across the membrane 

are assumed to be uniform over the two sides of membrane; the mass flow rate of water 

vapour across the membrane is given by Pukrushpan et al. [2, 80]: 
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Where, Afc is the membrane active area of the fuel cell (cm2), n is the number of cells in 

the stack, F is Faraday’s constant, i is the current density of the fuel cell (i.e. i = Ist / Afc) 

in (mA/cm2), nd is the electro-osmotic drag coefficient which represents the number of 

water molecules dragged with each proton of hydrogen transported from anode to the 

cathode side of the fuel cell, Dw is the diffusion coefficient, Φca and Φan represent the 

relative humidity in the cathode and anode respectively, and L is the thickness of the 

membrane (cm). The difference in relative humidity between the cathode and anode 

leads to back diffusion of water molecules from cathode to anode, as presented in the 

second term of Equation (4.35), and the coefficients Dw and nd are functions to the 

membrane water content λ. 

Pukrushpan et al. [80] reported that the value of water content in the electrolyte 

membrane varies between 0 and 14, which is equivalent to the relative humidity of 0 to 

100%, respectively. The electro-osmotic drag coefficient nd is determined by empirical 

Equation (4.36) below: 

 

( )192 1043 050 00290 −×−+= .λ.λ.nd       (4.36) 

 
Mann et al. [40] reported that water content in the membrane is influenced by the 

procedure of membrane preparation, age of the membrane (i.e. time in service), relative 

humidity and membrane water activity, and stoichiometric ratio of the supplies gases. 
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The amount of water content λ is determined in Wang and Wang and Springer et al. [42, 

52] as presented below: 
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Where, a represents the water activity in the membrane, Cw is the molar concentration 

of water in the electrolyte membrane (kmol/m3), R is the universal gas constant, T is the 

temperature in kelvin (K), and Psat is the saturation pressure of water vapour (kPa). 

Since it has been assumed that the temperature and relative humidity are constant, λ is 

constant as well and its value will be presumed to be equal to 7.0 which represents the 

moist status of the membrane. Moreover the impact of back diffusion of water will be 

ignored, and Equation (4.35) can be re-presented as in Equation (4.39): 
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The implementation in Simulink for the mass flow rate of water vapour across the 

membrane of the fuel cell as presented in Equations (4.36) and (4.39) is shown in Figure 

4.10. 
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Figure 4.10: Simulink block diagram for the mass flow rate of water vapour across the 

membrane of the fuel cell stack 
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the impact of back diffusion of water molecules from the cathode to anode is null. Thus, 

an anode chamber will be occupied by hydrogen gas only.  
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Mass flow rate between two volumes can be determined via using a linearized nozzle 

equation [80, 82], then the mass flow rate of hydrogen at the exit of the supply manifold 

of the anode is determined by Equation (4.40): 

 

( )an,inansm,outansm,outansm,out PPKW −= ,,,  .      (4.40) 

 
Where, Pan,in is the pressure of hydrogen entering the anode, and Wsm,out,an is assumed to 

be equal to Wsm,in,an under a condition of steady flow. Ksm,out,an represents the nozzle 

constant of the supply manifold outlet of the anode (kg.s-1/kPa), which represents the 

ratio of mass flow rate of hydrogen to the pressure. The value of Ksm,out,an for the 

Horizon (H-1000) fuel cell stack is determined and presented in Appendix A. The rate 

of change in the mass of hydrogen inside the anode of the fuel cell is determined as 

given below: 

 

rctHoutaninan
an WWW

dt

dm
,,, 2−−=        (4.41) 

 
Where, Wan,in and Wan,out represent the mass flow rate of hydrogen entering and leaving 

the anode, while WH2,rct represents the mass flow rate of the reacted hydrogen as a result 

of the electrochemical reaction, as determined by Larminie and Dicks [1]: 

 

F

In
MW st

HrctH
2

 . 
.22, =         (4.42) 

 
Where, MH2 represents the molar mass of pure hydrogen (kg/kmol), n is the number of 

cells in the stack, and Ist is the current drawn from the stack in ampere (A), and F is 

Faraday’s constant. For a steady flow, the rate of change in the mass of flowing 

hydrogen through any specific area in the anode would be zero (i.e. dmH2/dt = 0) [89], 

then Equation (4.41) can be represented as given in the following equation: 
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rctHinanoutan WWW ,,, 2−=         (4.43) 

 
Substituting Equation (4.43) in Equation (4.28), and rearranging, yields the following: 

 

rctH
Han

stinanoutan
W

MV

TR

dt

dP

dt

dP
,

,,
2

2

 .
 .

 . 
−=       (4.44) 

 
Taking the Laplace transform for Equation (4.44), yields the following: 

 

rctH
Han

st
inanoutan m

MV

TR
PP ,,, 2

2

 .
 .

 . 
−=       (4.45) 

 
Where, R is the universal gas constant, and Van is the volume of the anode (m3). From 

Equation (4.42), if at any specific second of time, the mass flow rate (kg/s) of reacted 

hydrogen WH2,rct in the anode is equal to the mass of that component m (kg) at that time, 

it can be substituted in Equation (4.45) above, to determine the value of gas pressure at 

the exit of the anode. Since it is assumed that the multiple anodes in the stack are all 

lumped as one stack anode volume, the pressure of hydrogen in the anode is assumed to 

be approximately equal to the average sum of the input and output anode pressure, as 

determined below: 

 

2

,,
2

outaninan
H

PP
P

+
=         (4.46) 

 
A flow of hydrogen is necessary to be regulated to maintain a minimum pressure 

difference between anode and cathode, and also to provide sufficient hydrogen to the 

reaction. A purge valve at the exit outlet of the return manifold of the anode is important 

to keep the internal pressure of hydrogen inside the anode of the fuel cell at the 

appropriate level, also to flush the anodes from residual unreacted hydrogen and any 

traces of formed water [8]. However, the flow rate of hydrogen can be controlled based 
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on the feedback pressure difference between the cathode and anode as presented by 

Pukrushpan et al. [90]. 

The implementation in Simulink for the mass flow rate of reacted hydrogen in the anode 

of the fuel cell stack, as presented in Equation (4.42), is shown in Figure 4.11. And the 

implementation in Simulink for the flow and pressure of hydrogen in the anode of the 

fuel cell stack is shown in Figure 4.12. While Figure 4.13 presents the implementation 

in Simulink of the integration and connections of all electrical and thermodynamic sub-

models for the entire developed model of the PEM fuel cell stack system. 

 

 

 

Figure 4.11: Simulink block diagram of the mass flow rate of reacted hydrogen in the 

anode of the fuel cell stack 
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Figure 4.12: Simulink block diagram of the flow and pressure of hydrogen in the anode of 

the fuel cell stack 
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Figure 4.13: Simulink block diagram of the integration and connections of all electrical 

and thermodynamic sub-models for the entire developed model of the PEM fuel cells 
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4.5 Summary 

This research mainly focuses on the dynamic behaviour of the PEM fuel cell associated 

with changes in pressures or flow rates of the reactants, hence the slower dynamics 

associated with variations in temperature and heat dissipation are neglected. Also the 

impact of heat radiation or conduction between anodes-cathodes and supply-return 

manifolds are very small and can be ignored. Hence, the temperature of gases in the 

anodes-cathodes and also along the supply-return manifolds will be uniform and equal 

to the stack temperature, and the average stack temperature and relative humidity inside 

the cathode and anode are well regulated and maintained for all stages of testing and 

analysis. 

Also, the water content in the electrolyte membrane and the mass flow rate of water 

across the membrane are assumed to be uniform over the two sides of membrane, and 

the impact of back diffusion of water molecules from cathode to anode is ignored. 

It was assumed that all the gases inside the stack of the PEM fuel cells will behave as an 

ideal gas; also the properties of gases leaving the specific volume are the same as those 

inside that volume. 

The dimensions of the Horizon (H-1000) fuel cell stack are relatively small and the 

distances between the supply-return manifolds and anodes-cathodes of the fuel cell are 

small, thus it was assumed that the multiple volumes for a particular part of the fuel cell 

stack (i.e. cathodes, anodes, supply manifolds, and return manifolds) are all lumped as 

one stack volume for the same particular part. Moreover, because of the small size of 

the stack, it was assumed that the flow of gases within any cross sections in the stack 

will have approximately zero flow fractions. 

Therefore, the developed mathematical model of PEM fuel cell stack is described to be 

zero-dimensional, as the dimensions have no impact on changing the properties of the 

flowing fluids and hence no impact on the performance of the entire system. 
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The proposed model in this research presents a simplified zero-dimensional 

mathematical model of a self-humidifying 1 kW PEM fuel cell, developed by modelling 

the major electric and thermodynamic variables and parameters involved in the 

operation of the PEM fuel cell. The model considers the impact of environmental 

conditions during fuel cell operation, and incorporates of the effects of different 

dynamic conditions, such as changes in the dynamical properties of the fluids in the 

supply-return manifolds and inside the anodes and cathodes of the fuel cell stack, and 

also properties such as pressure, temperature and flow rates. 

The proposed developed model can determine the impact of load current, changes in the 

pressure and temperature of the surroundings, changes in the temperature; pressures and 

flow rates of the fluids in the supply-return manifolds and inside the anodes and 

cathodes, stack operating temperature, water vapour across the membrane, relative 

humidity in the cathodes and anodes, water content in the electrolyte membrane, 

thickness of the membrane and the size of membrane active area, and the volume of the 

cathode and anode on the steady state performance and output power of the fuel cell 

stack. The usage of pure oxygen or fresh air is considered as well. 

The proposed developed model in this research can be used by interested researchers as 

a generic model and simulation platform for a self-humidifying small-sized PEM fuel 

cell, with an output power varying from 50 W to 1 kW. Moreover, extrapolation to 

higher powers is also possible; where the dimensions of the supply-return manifolds, 

cathodes, and anodes need to be resized in order to capacitate the increase in the mass 

flow rates of fuel and reactant necessary to produce power higher than 1kW from the 

fuel cell stack. 

The mathematical equations were modelled by using Matlab-Simulink tools in order to 

simulate the operation of the developed model with a commercially available 1 kW 

Horizon (H-1000) PEM fuel cell stack. 
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In the next chapter, the developed mathematical model will be simulated and tuned with 

a 1 kW Horizon (H-1000) PEM fuel cell stack, which is used as an experimental device 

in order to validate and tune the developed mathematical model with the output results 

of the test. 
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Chapter Five: Model Validation of the PEM Fuel 

Cell and Controller Design 

 

5.1 Experimental Procedure and Validation of the Developed PEM 

Fuel Cell Model 

The developed mathematical model relating to the PEM fuel cell in Chapters 3 and 4 

will be simulated using parameters of the commercially available 1 kW Horizon        

(H-1000) PEM fuel cell stack, which is used as an experimental device in order to 

validate and tune the developed model with the output results of the tested stack. 

Matlab-Simulink is used to simulate the developed model with operating conditions 

similar to the real operating conditions of the tested Horizon (H-1000) PEM fuel cell 

stack in the laboratory. 

Also, different values of tuning efficiency are adopted for the developed model, in order 

to find the best tuning value, which enables the developed model to perform and 

produce a steady state output voltages and currents close to the output voltages and 

currents of the tested stack. Moreover, in order to get the most accurate real data 

outputs, the test of the PEM fuel cell stack is repeated several times on different 

occasions, in order to achieve a minimum deviation between the output voltages of the 

tested stack and output voltages of the developed model, also a closeness in the 

behaviour and steady state performance between the tested stack and the developed 

model. 

The Horizon fuel cell stack (H-1000) is designed by the manufacturer to be a self-

humidified fuel cell stack, consisting of 72 cells with cell active area of 80 cm2 and 
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stack rated power of 1 kW with a maximum output of 43.2 V at 24 A, the hydrogen inlet 

pressure is 0.45-0.55 bar, and the maximum stack operating temperature is 65 °C. The 

fuel cell stack has four fans installed at the exit outlet of the return manifolds of 

cathodes. Hence, fans are configured as a ducted inlet-free outlet, working as suction 

devices at the outlet of the return manifolds of cathodes. The rotational speed of the four 

axial fans and the frequency of purging for the outlet hydrogen valve every 10 seconds 

are controlled by an inbuilt stack’s controller, in order to maintain enough operational 

pressure at the cathode and anode, and also to provide a sufficient flow of air and 

hydrogen leading to maintaining a certain level of stack temperature and retaining the 

continuity of the electrochemical reaction. Also, the controller provides a protection 

shutdown for the stack at 30 A over current and 36 V low voltage operation [81]. 

An AttoPilot 50V/90A, DC voltage-current senor with 2 analog outputs is used to 

measure the output voltages and currents from the stack via stepping down the detected 

voltage and current at a ratio of (63.69 mV/1V), and (36.6 mV/1A). 

A USB interface data acquisition (NI USB-6008) with 8 analog inputs and 2 analog 

outputs ports is used to capture the real time currents and voltages, while LabVIEW 

v13.0 software is used for the purpose of data recording and analysis, with the sampling 

frequency set on 1 Hz. 

SkyRC i-Meter operates for a maximum input voltage and current of 60 V and 100 A is 

used to manually measure the output voltages and currents from the fuel cell stack. And 

DC-DC Convertor (Mean Well SD-1000L-24) with an input range of 19 V to 72 V and 

output of 24 V, with 40 A maximum current, is installed between the fuel cell stack and 

the BLDC motor in order to stabilise and maintain the output voltage. 

A three phases, 14 poles, brushless DC Motor BLDC (KMS Quantum 4130/07) is used 

as an attached load to the Horizon fuel cell stack. The motor operates at supply voltage 



105 
 

of 18.5-29.6 V, with a maximum continuous current of 40 A and a maximum efficiency 

higher than 90%, and the ratio of rotational speed (rpm) to the supply voltage is 360/V. 

Al’s Hobbies Professional analogue-digital servo tester is used to adjust the rotational 

speed of the BLDC motor and its propeller via generating a PWM signal to the 

electronic speed controller (ESC) in order to increase-decrease the current drawn from 

the fuel cell stack. 

A pressure reduce valve (Swagelok) is used to maintain the supply pressure of hydrogen 

to the stack at 55 kPa. A temperature and humidity data-logger (KTH-300 Kistock), 

integrated with thermo-hygrometry (TH) probe sensor, is used to measure the 

temperature of the exit air from the stack. 

The stack of Horizon PEM fuel cells has four extractor fan outlets, and TH sensors are 

mounted at each fan outlet in an attempt to obtain an accurate estimate of temperature. 

The stack temperature is determined by taking the average of the sums of temperature 

readings for these four TH sensors. 

Figure 5.1 shows the block diagram configuration and bench layout of the Horizon    

(H-1000) fuel cell stack configured with measuring and controlling devices and the 

BLDC motor load during the testing process carried out in the laboratory. The defined 

values of variables and constants for the operational parameters involved in the 

simulation of the developed mathematical model for the PEM fuel cell stack are 

presented in Table 5.1. 
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Figure 5.1: Block diagram configuration and bench layout of Horizon (H-1000) fuel cell 

stack configured with measuring and controlling devices, and a BLDC motor load 
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Table 5.1: Defined values of variables and constants for the operational parameters 

involved in the developed model of PEM fuel cell stack 

Variables and Constants Defined Values 

Number of cells in the stack (n) 72 

Active area of electrolyte membrane (Afc) 80 cm2 

Water content in electrolyte membrane (λ) 7 

Membrane thickness (L) 25 * 10-4 cm 

Maximum current density (im) 500 mA/cm2 

Temperature of supply air and hydrogen  Ambient Temperature 

Ambient pressure 101.325 kPa 

Ambient air density 1.225 kg/m3 

Pressure of supply hydrogen 55 kPa 

Density of supply hydrogen 0.0899 kg/m3 

 

5.1.1 First Test 

The Horizon (H-1000) PEM fuel cell stack is tested under atmospheric pressure and 

23°C ambient temperature. The stack is operated for about 25 minutes under different 

levels of load current varying from 1 to 17 A in steps of 1 A, with an approximate 

holding time of one and a half minutes. One TH sensor is installed at the exit outlet of 

the fan in order to measure the temperature of the stack. 

The developed mathematical model of the PEM fuel cell is simulated with an ambient 

temperature, stack temperature, and drawn current similar to the real operating 



108 
 

conditions of the tested Horizon (H-1000) PEM fuel cell stack in the laboratory, and the 

measured readings and the results of the simulation are presented in Table B.1 in 

Appendix B. 

Different values of tuning efficiency (83%, 84%, 85%, and 86%) are adopted for the 

developed model of the PEM fuel cell. It was found that the best tuning value for the 

developed model, which enables the model to perform and produce output voltages 

close to the steady state output voltages of the tested stack, was at 84% with a 0.78 V 

average deviation between the output voltages of the tested stack and output voltages of 

the developed model, as shown in Table B.1 in the Appendix B. The output voltages for 

the tested Horizon (H-1000) fuel cell stack and the developed model are shown in 

Figure 5.2. 

 

 

Figure 5.2: Output voltages for the Horizon (H-1000) fuel cell stack and mathematical 

developed model of the PEM fuel cell under various drawn load currents 
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The green line represents the output voltages as given in the data sheet of the 1 kW 

Horizon (H-1000) PEM fuel cell stack, for operating conditions defined at sea level and 

25 °C ambient temperature. The blue line represents the steady state output voltages of 

the tested stack for about 25 minutes continuous operation at 23 °C ambient 

temperature, under different levels of load current varying from 1 to 17 A in steps of     

1 A, with an approximate holding time of one and a half minutes. The red line 

represents the output voltages of the mathematical developed model based on operating 

conditions similar to the real operating conditions of the tested Horizon (H-1000) PEM 

fuel cell stack in the laboratory, with 84% model tuning efficiency. 

It is clear that the performance and output voltages of the mathematical model 

developed for the PEM fuel cell is fairly close to the steady state performance and 

output voltages of the tested Horizon stack operated under varied levels of load 

current and stack temperature, which provides initial satisfaction about the validity of 

the proposed developed model in this research. 

5.1.2 Second Test 

The Horizon (H-1000) PEM fuel cell stack is tested under atmospheric pressure and 

18°C ambient temperature. The stack is operated for about 38 minutes under different 

levels of current load varying from 0 to 25 A, with an approximate holding time of two 

minutes. Four TH sensors are installed at the exit outlets of four fans in order to obtain 

an accurate estimate of temperature. The impact of drawn load current and operational 

duration upon the temperature of the Horizon (H-1000) fuel cell stack are measured and 

presented in Table B.2 in Appendix B, while Figures 5.3, 5.4, and 5.5 reveal these 

impacts. 
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Figure 5.3: Impact of drawn load current on the temperature of the Horizon (H-1000) fuel 

cell stack 

 

 

Figure 5.4: Impact of operational duration at varied load current on the temperature of 

the Horizon (H-1000) fuel cell stack 
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Figure 5.5: Impact of drawn load current and operational duration on the temperature of 

the Horizon (H-1000) fuel cell stack 
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The Horizon (H-1000) PEM fuel cell stack is tested under atmospheric pressure and 

20°C ambient temperature. The stack is operated for about 43 minutes under different 

levels of current load varying from 1 to 20 A, with an approximate holding time of three 

minutes. Data acquisition is set to capture and record the output voltages and drawn 

currents from the stack every 30 seconds, and four TH sensors are installed at the exit 

outlets of four fans in order to obtain an accurate estimate of temperature. Figure 5.6 

shows the output voltages and drawn currents for the tested Horizon (H-1000) fuel cell 

stack, while Figure 5.7 shows the average voltages for each level of drawn current. 
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Figure 5.6: Output voltages and drawn currents for the Horizon (H-1000) fuel cell stack 

 

 

Figure 5.7: Average of output voltages for each level of drawn current from the Horizon 

(H-1000) fuel cell stack 
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The developed mathematical model of the PEM fuel cell is simulated with an ambient 

temperature, stack temperature, and drawn current similar to the real operating 

conditions of the tested Horizon (H-1000) PEM fuel cell stack in the laboratory, and the 

measured readings and the results of the simulation are presented in Table B.3 in 

Appendix B. 

Different values of tuning efficiency (83%, 84%, 85%, and 86%) are adopted for the 

developed model of the PEM fuel cell. It was found that the best tuning value for the 

developed model, which enables the model to perform and produce output voltages 

close to the steady state output voltages of the tested stack, was at 85% with a 1.44 V 

average deviation between the output voltages of the tested stack and output voltages of 

the developed model, as shown in Table B.3 in the Appendix B. Figure 5.8 presents the 

output voltages for the tested stack under varied load currents and stack temperatures, 

and the output voltages for the developed model at 85% tuning efficiency; under varied 

load currents; for both varied stack temperatures and constant average stack temperature 

(27.73 °C). The impact of drawn currents and operational duration upon the temperature 

of the Horizon fuel cell stack are shown in Figures 5.9, 5.10, and 5.11, respectively. 

It can be noticed from Figure 5.8, that for the developed PEM fuel cell model at 85% 

tuning efficiency, there are very small variations between the output voltages of the 

model at varied stack temperatures (represented by the red line) and the output 

voltages of the model at a constant average stack temperature of 27.73 °C 

(represented by the green line). Hence, the values of 85% tuning efficiency and   

27.73 °C average stack temperature will be adopted for any further simulations for 

the developed mathematical model of the PEM fuel cell in this research. 
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Figure 5.8: Output voltages of Horizon fuel cell stack test, and developed model of PEM 

fuel cell, under varied load currents and stack temperatures, and 85% tuning efficiency 
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Figure 5.10: Impact of operational duration at varied load current on the temperature of 

the Horizon (H-1000) fuel cell stack 

 

 

Figure 5.11: Impact of drawn current and operational duration on the temperature of the 

Horizon (H-1000) fuel cell stack 
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5.1.4 Fourth Test 

The Horizon (H-1000) PEM fuel cell stack is tested under atmospheric pressure and 

21.5°C ambient temperature. The test begins after leaving the fuel cell stack for about 

one hour from the last running test in order to refresh and rest the stack. The stack is 

operated for about 32 minutes, under constant load current of 9.08 A. Four TH sensors 

are installed at the exit outlets of four fans in order to obtain an accurate estimate of 

temperature, and readings are captured every two minutes. The impact of constant 

drawn load current and operational duration upon the temperature of the Horizon fuel 

cell stack are measured and presented in Table B.4 in Appendix B, Figure 5.12 visually 

represents this impact. 

The output voltages for the tested Horizon fuel cell stack and the developed model of 

PEM fuel cell under the impact of constant drawn current 9.08 A and varied operating 

temperature are as shown in Figure 5.13. Where, the output voltages of the tested stack 

are almost stable around 51.6 V, and the fluctuations in the stack output are as a result 

of the drop in the pressure of hydrogen in the anode chambers of the Horizon PEM fuel 

cell stack, due to a frequent breathing process triggered by the hydrogen purging valve. 

While the output voltages of the developed model of PEM fuel cell are almost stable 

around 49-49.5 V, due to the variations in the operating temperature of the stack. 

It is clear from the results presented for the tested Horizon (H-1000) fuel cell stack, as 

shown in the Figures (5.3, 5.4, 5.5, 5.9, 5.10, and 5.11), that the stack’s temperature 

has a tendency to increase with operating time and drawn current. The temperature 

of the stack is maintained around 30 °C even if operational time is increased or there 

are further increases in the drawn current. This is due to the stack controller, which 

works to suppress any increase in the stack’s temperature above 30 °C by pumping 

more air to the cathode, in order to maintain the operating temperature of the stack 

around a certain operating temperature. 
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Figure 5.12: Impact of constant drawn load current and operational duration on the 

temperature of the Horizon (H-1000) fuel cell stack 

 

 

Figure 5.13: Output voltages for Horizon (H-1000) stack and the developed model of PEM 

fuel cell under the impact of constant drawn current and varied operating temperature 
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Kim and Kwon [24] adopted a 100 W Horizon PEM fuel cell stack as a prime source of 

power for a small unmanned aircraft. The test results and the performance evaluation 

obtained from continuously operating the stack for about 5 hours under 50 W of 

constant load showed that the temperature of the stack increases from 22 °C to 35 °C 

during the first 30 minutes of the stack’s operation, while the stack’s temperature is 

maintained below 35 °C for the rest hours of the test. 

These observations and the closeness in the steady state performance and output 

voltages between the developed model of the PEM fuel cell in this research and the 

tested 1 kW Horizon (H-1000) PEM fuel cell stack, provide sufficient confidence in 

the validity and accuracy of the developed model, this is based on choosing the right 

tuning efficiency, which offers a minimum deviation between the output voltages of 

the tested stack and the developed model. The proposed developed model in this 

research can be used by the interested researchers as a generic model and simulation 

platform for a self-humidifying small-sized PEM fuel cell with an output power 

varying from 50 W to 1 kW. Moreover, extrapolation to higher powers is also 

possible; where the dimensions of the supply-return manifolds, cathodes, and anodes 

need to be resized in order to capacitate the increase in the mass flow rates of fuel and 

reactant necessary to produce power higher than 1 kW from the fuel cell stack. 

5.2 PID Controller for Air and Hydrogen Supply 

A proportional-integral-derivative (PID) controller is widely used in terms of 

commercial applications [91]. A PID controller was used to regulate the output voltage 

at a certain set point via controlling the flow rate of hydrogen and oxygen for a hybrid 

power-plant system of a 240 W PEM fuel cell stack used for a C-130 Hercules aircraft, 

as reported by Radmanesh et al. [6]. A proportional controller adjusts the speed, the 
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integral part the steady state error, and the derivative part the stability and the dynamic 

response [92]. 

Chen and Khaligh [66] used a proportional-integral (PI) controller to control the flow of 

currents between the load, fuel cell/electrolyser stack, solar photovoltaic panel, and the 

rechargeable batteries for a hybrid energy storage system, in order to extend the 

endurance of the UAS. 

In this research, a PID controller is adopted to control the flow of fuel and air supplied 

to the PEM fuel cell stack, based on determining the current of the fuel cell stack with 

respect to the change in the demand current of the connected load. In order to determine 

the performance of the PID controller due to the change in the load demand, the 

following strategy was adopted: 

1. The simulation of the PEM fuel cell model was started from time zero up to the 

first second, based on the initial value of the current equalling 1 A, with the 

output voltage equal to 58.2 V. 

2. After the first second, the load demand was increased to 2 A and the power 

required to 111 W, resulting in an output voltage from the PEM fuel cell equal to 

55.5 V. 

3. The simulation lasted for four seconds further, in order to achieve five seconds 

of model simulation. 

4. A mechanical adjustment delay of 200 ms corresponds to an arbitrary 

mechanical delay of flow valve adjustment. 

It is observed that PID controller must be tuned between a zero and one second response 

interval, any settings for a time response higher than one second must be avoided as this 

will cause a delay in the response of the developed model of the PEM fuel cell to the 

power demand, as shown in Figure 5.14, for a PID controller with time response setting 

at 1.35 second, and integral value of 1.4763. 
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Figure 5.14: Response of developed PEM fuel cell model to the power demand for PID 

controller with time response setting at 1.35 second and integral value (1.4763) 
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3. Fast response-2: Integral controller with setting response time 0.78 second, at 

integral value 2.5655. The system response reaches outputs of 1.9 A and 105.8 W 

after 0.51 second, and reaches 2 A and 110.947 W after 2.373 seconds. 

4. Fast response-3: PI controller with setting response time 0.679 second, at 

proportional value 0.0655, and integral value 2.9393. The system response reaches 

outputs of 1.9 A and 105.84 W after 0.41 second, and reaches 2 A and 110.947 W 

after 2.36 seconds. 

5. Fast response-4: PI controller with setting response time 0.565 second, at 

proportional value 0.1837, and integral value 3.48112. The system response 

reaches outputs of 1.9 A and 105.8 W after 0.288 second, and reaches 2 A and 

110.943 W after 2.24 seconds. 

6. Overshoot-1: PID controller with setting response time 0.47 second, at proportional 

value 0.38513, integral value 3.7623, and derivative -0.02962. The system response 

reaches outputs of 1.9 A and 105.75 W at 0.178 second, and reaches 2 A and 

110.5W at 2.18 seconds. 

7. Overshoot-2, PID controller with setting response time 0.373 second, at 

proportional value 0.694, integral value 3.6508, and derivative -0.065. The system 

response reaches outputs of 1.9 A and 105.8 W at 0.139 second, then jumps to 

2.15A and 119 W at 0.2 second, and settled on 2 A and 110.9 W at 2.75 seconds. 

The output responses of the simulation of the developed PEM fuel cell model for 

various PID settings are presented in Figures 5.15 and 5.16, respectively. Table 5.2 

presents the amount of air and hydrogen that needs to be supplied to the developed 

model of the PEM fuel cell stack in order to deliver the required level of power for a 

current load varying from 1 A to 2 A, with different PID controller settings. However, 

these settings apply only to the developed PEM fuel cell model based on the Horizon 

(H-1000) stack; other PEM stacks may have different tuning parameters. 
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Figure 5.15: Responses of the developed PEM fuel cell model to the current demand 

varying from 1 A to 2 A, for PID controller with various time response settings 

 

 

Figure 5.16: Responses of the developed PEM fuel cell model to the power demand 

varying from 58.2 W to 111 W, for PID controller with various time response settings 



123 
 

Table 5.2: Supply air and hydrogen to the developed model of PEM fuel cell stack with 

current demand varies from 1 A at (58.2 W) to 2 A at (111 W), for various PID response 

tuning settings 

Type of 

Controller 

Response Time 

(sec.) 
Response Type 

Supply Air 

m3/hour 

Supply Hydrogen 

Kg/hour 

Integral 0.981 Zero delay 26.0234 0.0069 

Integral 0.895 Fast response-1 26.1837 0.0069 

Integral 0.78 Fast response-2 26.3700 0.0070 

PI 0.679 Fast response-3 26.5198 0.0070 

PI 0.565 Fast response-4 26.6924 0.0071 

PID 0.47 Overshoot-1 26.7577 0.0071 

PID 0.373 Overshoot-2 26.6843 0.0071 

 

It is clear that reducing the time response of the PID controller leads to improving the 

overall response of the system. But, for Overshoot-2, the system starts to take a longer 

time to settle in comparison with Overshoot-1, as shown above in Figures 5.15 and 

5.16, respectively. 

From above results and settings, it can be concluded that the fast response-3 setting 

for the PI controller provides the most adequate trade-off choice between fast 

response and hydrogen-air consumption, in comparison with other settings. 

Therefore, this setting is going to be considered in optimising the consumption of air 

and hydrogen for the developed model of the PEM fuel cell used for the proposed 

UAS operation in this research. 
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Figure 5.17 presents the Simulink block diagram of the proposed PID controller for the 

developed model of the PEM fuel cell stack system. While Figure 5.18 presents a 

Simulink block integration between the PID controller and the entire developed model 

of the PEM fuel cell stack system. 

 

 

 

Figure 5.17: Simulink block diagram of the PID controller for the developed model of the 

PEM fuel cell stack system 
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Figure 5.18: Simulink block integration between the PID controller and the entire 

developed model of the PEM fuel cell stack system 
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5.3 Summary  

The mathematical model of the PEM fuel cell developed in Chapters 3 and 4 was 

simulated with a 1 kW Horizon (H-1000) PEM fuel cell stack, which was used as an 

experimental device to validate and tune the developed model with the output results of 

the tested stack. 

The Horizon stack was tested and operated under varied levels of load current and stack 

temperatures, and the tests were repeated several times on different occasions in order to 

capture the most accurate real data output. The results obtained from the tested Horizon 

(H-1000) stack, and the simulations of the developed model of the PEM fuel cell show a 

close match in the steady state outputs and performance. Moreover, it has been noticed 

that for the simulated model at a tuning efficiency of 85% and 27.73 °C average stack 

temperature, there was a closeness in the performance and output voltages between the 

developed model and the tested stack, which provides sufficient confidence in the 

validity and accuracy of the developed model. 

It is clear from the results presented for the tested Horizon (H-1000) fuel cell stack; that 

the stack’s temperature has a tendency to increase with operating time and drawn 

current. The temperature of the stack was maintained around 30 °C, irrespective of 

extended operation or further increases in the drawn current. 

Different settings of the PID controller were investigated in terms of optimising the 

consumption of air and hydrogen and getting a faster time response of the controller, 

and it was concluded that a proportional-integral (PI) controller with time response of 

0.679 second at a proportional value of 0.0655, and integral value of 2.9393, provides 

the most adequate trade-off choice between fast response and hydrogen-air 

consumption, in comparison with other settings. Therefore, this setting is going to be 

used in optimising the consumption of air and hydrogen for the developed PEM fuel cell 

model used for the proposed UAS operation in the next chapters of this research. 
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However, these settings apply only to the developed PEM fuel cell model based on the 

Horizon (H-1000) stack; other PEM stacks may have different tuning parameters. 

In the next chapter, the implications of high altitudes upon the performance and 

operation of the PEM fuel cell will be investigated. 
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Chapter Six: Implications of High Altitudes on 

the Operation of PEM Fuel Cell Based UAS 

 

6.1 Introduction 

For high altitude long endurance (HALE) unmanned aircraft systems where a fuel cell 

operates as the prime source of power, the operation and performance of a PEM fuel 

cell at different altitudes is vitally important. In particular, for long journeys and at high 

altitude, wind turbulence and unexpected variations in the load demand make it 

necessary to find a stable and robust controller which can optimise and provide a fast 

and sufficient flow of hydrogen and air to the reaction of the fuel cell. This is one of the 

critical objectives in controlling a PEM fuel cell for UAS applications. 

Bégot et al. [27] reported that it is a complicated task to start-up and operate the fuel cell 

stack with sub-zero ambient temperatures, as the water produced in the cathode can turn 

to ice which can block the passage of the reactant from reaching the reaction interface. 

The frozen water can change the conductive properties of the electrodes, membrane and 

in worst cases can damage the membrane. It has been found that the formation of ice 

will reduce the active surface of the electrode-catalytic layer which leads to a reduction 

in the rate of the electrochemical reaction, causing a high drop in fuel cell output power. 

At a high altitude of 11 km (~36,000 ft.), atmospheric temperature and pressure are 

approximately -56 °C and 0.227 bar, while air density is around 0.365 kg/m3, these are 

severe conditions for a fuel cell to operate. Also, published experimental data for such 

operating conditions are very limited [93]. 
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It has been reported that Cessna and Boeing tested a 1.2 kW Ballard Nexa PEM fuel cell 

system at pressure of altitudes up to 5000 ft. (1524 m); they showed a drop of 25% in 

net power from 1300 W at sea level to 970 W at 5000 ft. Another test on a Ballard 

system was carried out by the U.S. Environmental Protection Agency for altitudes up to 

7400 ft. (~2256 m) showing a decline in net power by 24% compared with sea level 

operation. While another stack manufacturer reported that between altitudes of 1000 ft. 

and 10,000 ft., the power output of the fuel cell stack drops by 1.5% per 1000 ft., for a 

fuel cell using fresh air extracted directly from the atmosphere. However, predicting 

performance of a fuel cell for altitudes higher than 10,000 ft. might be different to the 

predicted values for lower altitudes. Therefore, further studies are needed to accurately 

determine the impact of high altitude conditions on both the performance of the fuel cell 

stack and its power output, which are vital for the design requirements of fuel cell 

systems in aerospace applications [93]. 

6.2 Implications of High Altitudes on the Performance of the PEM 

Fuel Cell 

In the last few years, small numbers of successful flight tests of light unmanned aircraft 

systems powered by fuel cells have been reported. However, most of these tests were 

restricted to short duration low altitude flights [28]. 

A PEM fuel cell for UAS applications needs careful water management, particularly for 

low temperature high altitude environment operations. Also, controlling the fuel cell 

temperature is a vital issue particularly at high current demand, as it needs a significant 

volume of air to cool down the stack, which otherwise increases the parasitic losses of 

the system. However, if heat transfer from the stack system to the environment and vice 

versa is managed and controlled effectively by using proper thermal insulation to 
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maintain the power system within the operational temperature boundaries, thereby 

reducing the amount of cooling air required, which improves the system efficiency [10]. 

At high cruise altitudes of UAS-based fuel cells, where the temperature and pressure are 

very low, air needs to be compressed in order to raise its pressure to an acceptable 

operational pressure level, also fuel and air must be heated up before being supplied to 

the stack in order to avoid excessive stack cooling and hence thermal stress caused by 

cold streams [10]. 

A water cooling system can be used to maintain stack temperature, but it is not 

appropriate for UAS applications, as it needs a coolant tank, pump and heat exchanger, 

which leads to an increase in the size, weight and complexity of the entire system. 

Therefore, an air cooling system could be considered as an adequate alternative option 

for cooling fuel cell stack [7]. 

Kim and Kwon [24] proposed that in order to provide a sufficient flow of air for the 

power system of the UAS, the fuel cell stack must be located in the front part of the 

fuselage to directly receive the flow of air through its intake, which is used to feed the 

cathodes and to cool down the entire system. 

Dollmayer et al. [94] proposed a 700 kW fuel cell system as an alternative source of 

power to the combined generator and auxiliary power units in the conventional aircraft. 

Different fuel cell operations are proposed using ram air from the ambient atmosphere 

with two air temperatures (-24 °C and -57 °C), and cabin exhaust air at 22 °C. The fuel 

cell system consists of a solid oxide fuel cell stack (SOFC), two heat exchangers 

working to warm up the stream of air before supplying it to the cathode, an auto thermal 

fuel reformer that uses heated air to warm the stream of hydrogen up to 25 °C before 

supply it to the anode, a gas turbine with generator, a condenser for excess water 

recovery, and an afterburner that works to burn the exhaust air and the hydrogen leaving 

the cathode and anode of the stack. It has been found that using cabin exhaust air at 
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22°C instead of ram air to supply the fuel cell is more efficient in reducing fuel 

consumption. 

Bégot et al. [27] estimated the impact of low temperature on the performance of a PEM 

fuel cell at start up and during different stages of operation via testing and characterising 

a fuel cell placed in a plastic housing climatic chamber to eliminate heat exchange with 

the ambient. A mix of non-conductive water with ethylene glycol is used to cool down 

the temperature of the environment inside the climate chamber and the surroundings of 

the fuel cell stack assembly to the level of sub-zero temperatures. An electric heater 

combined with heat exchanger and pump work to warm the fuel cell stack assembly in 

order to reach to the desired test temperature and also to return the stack temperature to 

the normal operational temperature. At the beginning of the test, the surrounding 

temperature inside the climatic chamber was set close to 15 °C, the temperature of the 

inlet gases (hydrogen and air) were maintained between 60 °C and 65 °C with 90% 

relative humidity along the two and a half hour test duration. Then, the temperature of 

the surroundings inside the chamber was reduced at a rate of 5 °C down to -34 °C. It 

was found that at -34 °C, and particularly at high load currents 50-75 A, the thermal 

energy produced by the stack is sufficient to maintain the temperature of the stack and 

the flowing gases inside it at approximately 60 °C, while the temperature of the inlet 

gases declined from 65 °C to 55 °C, due to the impact of heat exchange with the low 

temperature environment inside the chamber. The stack power output was 

approximately constant over the test duration with a slight decline in the power 

delivered by the stack in comparison with normal stack operation at a 15 °C ambient 

temperature, which might be due to the temperature constraints applied on the whole 

system inside the climatic chamber. The authors recommended that all system 

components must be selected in accordance with proper functionality at low 

temperatures. Efficient insulation should be applied to prevent heat exchange between 
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the fuel cell stack system and the surroundings, also by using a highly efficient and 

reliable heating management system it is possible to ensure no freezing water occurs 

inside the fuel cell stack or in the attached supply pipes or components. Also, it was 

noticed that a fuel cell assembly stack has a non-homogenous temperature distribution, 

as the temperature in the centre of the stack is higher than its ends particularly in a cold 

operation environment, typically for the aircraft with a high cruise altitude [27]. 

Pratt et al. [93] investigated the impact of ambient pressure and oxygen concentration 

on the performance of the PEM fuel cell. In order to simulate the variations in 

atmospheric conditions from sea level to altitude of 53,500 ft. (16,307 m), the stack of 

23 cells was placed inside a vacuum chamber. This provides a pressure variation margin 

for atmospheric pressure down to 7.2 kPa (0.072 bar) by using a controlled vacuum 

pump capable of maintaining a continuous level of desired pressure inside the chamber 

equivalent to the altitude air pressure; the chamber is thermally insulated from the 

normal ambient surroundings. The cathode of the fuel cell stack is passive (i.e. no 

mechanical fans or blowers are installed to provide air to the cathode channel); hence 

the air flow through the cathode is controlled by the flow suction of the vacuum pump. 

The anode of the cell is dead-ended which means that all the hydrogen entering the 

anode is consumed by the fuel cell reaction, and the pressure of hydrogen inside the 

anode is almost constant. Air is cooled to the desired temperature which simulates the 

same air temperature at certain altitude before being supplied to the insulated chamber, 

while the relative humidity of the inlet air is manually controlled to achieve variations 

between 15% and 70%. The fuel cell stack was subjected to two different air pressures 

and three different air flow rates. It was reported that the impact of reducing the 

pressure and temperature of supplied air to the cathode on the output voltages of the fuel 

cell stack was significantly higher than the impact of reducing air flow rates. Moreover, 
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the impact of reducing air flow rates at low pressure-temperature was higher than its 

effect at a standard pressure-temperature of ~1 bar and 22 °C [93]. 

However, several deficiencies and constraints are evident in the experiments and 

analysis carried out by Pratt et al. [93]. The conducted experiments proposed to cover 

conditions that simulate altitudes up to approximately 16,307 m, but not enough data 

was collected at those very low-pressure conditions to allow extending the data analysis 

to this altitude. Experimental limitations did not allow testing the fuel cell under 

conditions of high flow rate of air with low pressure-temperature, which limited the 

tests and accordingly its results went up to 10,668 m only. Also, the test was carried 

under very low drawn current (less than 1 A), hence the results of the experiments did 

not reflect the right performance of stack under a rated drawn current, which reflects the 

impact of concentration losses on the output power of the stack. 

6.3 Impact of High Altitude on the Air Consumption of the PEM 

Fuel Cell 

The earth’s lower atmosphere, known as the homosphere, which extends from sea level 

to 80-100 km, and consists of three layers: troposphere is lowest layer, the stratosphere 

layer extends above the troposphere, and the mesosphere layer is above the stratosphere. 

Within the homosphere, the main highly concentrated gases are nitrogen 78%, oxygen 

21%, and the remaining 1% is composed of different types of gases such as argon, water 

vapour, carbon dioxide, methane, ozone, in addition to traces of inert gases such as 

neon, helium, and xenon. Within the homosphere, nitrogen and oxygen are considered 

as fixed gases where their concentrations are consistent and well mixed at any given 

altitude [95]. 
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In earth’s atmosphere, air density, pressure, and temperature vary with altitude, latitude, 

longitude, and the season. Air density and pressure decrease exponentially with 

increasing altitude, the highest air density and pressure are at sea level [95]. 

Within the troposphere and up to the height of the tropopause at 11 km (36,089 ft.), 

temperature decreases with the increase in altitude at a constant rate of -6.5 °C/km      

(or -1.98 °C/1000 ft.). In the model of international standard atmosphere (ISA), air is 

considered as a perfect gas within the troposphere, therefore, temperature and pressure 

of air at a certain altitude is given by the following [95, 96]: 
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Where, h is the altitude in metres, To is the temperature of the air at sea level in Kelvin 

which is equal to 288.15 K (15 °C). 
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Where, Po is the pressure of air at sea level which is equal to 101.325 kPa. Using ideal 

gas law, the density of dry air ρ (kg/m3) at any altitude can be determined as a function 

of pressure and temperature [97]. 
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P

s  .
=ρ             (6.3) 

 
Where, Rs is specific gas constant for dry air (Rs = 287 J/kg.K), and T is absolute 

temperature in kelvin (K). At sea level, the air density ρo is 1.225 kg/m3. Relative 

density of air at certain altitude (RD) is defined as the ratio of the density of air at this 

altitude ρ to the density of air at sea level ρo [95, 96]. 
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Where, go equals to 9.81 m/s2, for a PEM fuel cell supplied with pure oxygen, the total 

mass flow rate of the reacted oxygen per second (WO2) is determined in Equation (4.31) 

in Chapter Four. 
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Where, n is the number of cells in the stack, MO2 is the molar mass of oxygen             

(32 g/mol), Ist is the drawn current from the fuel cell stack in ampere (A), and F is 

Faraday’s constant (96485 Coulombs/mol). 

In the case where the PEM fuel cell is supplied with fresh air, with molar proportion of 

oxygen to air is 0.21 [97]. Then, at sea level, the mass flow rate of contributed existing 

air at the reaction interface of the cathode can be determined as given in Equation (6.6): 
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At any given altitude, the mass flow rate of the contributed existing air at the reaction 

interface of the cathode can be determined as given in Equation (6.7) below: 

 

RD

W
W air

altitudeair  , =            (6.7) 

 

Based on the mathematical model of the PEM fuel cell developed and validated 

previously in Chapters Three to Five of this research, a Horizon (H-1000) PEM fuel cell 

stack consisting of 72 cells, with a maximum current of 20 A, using Equations (6.5) and 

(6.6) to determine the mass flow rate of contributed existing air at the reaction interface 

of the cathode at sea level, is found to be equal to 0.569 g/second. 
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If at high altitudes the PEM fuel cell is going to be supplied by fresh air extracted from 

the atmosphere, Equations (6.1), (6.2), (6.3), and (6.4) can be used to determine the 

relative density of air at certain attitudes. Then, using Equation (6.7) it is possible to 

determine the mass flow rate of the required air at the reaction interface of the cathode 

to produce a maximum 20 A current output at various altitudes, as shown in Figure 6.1. 

 

 

Figure 6.1: Impact of high altitudes on the mass flow rates of consumed air at the reaction 

interface for a PEM fuel cell stack being supplied by fresh air 

 

It is clear that the mass flow rate of necessary consumed air at the reaction interface is 

increased exponentially with altitude increase. Theoretically, the ratio of the mass flow 

rate of consumed air at the reaction interface at an altitude of 10 km to the consumed air 

sea level is equal to (1.69/0.569 = 2.97). Thus, the mass flow rate of contributed air in 

the reaction of the PEM fuel cell must be increased by 297% in order to produce the 

same level of output current at sea level. Yields with more power will be consumed by a 
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compressor to raise the flow rate of the supplied air. Such a compressor requires a 

significant fraction of the generated power, and contributes to increasing the total 

aircraft weight, which is very difficult to afford in a small UAS [28]. 

In fact, at an altitude of 10 km, the temperature of the air is equal to -50 °C and a fuel 

cell stack does not operate at such low temperature levels, unless special measures are 

applied to warm the air to 15 °C before supplying it to the stack. It is assumed that at 

high altitudes, the PEM fuel cell is going to be supplied by fresh air from the 

atmosphere, after warming to 15 °C. Similarly, the mass flow rate of required air at the 

reaction interface of the cathode to produce the maximum current at various altitudes, 

(at 15 °C constant temperature air supply to the fuel cell stack) can be determined and 

depicted in Figure 6.1. 

Therefore, at an attitude of 10 km, at 15 °C constant temperature air supply to the fuel 

cell stack, the mass flow rate of necessary consumed air at the reaction interface is 2.18 

g/second, and the ratio of mass flow rate of consumed air at the reaction interface.to 

consumed air at sea level is equal to (2.18/0.569 = 3.83). Thus, the mass flow rate of 

contributed air in the reaction of the PEM fuel cell must be increased by 383% in order 

to produce the same level of output current at sea level. 

It is clear that maintaining the temperature of the supplied air to the PEM fuel cell 

stack at 15 °C for high altitude operations has an impact of increasing the mass flow 

rate of supplied air to the reaction interface, which leads to more power being 

consumed by the compressor to raise the flow rate of air. 

Dollmayer et al. [94] reported, with regard to the proposed 700 kW solid oxide fuel cell 

system for aircraft applications, that supply streams of air and hydrogen must be 

warmed up to 25 °C before supplying it to the fuel cell stack. Also, using cabin exhaust 

(22 °C) air instead of ram air to supply the fuel cell is more efficient in reducing fuel 

consumption. 
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Based on the proposed developed model of a PEM fuel cell and PID controller, the 

amounts of hydrogen and air required to be supplied to the fuel cell stack, in order to 

produce a maximum power output of 877 W at 20 A current at different altitudes, where 

the air is assumed to be extracted from the surrounding ambient under conditions of 

maintaining hydrogen temperature at 15 °C and stack temperature at 27.73 °C, are 

presented in Table 6.1. 

While looking at the performance of the fuel cell system model, it became clear that 

due to drops in the pressure, temperature and density of ambient air at 300 m altitude, 

the system stalled. While warming air up to 15 °C or 20 °C before supplying it to the 

fuel cell system lead to an increase the density of the air, which extended the 

operation of the fuel cell system up to 400 m altitude, as presented in Tables 6.2 and 

6.3, respectively. Moreover raising the temperature of the hydrogen and air before 

supplying it to the fuel cell system would reduce the rate of consumption. 

 

 

Table 6.1: Supply of hydrogen and air to the fuel cell stack based on developed model of 

PEM fuel cell and PID controller at different altitudes under conditions of fixed 

hydrogen temperature at 15 °C, constant stack temperature at 27.73 °C, and maximum 

power output of stack at 877 W at 20 A current 

Altitude 

(km) 

Ambient Air 

Pressure (kPa) 

Ambient Air 

Temperature 

(°C) 

Ambient Air 

Density 

(kg/m3) 

Supplied Air 

(m3/hour) 

Supplied 

Hydrogen 

(g/hour) 

0 101.325 15.00 1.225 97.859 57.20 

0.1 100.120 14.35 1.213 97.899 57.23 

0.2 98.945 13.70 1.202 97.942 57.27 

0.3 97.772 13.05 1.190 System Stalled 
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Table 6.2: Supply of hydrogen and air to the fuel cell stack based on developed model of 

PEM fuel cell and PID controller at different altitudes under conditions of fixed 

hydrogen and ambient air temperature at 15 °C, constant stack temperature at 27.73°C, 

and maximum power output of stack at 877 W at 20 A current 

Altitude 

(km) 

Ambient Air 

Pressure (kPa) 

Air Density After 

Warming (kg/m3) 

Supplied Air 

(m3/hour) 

Supplied Hydrogen 

(g/hour) 

0 101.325 1.2250 97.859 57.20 

0.1 100.120 1.2107 97.897 57.23 

0.2 98.945 1.1965 97.934 57.26 

0.3 97.772 1.1823 97.971 57.29 

0.4 96.611 1.1682 System Stalled 

 

Table 6.3: Supply of hydrogen and air to the fuel cell stack based on developed model of 

PEM fuel cell and PID controller at different altitudes under conditions of fixed 

hydrogen and ambient air temperature at 20 °C, constant stack temperature at 27.73°C, 

and maximum power output of stack at 877 W at 20 A current 

Altitude 

(km) 

Ambient Air 

Pressure (kPa) 

Air Density After 

Warming (kg/m3) 

Supplied Air 

(m3/hour) 

Supplied Hydrogen 

(g/hour) 

0 101.325 1.204 97.847 57.19 

0.1 100.120 1.190 97.884 57.22 

0.2 98.945 1.176 97.920 57.25 

0.3 97.772 1.162 97.958 57.28 

0.4 96.611 1.148 System Stalled  

 

It has been reported in the literature that at high altitudes, where the temperature, 

pressure and density of air are very low, compressed air and hydrogen can be used to 

supply the fuel cells with a sustainable source of air or oxygen. Also, fuel and air must 

be heated up before being supplied to the stack, in order to avoid excessive stack 

cooling and hence thermal stress caused by cold streams [10, 93]. 
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In this research, and for high altitude model simulation and design consideration, it will 

be considered that the air supply to the manifold of cathodes is not going to be supplied 

from the available air extracted from the atmosphere. Alternatively, air will be supplied 

by a pressurised tank of dry air connected to the supply manifold of cathodes. 

Moreover, due to the drop in atmospheric pressure and temperature, it is necessary to 

maintain the operational environment of the stack, such as pressure, temperature and air 

humidity as close as possible to conditions at sea level. Therefore, the stack of fuel cells 

will be considered to be located inside a sealant thermally isolated chamber with an 

internal ambient pressure and temperature equal to 1atm and 15 °C, respectively. 

However, a certain amount of unreacted air and hydrogen will leave the stack of the fuel 

cells associated with water in the form of vapour or liquid, as a result of electrochemical 

reactions. These residual fluids will accumulate inside the sealant chamber. This will 

present another operational problem; hence, the air inside the chamber needs to be 

refreshed in order to maintain a certain operational temperature, relative humidity and 

pressure approximately close to sea level conditions. 

At high altitudes, the pressure inside the chamber containing the fuel cell stack will be 

higher than altitude pressures. Therefore, any attempt to drain the chamber via opening 

the drain valve will create a high flow of air at the exit outlet of the chamber as a result 

of a great pressure difference between the chamber and external atmosphere. This will 

create a sudden and rapid increment in the flow of air entering the stack which may lead 

to a spike in the output voltage of the fuel cells; hence, instability in the operation and 

performance of the stack, and further unnecessary consumption in the usage of air. Also, 

this may damage the electrolyte membrane due to pressure differences. 

The difference between the internal and external pressure of the main stack chamber can 

be eliminated by either installing a series of sequential settling drain chambers at the 

exit outlet of the main stack chamber, which can drain the contents (i.e. accumulated 
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gases) of the main stack chamber slowly and sequentially, or by recycling the internal 

accumulated gases inside the main chamber after a process of refining and gas 

separating ending with recompressing air and hydrogen again to their storage cylinders, 

however this option will add more complexity, weight and cost to the entire system. 

Figure 6.2 shows the mechanical components and flow variables associated with the 

proposed model of a fuel cell stack system operating at high altitudes. The hydrogen 

and air supply system consists of tanks of pressurised dry air and pure hydrogen, inlet 

pressure regulator valves (PRV), a hydrogen purging valve, drain tank, and connection 

pipes between the components. 

 

 

Figure 6.2: Mechanical components and flow variables associated with proposed model of 

fuel cells stack system operating at high altitudes 
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6.4 Summary 

The impacts of high altitudes upon the operation and consumption of air were 

determined in order to establish how to maintain a certain level of delivered power to 

the load. Also, the implications associated with operating a PEM fuel cell stack at high 

altitudes were considered and different technical solutions proposed. 

It has been proven that warming the extracted air from the atmosphere at high altitudes 

(~10 km) in order to feed the stack must be avoided, as this increases the flow of 

supplied air to the cathode by about 400% in comparison with the flow at sea level, in 

order to overcome the drop in the density of air at high altitudes and to produce 

consistent stable power from the stack, which would add more complexity, weight and 

cost to the system. 

It is clear that due to the drops in the pressure, temperature and density of the ambient 

air at 300 m altitude, the fuel cell stack system is stalled. While warming air up to 15 °C 

or 20 °C before supplying it to the fuel cell system lead to an increase the density of the 

air, which extended the operation of the fuel cell system up to 400 m altitude. Moreover 

raising the temperature of the hydrogen and air before supplying it to the fuel cell 

system would reduce the rate of consumption. 

In the next chapter, different types of hydrogen fuel will be investigated in order to 

choose the appropriate type of hydrogen to be used for UAS applications that can offer 

low cost and weight, and low complexity to the entire system. Also, the maximum static 

thrust required to be produced by the prolusion system, in order to accelerate the 

airplane to take-off, will be determined based on the generating capacity of the power 

supply system. 
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Chapter Seven: Static Thrust for Unmanned 

Aircraft Systems 

 

7.1 Introduction 

High altitude long endurance (HALE) unmanned aircraft systems are typically designed 

to fly at altitudes between 15 and 20 km, cruising at low speeds and circling the area of 

interest. They play a vital role in providing high-resolution surveillance due to their 

closeness to the earth. A HALE UAS needs to have a lightweight, high lift-low drag, 

low power consumption, and highly efficient propulsion and power system, in order to 

increase the mission endurance. Eliminating the mechanical couplings between the 

propulsion system and the power generation system would lead to enhancing the overall 

efficiency of the system and hence extending its endurance, as the privilege of 

deploying a fuel cell power system in comparison with turbo jet and combustion 

engines [10, 73]. 

Flight endurance is an important factor in improving the performance of the mission; 

higher energy density and efficiency of the power supply system are very important in 

increasing flight endurance of the UAS [7]. 

Due to the low efficiency of gas turbines and reciprocating engines, particularly for 

small scale UAS, batteries are used as a secondary power source. The energy density 

(i.e. energy capacity per unit volume or weight) of the available batteries is too low to 

power a small UAS to have long endurance. A Lithium polymer battery can provide 

energy of 200 W-hr/kg, which can offer an endurance of 60-90 minutes for a small 
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UAS. A hydrogen fuel cell system has high energy density and is more efficient in 

extending the endurance of a UAS in comparison with lithium batteries, hence can be 

considered an ideal power alternative to existing batteries [7, 24, 53]. 

The UAS consumes more power during take-off and climb than in cruise mode. 

Combining fuel cells and rechargeable batteries in a configuration of hybrid propulsion 

systems offers a significant increase in the UAS endurance, where the fuel cell is 

normally used for the cruise flight, while the auxiliary batteries provide the additional 

power required for taking-off, climbing, and the increase in power demand of transient 

loads [7, 68]. The duration of maximum power produced from the batteries during the 

take-off and climb is much shorter than the cruising phase, where the fuel cell can 

recharge the batteries [9]. 

The power supply system of the UAS is categorised as having a fuel cell power-plant 

and fuel cell subsystem. The fuel cell power-plant consists of the fuel cell stack, air and 

hydrogen supply and regulation systems, and a cooling system. The fuel cell subsystem 

consists of electrical distribution bus and power management system. The power supply 

system provides power to the propulsion system through the DC bus voltage. The 

propulsion system consists of an electric motor, a motor controller, and the propeller 

[22, 26]. 

The power generated from the PEM fuel cell power system is determined according to 

the size of the fuel cell stack, while the energy capacity is determined according to the 

storage capacity of the hydrogen and oxygen vessels [31]. However, in the case of a 

fixed size of hydrogen tank, the endurance of the aircraft is limited by the efficiency of 

the propulsion system and the power-plant system [26]. 
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7.2 Hydrogen Fuel for UAS Applications 

Hydrogen is considered an ideal fuel for fuel cell operation, as it offers a benefit of 

excluding any unnecessary processes of pre-reforming or pre-treatment [10]. Hydrogen 

can provide specific energy about three times higher than hydrocarbon fuel. Hence, fuel 

mass will approximately be reduced to one third in comparison with the same given 

mission and payload using hydrocarbon fuel [72, 98]. 

Hydrogen generated by different processes is used to feed the fuel cell power-plant for 

UAS applications, this includes chemical hydrates, low pressure liquid hydrogen, and 

high pressurised hydrogen gas [22]. Metal hydrides are too heavy to satisfy the energy 

density requirement, which adds extra weight to the system, while storage of hydrogen 

in solid or slush forms could lead to minor savings in the weight and volume of the 

storage tank, but on the other hand needs excessive energy to sub cool the hydrogen fuel 

[7, 98]. 

Liquid hydrogen could be the alternative choice, but liquid hydrogen needs to be cooled 

and stored below 20 kelvin (-253 °C). A storage tank must be insulated to eliminate the 

evaporating of liquid hydrogen to gas form; also the rate of evaporated hydrogen must 

be monitored and controlled. Thus, storage of hydrogen in liquid form requires careful 

procedures to balance between the mechanical and thermal requirements of the design, 

which would lead to increases in the weight, cost and complexity of the system. Also, 

the process of liquefying hydrogen gas requires complicated cryogenic equipment 

which consumes high power [10, 21, 99]. However, the low density of liquid hydrogen 

needs a storage volume that is approximately four times bigger than a tank of 

hydrocarbon fuel that is used for the same mission and payload [98]. Moreover, most of 

the commercial available liquid hydrogen fuel is produced from natural gas, which leads 

to a release of carbon dioxide in the environment [100]. 
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Leachman et al. [99] investigated different techniques for generating a sufficient flow of 

hydrogen gas from liquid hydrogen for a long endurance UAS operation for different 

flying phases, including take-off, cruise and landing. To force hydrogen to flow out of 

its storage tank, the pressure inside the storage tank needs to be raised (i.e. pressurise 

the tank). An electric heater can be used to vaporise a certain volume of liquid 

hydrogen, which leads to consuming further power and hence more power losses. An 

external pressurisation tank of helium gas works to elevate the internal pressure of the 

liquid hydrogen tank, but this will add extra mass and volume to the total fuelling 

system, sometimes more than 20% which is equivalent to the payload weight for the 

high altitude long endurance UAS design. 

The design and development of light, durable and efficient insulated tanks for liquid 

hydrogen storage is considered to be a technical challenge, particularly for aircraft 

applications, as it needs to eliminate the heat conduction process between the tank and 

the surroundings, consequently leading to losing a certain amount of hydrogen as a 

result of venting the tank to lower the elevated pressure [98]. 

The high energy density of the chemical hydride makes it a reliable source of hydrogen, 

a sodium borohydride solution is characterised as stable, non-toxic and non-flammable, 

and has a hydrogen production capacity of 10.8 wt.%. The technique for generating 

hydrogen from a chemical hydride requires a chemical hydride solution cartridge, a 

micro pump, a catalytic reactor, a gas-liquid separator and a dehumidifier. The process 

needs to be controlled which adds cost and complexity to the entire system. However, 

this technique involves different complications such as instability in hydrogen 

generation due to clogging in the flow channel and internal pressure fluctuations [7]. 

Seo et al. [61] adopted an advanced ammonia borane-based hydrogen (NH3BH3) power 

pack to continuously drive an unmanned aircraft system, using a 200 W PEM fuel cell 

stack. The development of a continuous hydrogen generator using ammonia borane fuel 
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causes several complications, for example, continuous supply of solid ammonia borane, 

the purification process of hydrogen containing gaseous by-products, and discharging of 

liquid-solid residual materials from the reactor. 

Huang et al. [69] developed a design model of a 300 W PEM fuel cell stack integrated 

with a sodium borohydride (NaBH4) based hydrogen generator. It was reported that the 

performance and power output of the fuel cell using hydrogen extracted from the 

NaBH4 hydrogen generator, and that provided from a conventional pressurised 

hydrogen cylinder, is approximately the same. 

Semiz et al. [59] reported that that rate of hydrogen production depends mainly on the 

catalytic activity of the catalyst rather than the concentration of the sodium borohydride 

solution. However, there is a threshold catalyst concentration for the maximum 

available reaction rate; hence, increasing the concentration of the catalyst above this 

threshold will not add any contribution to the rate of hydrogen production. 

Most fuel-cell-based UAS depend on an on-board compressed hydrogen cylinder or 

chemical hydride system to produce hydrogen for fuel cell operation [68]. Compressed 

hydrogen gas is a common storage method which needs safety procedures for the 

refilling process [24]. 

However, as it has been presented above, whether using chemical hydride or liquid 

hydrogen as a source of hydrogen gas, special requirements are needed to manage 

and control the process of hydrogen generation, which adds more cost, complexity 

and weight to the power system of the UAS. Therefore, compressed hydrogen will be 

considered as the source of hydrogen supplied to the fuel-cell-based UAS in this 

research. 
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7.3 Calculation of Required Thrust  

In UAS missions, the highest power consumption occurs during take-off and the climb 

to the designated cruising altitude, while the lowest power consumption occurs during 

descent. The longest time and highest energy consumptions are during the cruising 

stage. At constant altitude where the weight of the aircraft is equal to the lift and the 

thrust is equal to the drag. The calculations of power requirements for cruising involve a 

thrust calculation related to the efficiency of the propulsion system, which depends on 

propeller diameter, changes in the direction of air flow and its velocity, and density of 

air [10]. 

The dimension of the propeller plays a significant role in determining the required 

power to be drawn by the motor from the power supply system. A bigger propeller 

requires higher power to turn it and hence more current needs to be drawn from the 

power supply [53]. 

In the design of the propeller driven airplane, static thrust is a vital element to be 

determined, in order to successfully select the appropriate propeller and motor. Static 

thrust represents the maximum thrust produced by the propeller while the airplane is 

located in a stationary position on the ground (zero velocity), and this thrust will 

decrease with forward velocity [101]. 

The power delivered by the motor to the propeller (Pd) in terms of propeller rotational 

speed, propeller constant, and propeller power factor is empirically calculated as given 

in Equation (7.1) below [102]: 

 

[ ] factorpower rpm *Constant Propeller =dP         (7.1) 

 
Where, power is in watts, and rpm is in thousands. The required thrust produced by the 

propeller can be determined by Equation (7.2) given below [103]: 
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wvAT  . .  . 2ρ=            (7.2) 

 
Where, ρ is the density of the air (kg/m3), A is the rotational area of the propeller       

(A= π.r2), v is the velocity of the stream air through the propeller (m/s), and w is the 

propeller induced velocity (m/s) which represents the velocity of the stream air 

accelerated by the propeller. Velocity of the stream air through the propeller can be 

determined by Equation (7.3): 

 

wVv += ο             (7.3) 

 
Where, Vo is the velocity of the free-stream air far ahead from the propeller (m/s). 

While, the induced velocity through the propeller can be found by substituting Equation 

(7.3) in Equation (7.2) above, yielding the following: 
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The necessary power required by the propeller (Pr) which is equal to the product of 

thrust and the velocity of air through the propeller shown as follows [103]: 

 

)( .  . wVTvTPr +== ο           (7.5) 

 
The part of the equation (T.Vo) represents the useful power of the propeller, while the 

part (T.w) represents the induced power of the propeller. For a static case (i.e. the 

airplane is located in a stationary position on the ground) where Vo is zero, by 

substituting in Equations (7.4) and (7.5) above, the induced velocity and induced power 

of the propeller is produced, as given in Equations (7.6) and (7.7), respectively: 
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Hence, by rearranging Equation (7.7), the static thrust (Ts) can be determined as given 

in Equation (7.8) below [103]: 

 

( ) 3/12 .  . 2 is PAT ρ=            (7.8) 

 
For a given ρ and A as constant, a maximum static thrust (Tsm) is achieved when the 

induced power by the propeller (Pi) reaches its maximum (i.e. equal to the total power 

delivered by the motor Pd). Thus, the maximum static thrust produced by the propeller 

can be represented as given below: 

 

( ) 3/12 .  . 2
dsm PAT ρ=            (7.9) 

 
However, not all of the electrical DC power supplied to the motor (Ps), which represents 

the power drawn from the fuel cell stack, will be fully converted to the mechanical work 

to drive the propeller; part of this power is dissipated by the inefficiency of the motor. 

The electrical efficiency of the motor is determined as the ratio between the output to 

input power, as given in Equation (7.10), below: 

 

 
s

d
m

P

P
=η           (7.10) 

 
Where, ηm is the efficiency of the motor, power is in watts (equivalent to N.m/s) and in 

terms of horse power (1 hp = 746 W). 

For the BLDC motor (KMS Quantum 4130/07) used in the experiment, with a DC input 

supply voltage of 24 V, maximum efficiency (> 90%), and RPM rating of 360/V (8640 

rpm at 24 V), the recommended propellers for this motor are (15" x 08"), (15" x 10"), 
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and (16" x 10"), with average propeller constants being 1.258, 1.773, and 2.23, 

respectively for 3.08 power factor, as given by Aircraft R/C Electric Aircraft and 

Gliders datasheet and the RC Model Centre [104, 105]. 

Using Equations (7.1), (7.9), and (7.10) to determine the maximum static thrust 

produced by the propeller for the specific BLDC motor, two values for static thrust to 

weight ratio (T/W) (0.2 and 0.4) will be used in this research so as to offer different 

operational scenarios for the UAS applications – also assuming that maximum 

efficiency of the BLDC motor is 95%. 

 
First Option: For propeller size 15" x 08", with an average propeller constant of 1.258 

and 3.08 power factor. 

( )  W9648.640 * 1.258 
3.08

==dP  

 W1015
95.0

964
==sP  

( ) N 8.63)964(**)2/381.0(*225.1*2
3/122 == πsmT  

For a static thrust to weight ratio of 0.4, the maximum permitted mass of the UAS must 

not exceed 16.28 kg, as determined below: 

kg 28.16
8.9

5.159

N 5.159
4.0

8.63

==

==

Mass

Weight

 

For a static thrust to weight ratio of 0.2, the maximum permitted mass of the UAS must 

not exceed 32.55 kg, as determined below: 

kg 55.32
8.9

319

N 319
2.0

8.63

==

==

Mass

Weight
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Second Option: For propeller size 15" x 10", with an average propeller constant of 

1.773 and 3.08 power factor. 

( )  W13598.640 * 1.773  
3.08

==dP  

 W1430
95.0

1359
==sP  

( ) N 2.80)1359(**)2/381.0(*225.1*2
3/122 == πsmT  

For a static thrust to weight ratio of 0.4, the maximum permitted mass of the UAS must 

not exceed 20.46 kg, as determined below: 

kg 46.20
8.9

5.200

N 5.200
4.0

2.80

==

==

Mass

Weight

 

For a static thrust to weight ratio of 0.2, the maximum permitted mass of the UAS must 

not exceed 40.92 kg, as determined below: 

kg 92.40
8.9

401

N 401
2.0

2.80

==

==

Mass

Weight

 

 
Third Option: For propeller size 16" x 10", with an average propeller constant of 2.23 

and 3.08 power factor. 

( )  W17098.640 * 2.23  
3.08

==dP  

 W1799
95.0

1709
==sP  

( ) N 55.97)1709(**)2/4064.0(*225.1*2
3/122 == πsmT  

For a static thrust to weight ratio of 0.4, the maximum permitted mass of the UAS must 

not exceed 24.89 kg, as determined below: 
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kg 89.24
8.9

875.243

N 875.243
4.0

55.97

==

==

Mass

Weight

 

For a static thrust to weight ratio of 0.2, the maximum permitted mass of the UAS must 

not exceed 49.77 kg, as determined below: 

kg 77.49
8.9

75.487

N 75.487
2.0

55.97

==

==

Mass

Weight

 

The calculations presented above for the power delivered to the BLDC motor and the 

maximum static thrust produced by the propeller, and consequently the maximum 

permitted mass of the UAS, for two values of static thrust to weight ratio (0.2 and 0.4), 

and for three different sizes of propeller, are as presented in Table 7.1. 

Bradley et al. [26] reported that for their designed power-plant for an unmanned 

powered aircraft, that the specified static thrust to weight ratio is 0.165 which provides 

26.52 N static thrust, for the total mass of the aircraft of 16.4 kg. 

As it has been presented above, that for the BLDC motor (KMS Quantum 4130/07) 

used in the experiment, with a rated DC supply voltage of 24 V, and RPM rating of 

360/V. Thus, the rotational speed of the motor can vary from 360 rpm at 1 V supply 

voltage to 8,640 rpm at 24 V. 

The power drawn by the BLDC motor and the maximum static thrust produced by the 

propeller, and consequently maximum permitted mass of the UAS, for three different 

sizes of propeller and for two values of static thrust to weight ratio (0.2 and 0.4), with 

respect to the rotational speed of the propeller varying between 360 to 8,640 rpm are as 

presented in Figures 7.1, 7.2, 7.3 and 7.4, respectively. The results indicate that a bigger 

propeller offers higher thrust, hence increasing the permitted weight of the UAS and the 
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payload, but a bigger propeller also increases the magnitude of power drawn from the 

power system. 

 

Table 7.1: Calculations of the power supplied to and produced from the BLDC motor, 

maximum static thrust produced, and maximum permitted mass of the UAS 

Propeller 

Size, (inch) 

Power 

Supplied to 

the Motor, 

(W) 

Power 

Delivered by 

Motor to 

Propeller, 

(W) 

Maximum 

Static Thrust 

Produced, (N) 

Maximum Permitted Mass 

of UAS, (kg) 

at T/W (0.4) at T/W (0.2) 

15" x 08" 1,015 964 63.8 16.28 32.55 

15" x 10" 1,430 1,359 80.2 20.46 40.92 

16" x 10" 1,799 1,709 97.55 24.89 49.77 

 

 

Figure 7.1: Power drawn by the BLDC motor with respect to the rotational speed of the 

propeller for three different sizes of propeller 
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Figure 7.2: Maximum static thrust with respect to the rotational speed of the propeller for 

three different sizes of propeller 

 

 

Figure 7.3: Maximum permitted mass of the UAS with respect to the rotational speed of 

the propeller for three different sizes of propeller, at 0.4 static thrust to weight ratio 
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Figure 7.4: Maximum permitted mass of the UAS with respect to the rotational speed of 

the propeller for three different sizes of propeller, at 0.2 static thrust to weight ratio 
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propeller size of 15" x 8". The maximum power drawn by the BLDC motor from the 

power supply system is approximately 1 kW at maximum rotational speed of the 
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UAS. 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

Propeller Rotational Speed, (RPM)

M
ax

im
u
m

 E
st

im
at

ed
 M

as
s 

o
f 

U
A

S
, 
(K

g
)

Prop. 2

Prop. 1

Prop. 3



157 
 

7.4 Summary 

In this chapter, different types of hydrogen fuel for UAS applications were considered, 

in order to choose the appropriate type of hydrogen source to be used for the UAS 

applications which can offer low cost and weight, and low complexity of the entire 

system. 

It has been concluded that whether using chemical hydride or liquid hydrogen as a 

source of hydrogen gas, special requirements are needed to manage and control the 

process of hydrogen generation, which adds more cost, complexity and weight to the 

power system of the UAS, hence compressed hydrogen gas was considered to be the 

best source of hydrogen supplied to the fuel-cell-based UAS in this research. 

The maximum static thrust required to be produced by the prolusion system in order to 

accelerate the airplane was determined based on the capacity of the power system, also 

different sizes of propellers were examined in order to find the appropriate propeller 

which draws power from the BLDC motor based on the maximum production capacity 

of the fuel cell stack power system, hence the maximum weight of the UAS is 

determined accordingly. Also two values for static thrust to weight ratio 0.2 and 0.4 

were adopted in order to offer different operational scenarios for the UAS applications. 

It is clear from the results that a bigger propeller offers higher thrust and hence 

increases the permitted weight of the UAS and the payload, but a bigger propeller will 

increase the magnitude of power drawn from the power system. 

The best option for the fuel cell stack and BLDC motor used in this research was 

propeller sized 15" x 8". The maximum power drawn by the BLDC motor from the 

power supply system is approximately 1 kW at maximum propeller rotational speed 

(8,640 rpm), which is within the maximum power production capacity of the fuel cell 

stack. The maximum permitted mass and static thrust to weight ratio of the UAS were 
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considered and it was established that the value of the static thrust to weight ratio is very 

important in extending the maximum permitted total mass of the UAS. 

In the next chapter, pressure vessel design will be presented and investigated for 

different types of stainless steel materials, in order to determine the weight and size of 

the hydrogen and air pressure vessels. 
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Chapter Eight: Pressure Vessel Design and 

Power Plant Mass Estimation Based UAS 

 

8.1 Introduction 

Materials that have properties such as high strength, high stiffness, high fracture 

toughness, low density, and low permeability to hydrogen molecules are ideally 

recommended for the design and construction of hydrogen storing tanks [98]. Lowering 

the mass of fuel tank will reduce power consumption; hence increase the endurance of 

the flight and the payload of the UAS [72]. 

In pressure vessel fabrication, composite materials are widely used due to their higher 

strength to weight ratios [72]. High storage density of hydrogen or oxygen would be 

achieved by a composite of ultra-light vessel materials such as polymer liners [31]. 

However, aluminium is the most recommended material among metals that fulfil the 

recommendations of NASA for tank fabrication for flight applications [100]. 

Romeo et al. [73] reported that hydrogen and oxygen in a pressurised form could be 

stored in pressure vessels mounted inside the wing of the plane. The weight and size of 

the storage tanks need to be optimised to reduce the power required by the flight. 

Verstraete et al. [98] proposed in his work, a preliminary design model of 1.2 bar 

cryogenic liquid hydrogen tanks developed for small regional and large long-range 

subsonic aircraft. Two different insulation techniques, multi-layer insulations and low-

density foam materials, are used in order to trade-off between the weight and the 

dimensions of the designed tanks, and consequently dimensions and overall weight of 

the fuselage. 
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Adam and Leachman [72] developed and fabricated a light-weight storage tank for 

liquid hydrogen for a PEM fuel cell power system integrated and designed for a small 

UAS (< 25 kg). The fuel tank consists of a cylindrical shape cryogenic vessel placed 

inside an outer vessel, while an insulating blanket made from multi-layer insulation is 

used to wrap the inner vessel to reduce radiation heat loss. Aluminium (6061-T6) 

material is used to construct the inner and outer vessels, the total mass of the two 

vessels is 6.3 kg, excluding the insulation materials. 

Radmanesh et al. [6] reported that storing hydrogen in the form of highly pressurised 

gas is the cheapest method, due to developments in composite materials that offer 

storing pressure up to 800 bar. However, pressurised hydrogen gas is usually stored in 

steel tanks with a pressure range between 200 and 300 bar. 

Furrutter and Meyer [53] used a light aluminium vessel weighing 0.255 kg filled with 

30 bar of pressurised hydrogen, enough to supply hydrogen for a continuous nine 

minutes flying time, using a 100 W Horizon PEM fuel cell power-plant system placed 

in a small-scale fixed wing UAS, in order to provide enough power to maintain steady 

and stable flying level with 13 m/s maximum flight velocity, for a total mass of UAS of 

5.3 kg. 

Romeo et al. [73] proposed a parametric analysis to determine the impact of internal 

pressure and in-flight loads upon the size of the hydrogen pressure vessel, in order to 

reduce the weight of the vessel and to examine the safety margins between the applied 

pressure and the burst pressure, so as to fulfil the safety regulation requirements for a 

composite materials pressure vessel filled with 100 bar pressurised hydrogen mounted 

inside the wing of a UAS for a high altitude long endurance mission. 

Bradley et al. [26] proposed using a 310 bar compressed hydrogen tank providing a 

storage volume capacity of 0.192 m3 (i.e. before compression) for a 500 W, 32-cell self-

humidified PEM fuel cell as a main and only source of power for an unmanned powered 
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aircraft. To overcome the problem of very low power to weight ratio, the entire 

proposed fuel cell powered aircraft was designed to be operated at low speed, stable 

altitude flight level with slow manoeuvring, with a maximum flying altitude up to 30 m, 

for less than three minutes total flying time. However, the proposed integrated power 

fuel cell aircraft system was designed without consideration to the payload or endurance 

requirements. Total mass of the combined power-plant and the propulsion system was 

about 9.4 kg, which accounted for about 57% of the 16.4 kg total mass of the UAS. 

Barbir et al. [31] reported that oxygen storage is the only option for space applications. 

However, most of the research literature focuses on the design of hydrogen vessels for 

low altitude and low speed UAS applications, and for supplying air extracted directly 

from the surroundings, hence no oxygen pressure vessel has been used in the 

application. At a high altitude of 11 km (~36,000 ft.), atmospheric temperature and 

pressure are approximately -56 °C and 0.227 bar, air density is around 0.365 kg/m
3
, 

these are severe conditions for a fuel cell to operate. Also, published experimental 

data for such operating conditions are very limited [93]. Therefore, air or oxygen 

pressure vessel becomes a most vital issue relating to providing sufficient oxygen to 

the fuel cell power system. 

Moreover, using pure oxygen instead of air to feed the fuel cell stack leads to an 

increase in the cell output voltage; as the pressure and diffusion rates of pure oxygen 

in the cathodes is higher than the partial pressure and diffusion rates of oxygen in the 

mixture of nitrogen-oxygen of air. However, using pure oxygen is critical, as the 

entire system requires certain procedures in terms of maintenance and safety. 

Operating a fuel cell stack with air requires a pumping device such as a blower or a 

compressor, resulting in further parasitic losses. Thus, the decision of whether to use 

pure oxygen or air is a debatable choice based on the application [31]. 
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8.2 Pressure Vessel Design 

A cylindrical shell with hemispherical ends is frequently used in the pressure vessel 

design, as a hemispherical ends shell is more efficient than a flat-ended shell in 

enduring equivalent pressure [72]. The stresses in the cylindrical shell with two closed-

ends under internal uniform pressure P can be determined under conditions of static 

equilibrium, as given in Equations (8.1), (8.2), and (8.3), respectively [106]. 

 

t

rP
L

 2

 .
=σ             (8.1) 

 

t

rp
t

 . 
=σ             (8.2) 

 

Where, σL is stress in the longitudinal direction (i.e. the stress in the direction of close-

ends), σt is tangential stress which represents the stress applied on the curvature surface 

of the cylinder, t is the thickness of the shell, and r is the radius of the cylinder. 

Tangential stress can be expressed in terms of internal radius ri of the cylinder, as 

presented in Equation (8.3). 

 

( ) t.r
t

p
it 50+=σ            (8.3) 

 

 

Minimum shell thickness (in inches) is determined by using Equations (8.4) and (8.5), 

as given by Bednar and Chuse [106, 107]: 
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Where, E represents the weld joint efficiency code, S is the allowable code stress of the 

metal (in psi), ri is the internal radius (in inches), and P is the internal pressure (in psi). 

Where, Equation (8.5) is valid for a thin shell with thickness (t) less than (½ ri) or P 

less than (0.385 S.E). According to the weld joint efficiency code, E has a value of 1.0 

for fully radiographed (100% joint efficiency), 0.85 for spot-radiographed, and 0.7 for 

not radiographed [107]. 

For a cylindrical shell vessel under uniform external pressure, the thin wall of the vessel 

collapses at a stress much lower than the yield strength, as a result of instability of the 

shell. The instability of the shell is governed by many factors such as: properties of the 

materials used in manufacturing the vessel, operating temperature, shell thickness, 

unsupported length, and outside diameter. The behaviour of a thin wall shell under the 

impact of external pressure will differ according to the cylinder length. Pressure where 

the shell collapses is defined as collapse or critical pressure (Pc) [106]. 

A short cylindrical shell collapses by the impact of plastic yielding stress alone at high 

stresses close to the yield strength of the metal. Hence, the ordinary tangential shell 

stress given above in Equation (8.2) can be used to determine the critical pressure, as 

given in Equation (8.6) [106]: 

 

or

tS
P

y
c

 .
=             (8.6) 

 
Where, Sy represents the yield stress of the metal (in psi), t is the shell thickness (in 

inches), and ro is the outside radius of the shell (in inches) and (ro = ri + t). However, 
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long and intermediate cylinder lengths are not going to be considered in this research, as 

these types of cylinders are out of the scope of this research application. 

A yield stress point is defined as the point up to which deformations occurring in the 

material are fully recovered upon the removal of the applied load (i.e. the material 

returns to its original status before being loaded), this region is called the elastic region. 

Most ductile materials, such as steel, experience plastic deformation especially when the 

applied load exceeds the yield stress point, and hence the material will not completely 

return to its original condition after removing the applied load. 

8.3 Dimensions and Weight of Pressure Vessel  

The volume of a cylindrical shell with inner radius ri, outer radius ro, and height h can 

be determined by subtracting the volume of the inner cylinder from the volume of the 

outer cylinder. 

 

( )2222  .  . ..  .. iicyl rrhh rh rV oo −=−= πππ         (8.7) 

 
Where, the difference between the outer radius and inner radius represents the thickness 

of the shell (ro – ri = t). Similarly, the volume of two hemispherical ends of the shell can 

be calculated as follows: 

 

( )33 . 
3

4
isph rrπV o −=            (8.8) 

 
Hence, the volume (Vshell) and the mass (Mshell) for the shell of a pressure vessel with 

cylindrical shape and hemispherical ends can be calculated as given in Equations (8.9) 

and (8.10), respectively. 

 

( ) ( )3322  . 
3

4
 .  . iishell rrπrrhV oo −+−= π         (8.9) 
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mshellshell VM ρ .  =          (8.10) 

 
Where, ρm is the density of the material (g/cm3) used in manufacturing the shell. The 

overall height of the shell (hshell) can be determined as given in Equation (8.11): 

 

orhsh
hell

 2+=          (8.11) 

 
The volume of the gas inside the cylindrical shell with hemispherical ends can be 

determined as given in Equation (8.12): 

 









+= iigas rhrV

3

4
 . . 2π         (8.12) 

 
The implementation of the above equations for a pressure vessel design in Matlab-

Simulink are presented in Figures 8.1 and 8.2, representing the Simulink tools and 

blocks diagram configuration of the pressure vessel design developed in this research. 

This offers a generic weight estimation mechanism that enables the designer to estimate 

the size and weight of storage vessels by taking into the consideration the power 

capacity of fuel cell stack and the flight endurance, and hence determining the overall 

weight of the UAS, which is a key requirement in the preliminary aircraft design phase. 
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Figure 8.1: Simulink block tools of pressure vessel design 
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Figure 8.2: Simulink block diagram configuration of pressure vessel design 

8.4 Hydrogen and Air-Oxygen Pressure Vessels 
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stack, as presented in Table 4.1, in Chapter Four above, at 20 A current and power of 
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Based on the developed model of the PEM fuel cell stack, at 20 A current and power of 
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Where, at standard temperature and pressure, the density of dry air is 1.225 kg/m3, the 

density of oxygen is 1.429 kg/m3, the ratio of oxygen to air is 21%, and the density of 

hydrogen is 0.0899 kg/m3. The mass flow rates of reacted oxygen and hydrogen are 

given in Chapter Four above using Equations (4.31) and (4.42), respectively. For a fuel 

cell stack consisting of 72 cells, and drawn current is 20 A. 

 

kg/hour  384.29/hourm  5624.200.21*  97.9162 O Supplied of Flow Mass 3
2 ===  

 

/hourm30kg/hour430g/s11940
964854
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In
MW st

O,rctO =====  
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207202.2

2

 . 3
 . 22   . . .
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F

In
MW st
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A PEM fuel cell is commonly supplied with hydrogen and oxygen at a level higher than 

the level of reaction rate in order to prevent starvation. The ratio of mass flow rate of 

supplied gas to the mass flow rate of reacted gas, defined as the utilisation factor µ , is 

given in Equation (8.13) below [35]: 

 

gas reacted of rate flow Mass

gas supplied of rate flow Mass
 =µ        (8.13) 

 

685.68
3.0

5624.20

Oxygen reacted of flow Mass

Oxygen supplied of flow Mass
2 ≈===Oµ  

 

06.1
6.0

6368.0

Hydrogen reacted of flow Mass

Hydrogen supplied of flow Mass
2 ===Hµ  

 
It is clear that the amount of supplied oxygen or air is 68 times higher than the 

reacted amount required to produce 20 A of current, which means more air is being 

pumped to the fuel cell stack, this can be referred to the design of the Horizon fuel 
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cell stack (H-1000), in order to keep a high level of air flowing inside the stack, 

yielding a maintained low stack temperature. 

It has been reported in the literature that in order to ensure a faster and better response 

against sudden changes in the load demand, a high utilisation factor needs to be applied. 

Hence, starvation occurs at the level of higher current drawn from the fuel cell, and this 

will enable the fuel cell to respond faster to the load changes. But, this will lead to extra 

hydrogen and air not going to be used in the reaction, which leads to more losses. 

Therefore, a compromise between the utilisation factor and the size of the gas storage 

must be considered [35, 56]. 

Barbir et al. [31] reported that using pure oxygen instead of air to feed the fuel cell stack 

leads to an increase in the cell output voltage; this is due to the fact that pressure and 

diffusion rates of pure oxygen in the cathodes is higher than the partial pressure and 

diffusion rate of oxygen in the nitrogen-oxygen mixture of air. However, the use of pure 

oxygen is a serious undertaking, as the entire system requires certain procedures in 

terms of maintenance and safety. Operating a fuel cell stack with air requires a pumping 

device such as a blower or a compressor, resulting in further parasitic losses. Thus, the 

decision of whether to use pure oxygen or air is a debatable choice based on the 

application. 

Shih et al. [54] reported that there is a significant increase of up to 32% for the 

maximum power drawn from a fuel cell stack fed by pure oxygen, in comparison with a 

stack fed by atmospheric air. 

Bégot et al. [27] recommended setting the stoichiometry rates of supplied hydrogen and 

air to the PEM fuel cell stack of about 1.5 and 2.5, respectively, with 90% relative 

humidity for a fuel cell stack operating under sub-zero ambient temperature conditions. 

While the air compressor is controlled to maintain the supplied air to the stack at 2.5 

stoichiometric ratio [20]. 
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In this research, three scenarios will be adopted to determine the size and weight of 

pressure vessels required to supply air or oxygen to the fuel cell stack for high altitude 

operations. Moreover, three different types of stainless steel metals are adopted in the 

design of the pressure vessels in order to find an appropriate metal that provides low 

size and weight advantages. However, the stainless steel materials are chosen based 

on their specifications in offering high yield strength, high stress resistance, high 

corrosion resistance, and their availability in a decent range of thicknesses, also their 

suitability in storing high pressurised gases for aerospace and industrial applications. 

 
First Metal: AK 2205 Duplex Stainless Steel 

AK Steel 2205 Duplex Stainless Steel has specifications of high corrosion resistance, 

high strength and high stress resistance, and low thermal expansion. These 

specifications make this type of steel highly suitable for applications like heat 

exchangers, pressure vessels, tanks and pipes, and oil field equipment. 2205 duplex 

stainless is manufactured and supplied with a standard thickness (0.25 - 2.29 mm), with 

mechanical properties of 0.2% yield strength equal to 621 MPa (90,069.5 psi) at typical 

room temperature, and material density about 7.85 g/cm3 [108]. 

For pressure vessel design calculations using AK Steel 2205 Duplex Stainless Steel, it is 

assumed that the weld joint efficiency code (E = 0.85), and the allowable code stress of 

the metal (S = 90,069.5 psi). 

 
Second Metal: AK 15-5 PH Stainless Steel 

AK Steel 15-5 PH Stainless Steel provides high strength, good corrosion resistance, and 

good stress resistance in transverse and longitudinal directions, this type of steel is 

widely used in petrochemical, chemical and aerospace applications. 15-5 PH stainless 

steel is manufactured and supplied in original condition of class-A, which is prepared 

for immediate use by consumers. There are eight standard heat treatments applied on the 
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class-A stainless steel to provide a wide range of properties in order to meet the 

requirements of specific customer applications. 15-5 PH stainless steel class-A is 

supplied with standard thickness (0.38 - 3.18 mm), with maximum 0.2% yield strength 

acceptable for material specification equal to 1103 MPa (159,979 psi), and material 

density about 7.78 g/cm3 [109]. 

For pressure vessel design calculations using AK Steel 15-5 PH Stainless Steel, it is 

assumed that the weld joint efficiency code (E = 0.85), and the allowable code stress of 

the metal (S = 159,979 psi). 

 
Third Metal: AK 440A Stainless Steel 

AK Steel 440A Stainless Steel in hardened and stress relieved conditions provides high 

strength and corrosion resistance, this type of steel is widely used in dental and surgical 

instruments, and manufacturing of crushing machines. 440A stainless steel is 

manufactured and supplied with standard thickness (0.25 - 3.68 mm), with maximum 

0.2 % yield strength mechanical properties equal to 1655 MPa (240,040.4 psi), and 

material density about 7.74 g/cm3 [110]. 

For pressure vessel design calculations using AK Steel 440A Stainless Steel, it is 

assumed that the weld joint efficiency code (E = 0.85), and the allowable code stress of 

the metal (S = 240,040.4 psi). 

However, all calculations related to the design of pressure vessels and power-plant 

mass estimations in the following sections of this chapter will be determined based on 

the developed model of the PEM fuel cell stack and the Simulink tools of pressure 

vessel design developed in this research. 

8.4.1 First Scenario: Pressure Vessel for Compressed Air  

At sea level, based on the developed model of a PEM fuel cell stack, for one hour’s 

operation of the stack at a maximum current of 20 A, and power 877 W, the required 
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supply of air is 119.948 kg/hour (which is equal to 97.9162 m3/hour), under 1atm 

ambient pressure. Using Equation (A.3) in Appendix A, to determine the volume of air 

under compression, assuming P1=1atm = 1.01317 bar = 14.504 psi, V1 = 97.9162 m3, 

and assuming that air is going to be pressurised up to 200 bar (2,900.8 psi), the new 

volume of air is determined as given below: 

 

3m 49.0
8.900,2

504.14*9162.97
2 ==V  

 
BOC Industrial Gases UK [111] provides different sizes of cylindrical air vessels with a 

maximum filling pressure up to 200 bar, at 15 °C ambient temperature. A cylinder type 

N, for storing 8.85 m3 (10.85 kg) of air, with the vessel dimensions (D x H) of (23 cm x 

146 cm), and a gross weight of 82 kg. The calculations of the air pressure vessel design 

are presented in Appendix C, Section C.1. 

8.4.2 Second Scenario: Pressure Vessel for Compressed Oxygen  

At sea level, based on the developed model of a PEM fuel cell stack, for one hour’s 

operation of the stack at a maximum current of 20 A, and power of 877 W, the required 

supply of pure oxygen is 29.384 kg/hour (which is equal to 20.5624 m3/hour) under 

1atm ambient pressure. Using Equation (A.3) in Appendix A, to determine the volume 

of oxygen under compression, assuming P1= 1atm = 1.01317 bar = 14.504 psi, and V1 = 

20.5624 m3, and assuming that oxygen is going to be pressurised up to 230 bar 

(3,335.92 psi), the new volume of oxygen is determined as given below: 

 

3m 09.0
92.335,3

504.14*5624.20
2 ==V  

 
BOC Industrial Gases UK [112] provides different sizes of cylindrical oxygen vessels 

with the maximum filling pressures varying between 137 and 230 bar, at 15 °C ambient 
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temperature. A cylinder type W, for storing 11.09 m3 (15.85 kg) of oxygen, with the 

vessel dimensions (D x H) of (23 cm x 146 cm), and a gross weight of 80 kg. 

The calculations of the oxygen pressure vessel design are presented in Appendix C, 

Section C.2. The dimensions and masses of air and oxygen cylindrical pressure vessels 

with two hemispherical ends for one hour’s operation of a PEM fuel cell stack, at a 

maximum current of 20 A, power 877 W, and for different stainless steel materials are 

presented in Table 8.1 and Figures 8.3 and 8.4, respectively. 

 

Table 8.1: Dimensions and masses of air and oxygen cylindrical pressure vessels with 

two hemispherical ends for one hour’s operation of a PEM fuel cell stack, at a maximum 

current of 20 A, and power of 877 W 

 

Pressure vessel cylinder filled by 

compressed air up to 200 bar to supply 

flow rate 97.9162 m3/hour equal to 

119.948 kg/hour. 

Pressure vessel cylinder filled by 

compressed O2 up to 230 bar to supply 

flow rate 20.5624 m3/hour equal to 

29.384 kg/hour. 

Dimensions of 

Vessel 

Mass of Vessel 

(kg) 

Dimensions of 

Vessel 

Mass of Vessel 

(kg) 

Type of 

Stainless 

Steel 

Height 

(m) 

Diameter 

(cm) 

Empty 

Vessel 

Filled 

Vessel 

Height 

(m) 

Diameter 

(cm) 

Empty 

Vessel 

Filled 

Vessel 

AK 2205 

Duplex, 

thickness 

2.29 mm 

44.85 12.25 299.25 419.2 11.014 10.676  64.854 94.24 

AK 15-5 

PH, 

thickness 

3.18 mm 

7.306 30.07  169.04 289.0 1.8478 26.18 37.06 66.5 

AK 440A, 

thickness 

3.68 mm 

2.547 52.07 117.63 237.6 0.7331 45.313 29.345 58.73 



174 
 

 

Figure 8.3: Heights of air and oxygen cylindrical pressure vessels for one hour’s operation, 

at a maximum current of 20 A, and power of 877 W 

 

 

Figure 8.4: Masses of air and oxygen cylindrical pressure vessels for one hour’s operation, 

at a maximum current of 20 A, and power of 877 W 
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In the case of air or oxygen, they are compressed up to 300 bar in an attempt to further 

reduce the size of the pressure vessel cylinder, Table 8.2 presents the dimensions and 

masses of cylindrical pressure vessel with two hemispherical ends for one hour’s 

operation of a PEM fuel cell stack, at a maximum current of 20 A, and power of 877 W, 

with compression pressure up to 300 bar at 15 °C ambient temperature, as calculated by 

Simulink tools of pressure vessel design. It is clear that the impact of increasing the 

compression pressure of air or oxygen up to 300 bar would reduce the diameter of the 

vessel on the account of increasing the height with no significant impact on the whole 

mass of the vessel. 

 

Table 8.2: Dimensions and masses of air and oxygen cylindrical pressure vessels with 

two hemispherical ends for one hour’s operation of a PEM fuel cell stack, at a maximum 

current of 20 A, power of 877 W, and compression pressure up to 300 bar at 15 °C 

 

Pressure vessel cylinder filled by 

compressed air to supply flow rate 

97.9162 m3/hour equal to 119.948 

kg/hour. 

Pressure vessel cylinder filled by 

compressed oxygen to supply flow rate 

20.5624 m3/hour equal to 29.384 

kg/hour. 

Dimensions of 

Vessel 

Mass of Vessel, 

(kg) 

Dimensions of 

Vessel 

Mass of Vessel, 

(kg) 

Type of 

Stainless 

Steel  

Height 

(m) 

Diameter 

(cm) 

Empty 

Vessel 

Filled 

Vessel 

Height 

(m) 

Diameter 

(cm) 

Empty 

Vessel 

Filled 

Vessel 

AK 2205 

Duplex, 

thickness 

2.29 mm 

68.863 8.23 310.52 430.47 14.486 8.23 65.309 94.693 

AK 15-5 

PH, 

thickness 

3.18 mm 

11.006 20.14 169.44 289.39 2.368 20.14 36.412 65.796 

AK 440A 

thickness 

3.68 mm 

3.70 34.81 113.94 233.89 0.8727 34.81 26.783 56.166 
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8.4.3 Third Scenario: Pressure Vessel for Limited Volume of Compressed 

Oxygen  

The fuel cell stack is assumed to be supplied by pure oxygen with a mass flow rate 

sufficient to have a full reaction. It has been determined that 0.3 m3/hour of oxygen 

needs to be fully reacted in order to produce a 20 A current. In order to ensure that the 

cathodes of the stack are fully occupied with pure oxygen over the whole period of the 

operational time of the stack, the mass flow rate of supplied oxygen is assumed to be 

equal to 0.6 m3/hour, hence the utilisation factor is µO2 = 2. 

Pukrushpan et al. [2, 32] proposed in their works that an instantaneous limit of oxygen 

excess ratio which represents the ratio of supplied to reacted oxygen equal to µO2 = 2, is 

the optimum rate to maintain the desired value of net power for the fuel cell stack. 

However, managing the temperature of the stack is not the focus of this research, 

therefore any viable techniques, such as high-speed air pump or water flow heat 

exchanger can be used to maintain the temperature of the stack within the desired 

operational conditions. 

At sea level, as it has been proposed above that for one hour’s operation of stack 

consisting of 72 cells, and at load current of 20 A, the necessary proposed mass flow 

rate of supplied oxygen is assumed to be equal to 0.6 m3/hour (0.8574 kg/hour) under 

1atm ambient pressure. Using Equation (A.3) in Appendix A, to determine the volume 

of oxygen under compression, assuming P1= 1atm = 1.01317 bar = 14.504 psi, and V1 = 

0.6 m3, and assuming that oxygen is going to be pressurised up to 230 bar (3,335.92 

psi), the new volume of oxygen is determined as given below: 

 

333- cm 609,2m 10*609.2
92.335,3

504.14*6.0
2 ===V  

 
Using AK 2205 Duplex Stainless Steel, the calculations of the pressure vessel design 

are presented in Appendix C, Section C.3. The dimensions and masses of an oxygen 
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cylindrical pressure vessel with two hemispherical ends, using AK 2205 Duplex 

Stainless Steel with 2.29 mm metal thickness, for several hours of operation, at 

maximum current of 20 A, and power of 877 W, and for a limited volume of 

compressed oxygen up to 230 bar at 15 °C ambient temperature, are presented in Table 

8.3 and Figure 8.5. 

 

 

Table 8.3: Dimensions and masses of oxygen cylindrical pressure vessel with two 

hemispherical ends, using AK 2205 Duplex Stainless Steel with 2.29 mm metal 

thickness, for several hours of operation, at maximum current of 20 A, and power of 

877W, and for a limited volume of compressed oxygen up to 230 bar at 15 °C 

 

Before 

Compression at 

atmospheric 

pressure 

After 

Compression 

up to 230 bar 

Dimensions and Masses of Pressure Vessel 

Hours of 

operations 

Volume 

(m3) 

Mass 

(kg) 

Volume 

(cm3) 

Height 

(m) 

Diameter 

(cm) 

Mass of 

Empty 

Vessel 

(kg) 

Mass of 

Filled 

Vessel 

(kg) 

1 0.60 0.8574 2,609 0.357 10.68 2.09 2.95 

2 1.20 1.715 5,217 0.677 10.68 3.98 5.7 

3 1.80 2.5722 7,826 0.997 10.68 5.86 8.44 

4 2.40 3.43 10,435 1.316 10.68 7.74 11.17 

5 3.0 4.287 13,043 1.634 10.68 9.62 13.91 
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Figure 8.5: Heights and masses of oxygen cylindrical pressure vessel for several hours of 

operation, at maximum current of 20 A, and power of 877 W, and for a limited volume of 

compressed oxygen up to 230 bar 

 

In the case where oxygen is compressed up to 300 bar in an attempt to further reduce 

the size of the pressure vessel cylinder, Table 8.4 presents the dimensions and masses of 

the oxygen cylindrical pressure vessel with two hemispherical ends, using AK 2205 

Duplex Stainless Steel with 2.29 mm metal thickness, for several hours of operation, at 

maximum current of 20 A, and power of 877 W, for a limited volume of compressed 

oxygen up to 300 bar at 15 °C ambient temperature, as calculated by the Simulink tools 

of pressure vessel design. It is clear that the impact of increasing the compression 

pressure of oxygen up to 300 bar would reduce the diameter of the vessel on the account 

of increasing the height, with no significant impact on the whole mass of the vessel. 
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Table 8.4: Dimensions and masses of oxygen cylindrical pressure vessel with two 

hemispherical ends, using AK 2205 Duplex Stainless Steel with 2.29 mm metal 

thickness, for several hours of operation, at maximum current of 20 A, and power of 

877W, for a limited volume of compressed oxygen up to 300 bar at 15 °C  

 

Before 

Compression at 

atmospheric 

pressure 

After 

Compression 

up to 300 bar 

Dimensions and Masses of Pressure 

Vessel 

Hours of 
operations 

Volume 

(m3) 

Mass 

(kg) 

Volume  

(cm3) 

Height 

(m) 

Diameter 

(cm) 

Mass of 

Empty 

Vessel 

(kg) 

Mass of 

Filled 

Vessel 

(kg) 

1 0.60 0.8574 2,000 0.4523 8.23 2.03 2.887 

2 1.20 1.715 4,000 0.874 8.23 3.932 5.646 

3 1.80 2.5722 6,000 1.296 8.23 5.8332 8.4053 

4 2.40 3.43 8,000 1.7176 8.23 7.735 11.165 

5 3.0 4.287 10,000 2.1394 8.23 9.637 13.924 

 

8.4.4 Pressure Vessel for Compressed Hydrogen 

At sea level, based on the developed model of a PEM fuel cell stack, for one hour’s 

operation of the stack at a maximum current of 20 A, and power of 877 W, the required 

supply of hydrogen is 0.05725 kg/hour (which is equal to 0.637 m3/hour), under 0.55 

bar of supply pressure of hydrogen. Using Equation (A.3) in Appendix A, to determine 

the volume of hydrogen under compression, assuming P1= 0.55 bar = 7.98 psi, and       
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V1 = 0.637 m3, and assuming that hydrogen is going to be pressurised up to 175 bar 

(2,538.2 psi), the new volume of hydrogen is determined as given below: 

 

33 cm 002,2m 002002.0
2.538,2

98.7*637.0
2 ===V  

 
BOC Industrial Gases UK [113] provides different sizes of cylindrical hydrogen vessels 

with a maximum filling pressure up to 175 bar, at 15 °C ambient temperature. Using 

AK 2205 Duplex Stainless Steel, the calculations of the hydrogen pressure vessel design 

are presented in Appendix C, Section C.4. The dimensions and masses of the hydrogen 

cylindrical pressure vessel with two hemispherical ends, using AK 2205 Duplex 

Stainless Steel with 2.29 mm metal thickness, for several hours of operation, at 

maximum current of 20 A, and power of 877 W, and for a limited volume of 

compressed hydrogen up to 175 bar at 15 °C ambient temperature are presented in 

Table 8.5 and Figure 8.6. 
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Table 8.5: Dimensions and masses of hydrogen cylindrical pressure vessel with two 

hemispherical ends, using AK 2205 Duplex Stainless Steel with 2.29 mm metal 

thickness, for several hours of operation, at maximum current of 20 A, and power of 

877W, for a limited volume of compressed hydrogen up to 175 bar at 15 °C 

 
Before 

Compression at 

pressure of 0.55 bar 

After 

Compression 

up to 175 bar 

Dimensions and Masses of Pressure 

Vessel 

Hours of 

operations 

Volume

(m3) 

Mass 

(kg) 

Volume 

(cm3) 

Height 

(m) 

Diameter 

(cm) 

Mass of 

Empty 

Vessel 

(kg) 

Mass of 

Filled 

Vessel 

(kg) 

1 0.637 0.05725 2,002  0.1892 13.98 1.45 1.5073 

2 1.274 0.1145 4,004  0.3287 13.98 2.53 2.6445 

3 1.911 0.1718 6,006  0.4682 13.98 3.6105 3.7823 

4 2.548 0.2291 8,008 0.6078 13.98 4.692 4.9211 

5 3.185 0.2864 10,01 0.7473 13.98 5.773 6.0593 
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Figure 8.6: Heights and masses of hydrogen cylindrical pressure vessel for several hours of 

operation, at maximum current of 20 A, and power of 877 W, and for limited volume of 

compressed hydrogen up to 175 bar at 15 °C ambient temperature 

 

In the case where hydrogen is compressed up to 300 bar in an attempt to further reduce 

the size of the pressure vessel cylinder, Table 8.6 presents the dimensions and masses of 

the hydrogen cylindrical pressure vessel with two hemispherical ends, using AK 2205 
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compressed hydrogen up to 300 bar at 15 °C ambient temperature, as calculated by the 

Simulink tools of pressure vessel design. It is clear that the impact of increasing the 

compression pressure of hydrogen up to 300 bar would reduce the diameter of the vessel 

on the account of increasing the height, with no significant impact on the whole mass of 

the vessel. 
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Table 8.6: Dimensions and masses of hydrogen cylindrical pressure vessel with two 

hemispherical ends, using AK 2205 Duplex Stainless Steel with 2.29 mm metal 

thickness, for several hours of operation, at maximum current of 20 A, and power of 

877W, for a limited volume of hydrogen compressed up to 300 bar at 15 °C 

 

Before 

Compression at 

pressure of 0.55 bar 

After 

Compression 

up to 300 bar 

Dimensions and Masses of Pressure 

Vessel 

Hours of 

operations 

Volume

(m3) 

Mass 

(kg) 

Volume 

(cm3) 

Height 

(m) 

Diameter 

(cm) 

Mass of 

Empty 

Vessel 

(kg) 

Mass of 

Filled 

Vessel 

(kg) 

1 0.637 0.05725 1,167.84 0.2768 8.23 1.238 1.2951 

2 1.274 0.1145 2,335.67 0.523 8.23 2.3484 2.4629 

3 1.911 0.1718 3,503.5 0.7693 8.23 3.459 3.6308 

4 2.548 0.2291 4,671.34 1.016 8.23 4.57 4.799 

5 3.185 0.2864 5,839.17 1.262 8.23 5.68 5.967 

 

 

It is clear from the results obtained for the pressure vessels design presented above, 

that it is not possible by any means to use high flow rates of air (97.9162 m
3
/hour) or 

oxygen (20.5624 m
3
/hour), as presented in the first and second scenario, in order to 

supply the fuel cell stack, particularly for high altitude UAS applications, as it 

requires a great size and heavy mass of vessel to carry the compressed air or oxygen. 

Alternatively, using limited volumes and flow rates of hydrogen (0.637 m
3
/hour) and 

oxygen (0.6 m
3
/hour) in order to supply the fuel cell stack, as presented in the third 
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scenario can offer an optimum pressure vessel design in terms of lowering the size 

and weight of the vessel, hence saving more power and extending the endurance of 

the mission, and allowing further payload to be added for the same mission duration. 

Figures 8.7 and 8.8 present the flow rates of supply hydrogen and oxygen based on the 

developed model of a PEM fuel cell stack, using limited volumes and flow rates of 

hydrogen (0.637 m3/hour) and oxygen of (0.6 m3/hour) under various current load 

demand and up to five hours of operation. 

 

 

 

Figure 8.7: Flow rates of supply hydrogen based on the developed model of a PEM fuel 

cell stack, using limited flow rate of hydrogen (0.637 m
3
/hour), under various current load 

demand and up to five hours of operation 
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Figure 8.8: Flow rates of supply oxygen based on the developed model of a PEM fuel cell 

stack, using limited flow rate of oxygen (0.6 m
3
/hour), under various current load demand 

and up to five hours of operation 
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fixed size of hydrogen tank, the endurance of the aircraft is limited by the efficiency of 

the propulsion system and the power-plant system [26]. 

In UAS missions, the highest power consumption occurs during take-off and climb to 

the designated cruise altitude, while the lowest power consumption occurs during 

descent. The largest time and energy consumptions are during the cruise stage, at 

constant altitude where the weight of the aircraft is equal to the lift, and the thrust is 

equal to the drag [7, 10]. 

Kim et al. [7] reported that during take-off and flight manoeuvrings, power will be 

supplied from both the fuel cell and batteries, while the fuel cell stack will supply steady 

power during the cruise mode. While, Adam and Leachman [72] reported that a mass 

flow rate of 0.07416 kg/hour (0.825 m3/hour) of hydrogen is sufficient to produce a 

979W power output from the Horizon (H-1000) fuel cell stack during the take-off and 

climb phase for a small UAS (< 25 kg), while a mass flow rate of 0.03744 kg/hour 

(0.4165 m3/hour) of hydrogen is sufficient to produce power of 498 W for the cruise 

phase. 

Seo et al. [61] reported a cruising speed of 59.8 km/hour for a small UAS (< 7.5 kg) 

using a 200 W PEM fuel cell stack to achieve a flying mission up to 200 m altitude for 

the 57 minute continuous flying test. While, Furrutter and Meyer [53] reported that at a 

steady and stable flying altitude, the maximum flight velocity is 46.8 km/hour for a 

small-scale fixed wing UAS using a 100 W Horizon PEM fuel cell power-plant system, 

and 5.3 kg total mass of UAS. 

In this research, it is assumed that the UAS will need one hour to climb to the cruising 

altitude of 36,000 ft. (i.e. climbing speed is 11 km/hour) with maximum load current of 

20 A (100% load current) drawn from the power supply system represented by the fuel 

cell stack. While during the cruising mode, the drawn current from the fuel cell stack 

will be assumed to be equal to 13 A (i.e. 65% of max. load). Also, the UAS is assumed 
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to spend 45 minutes descending and landing from the cruising altitude, with a drawn 

current from the fuel cell stack of 7 A (i.e. 35% of max. load). Based on the developed 

model of the PEM fuel cell stack and the Simulink tools of pressure vessel design, Table 

8.7 presents the volumes of supplied oxygen and hydrogen according to the load 

demand and flying mode. While, Table 8.8 presents the volumes and masses of supply 

oxygen and hydrogen to the fuel cell stack according to the total flying hours. 

 

Table 8.7: Volumes of supplied oxygen and hydrogen to the fuel cell stack according to 

the load demand and flying mode, based on the developed model of a PEM fuel cell 

stack and Simulink tools of pressure vessel design 

Flying 

Mode 

Operating 

Time 

(minutes) 

Fuel Cell 

Stack 

Current 

(A) 

Current 

Load % 

Fuel Cell 

Stack 

Output 

Power (W) 

Volume 

of Supply 

Oxygen 

(m3) 

Volume of 

Supply 

Hydrogen 

(m3) 

Climbing 60 20.0 100 877.0 0.60 0.637 

Cruising 60 13.0 65 609.0 0.391 0.4316 

Landing 45 7.0 35 352.0 0.158 0.1825 

Total Volumes of Supplied Gases 1.149 1.2511 

 

Using the data given in Table 8.8 it is possible to determine the desired flying hours of 

the mission of the UAS, and using the results obtained from Tables 8.3 and 8.5 above, 

to estimate the total mass and sizes of the oxygen and hydrogen pressure vessels 

accordingly. Table 8.9 presents the design specifications for the oxygen and hydrogen 

pressure vessels according to the desired flying hours, based on the developed model of 

the PEM fuel cell stack and Simulink tools of pressure vessel design. While, the masses 
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of the items and components used in the design of the power-plant system and the 

propulsion system, associated with the estimated mass of the UAS frame structure and 

the carried payload for UAS applications, are presented in Table 8.10. 

 

Table 8.8: Volumes and masses of supply oxygen and hydrogen to the fuel cell stack 

according to the total flying hours, based on the developed model of a PEM fuel cell 

stack and Simulink tools of pressure vessel design 

Total 

Flying 

Time 

(minute) 

Total 

Flying 

Time 

(hour) 

Cruising 

Time 

(hour) 

Volume of 

Supply 

Oxygen 

(m3) 

Mass of 

Supply 

Oxygen 

(kg) 

Volume of 

Supply 

Hydrogen 

(m3) 

Mass of 

Supply 

Hydrogen 

(kg) 

135 2.25 0.5 0.9535 1.3626 1.0353 0.0931 

165 2.75 1 1.149 1.6419 1.2511 0.1125 

195 3.25 1.5 1.3445 1.9213 1.4669 0.1319 

225 3.75 2 1.54 2.2007 1.6827 0.1513 

255 4.25 2.5 1.7355 2.48 1.8985 0.1707 

285 4.75 3 1.931 2.7594 2.1143 0.1901 

315 5.25 3.5 2.1265 3.0388 2.3301 0.2095 

345 5.75 4 2.322 3.3181 2.5459 0.2289 

375 6.25 4.5 2.5175 3.5975 2.7617 0.2483 

405 6.75 5 2.713 3.8769 2.9775 0.2677 

435 7.25 5.5 2.9085 4.1562 3.1933 0.2871 

465 7.75 6 3.104 4.4356 3.4091 0.3065 
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Table 8.9: Design specifications for the oxygen and hydrogen pressure vessels according 

to the desired flying hours, based on the developed model of a PEM fuel cell stack and 

Simulink tools of pressure vessel design 

Total 

Flying 

Time 

(minute) 

Total 

Flying 

Time 

(hour) 

Cruising 

Time 

(hour) 

Oxygen Pressure 

Vessel Design 

with Diameter 

(10.68 cm) 

Hydrogen Pressure 

Vessel Design   

with Diameter 

(13.98 cm) Levels 

of 

H2/O2 

Total 

Mass of 

Filled 

H2/O2 

Vessels 

(kg) 

Height 

(m) 

Mass of 

Filled 

Vessel 

(kg) 

Height, 

(m) 

Mass of 

Filled 

Vessel 

(kg) 

135 2.25 0.5 
0.677 5.7 0.3287 2.65 

EFTA 
8.35 

165 2.75 1 FOL 

195 3.25 1.5 

0.997 8.44 0.4682 3.7823 

EFTA 

12.23 225 3.75 2 EFTA 

255 4.25 2.5 FOL 

285 4.75 3 

1.316 11.17 0.6078 4.9211 

EFTA 

16.1 315 5.25 3.5 EFTA 

345 5.75 4 FOL 

375 6.25 4.5 

1.634 13.91 0.7473 6.0593 

EFTA 

20.0 405 6.75 5 EFTA 

435 7.25 5.5 FOL 

* EFTA: Extra Flying Time Available 

* FOL: Fuel on Limit (for both hydrogen and oxygen) 
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Table 8.10: Masses of the items and components used in the design of the power-plant 

system and propulsion system with the estimated mass of the UAS frame structure and 

carried payload for UAS applications 

Item Description Mass (kg) 

Horizon (H-1000) PEM Stack with Controller 5.000 

BLDC motor KMS Quantum 4130/07  0.396 

Propeller (15" x 8") 0.2 

DC-DC Convertor (Mean Well SD-1000L-24) 1.94 

Estimated mass of batteries, electronics and connections 0.5 

Estimated mass of high speed air pump 0.5 

Estimated mass of UAS frame structure 5.0 

Estimated mass of payload 2.0 

Total 15.536 

 
 

As determined in Chapter Seven - Section 7.3, for 0.4 static thrust to weight ratio of a 

UAS, the maximum permitted mass of the UAS is 16.28 kg. While for 0.2 static thrust 

to weight ratio of a UAS, the maximum permitted mass of the UAS is 32.55 kg. 

It is clear that adopting a static thrust to weight ratio of 0.4 must be avoided, as it 

offers low mass allowance for the whole UAS. For a maximum four hour cruising 

mission (345 minutes total flying time), the total mass of the whole UAS is estimated 

to be equal to (16.1 + 15.536 = 31.636 kg) as given in Tables 8.9 and 8.10, 

respectively, which is less than the maximum permitted mass of a UAS having a 0.2 

static thrust to weight ratio. 

The developed model of a PEM fuel cell in this research, associated with estimations 

of the total masses of hydrogen and oxygen vessels and the mass of the propulsion 

system, can offer a maximum of 345 minutes of flying time for the UAS mission; this 
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is based on a Horizon (H-1000) PEM stack. A generic weight estimation mechanism 

could easily be inferred from the work. Furthermore, reducing the mass of the frame 

structure and the payload, and choosing light equipment to be carried on board would 

reduce the overall mass of the UAS, and reduction of aerodynamic drag will extend 

the flying mission, as the power requirement is reduced. 

The design of the power-plant system and UAS frame structure may vary according to 

the type of mission in terms of cruising altitude, required flying hours, and the size 

and weight of the payload. Therefore, the designer must consider all these parameters 

during the design stage of the entire UAS. 

8.6 Summary 

In this chapter, the design of hydrogen and air-oxygen pressure vessels were 

investigated in order to determine the weight and size of the vessel based on mass flow 

rates of gases and power demand per operational hour, for high altitude UAS operation. 

Three scenarios were adopted in determining the size and weight of pressure vessels 

required to supply air or oxygen to the fuel cell stack, based on the governing equations 

of the pressure vessel design and the related mass estimation. Different types of 

stainless steel materials were used in the design of the pressure vessel in order to find an 

appropriate material that provides low size and weight advantages. Also, hydrogen 

pressure vessel design and mass estimation were also considered. 

It is clear from the results obtained for the pressure vessel design presented above, that 

it is not possible by any means to use high flow rates of air (97.9162 m3/hour) or 

oxygen (20.5624 m3/hour), as presented in the first and second scenario, to supply the 

fuel cell stack, particularly for UAS applications as these require a high size and heavy 

mass of vessel to carry the compressed air or oxygen. Alternatively using limited 

volumes and flow rates of hydrogen (0.637 m3/hour) and oxygen (0.6 m3/hour), as 
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presented in the third scenario, can offer the optimum pressure vessel design in terms of 

lowering the size and weight of the vessel, hence reducing power consumption and 

extending the endurance of the mission, and allowing further payload to be added for 

the same mission duration. 

The developed model of a PEM fuel cell in this research, associated with estimations of 

the total masses of hydrogen and oxygen vessels and the mass of the propulsion system, 

can offer a maximum 345 minutes of flying time for the UAS mission; this is based on a 

Horizon (H-1000) PEM stack. A generic weight estimation mechanism could easily be 

inferred from the work. Furthermore, by reducing the mass of the frame structure and 

the payload, and choosing light equipment to be carried on board it would be possible to 

reduce the overall mass of the UAS. Reduction of aerodynamic drag would also extend 

the flying mission, as the power requirement is reduced. 

Simulink tools of pressure vessel design were developed and formed that can estimate 

and determine the overall weight of the UAS, based on determining the size and weight 

of the combined power-plant of a fuel cell stack with hydrogen and air/oxygen vessels 

and the propulsion system of the UAS for high altitude operation. 

The design of the power-plant system and UAS frame structure may vary according to 

the type of the mission, in terms of cruising altitude, required flying hours, and the size 

and weight of the payload. Therefore, the designer must consider all these parameters 

during the design stage of the entire UAS. 

In the next chapter, the final conclusion and possible future work relating to the research 

will be presented and discussed. 
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Chapter Nine: Conclusion and Future Work 

 

9.1 Conclusion 

This research presents a design of a PEM fuel cell power system for unmanned 

aircraft systems with an integrated approach that enables estimation of required 

power for high altitudes UAS operation which is then used to determine the size and 

weight of the combined power-plant of fuel cell stack with hydrogen and air/oxygen 

vessels and the propulsion system of the UAS. This approach takes into the 

consideration the power capacity of fuel cell stack and the flight endurance as two 

main factors in designing the size and weight of storage vessels, and hence 

determining the overall weight of the UAS, which is a key requirement in the 

preliminary aircraft design phase. 

Although many of the fuel cell models are available in the literature, most of these 

models estimated the output voltage of a fuel cell for a particular set of operating 

conditions and some for limited dynamic variations. The proposed model in this 

research presented a simplified zero-dimensional mathematical model for a self-

humidifying 1 kW PEM fuel cell developed by modelling the major electric and 

thermodynamic variables and parameters involved in the operation of a PEM fuel 

cell. 

The major variables and parameters related to the potential losses of a PEM fuel cell 

were identified, and their influence upon the operation and performance of the PEM fuel 

cell, in Sections 3.2 to 3.5. Also, a modified equation was derived and validated in 

order to determine the impact of using air to supply the PEM fuel cell, instead of 
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using pure oxygen, on the concentration losses and the output voltage when useful 

current is drawn from it, as presented in Section 3.5. 

The major thermodynamic variables and parameters involved in the operation of a PEM 

fuel cell, along with the effects of influencing environmental conditions during fuel cell 

operation, were considered. Incorporation of the effects of different dynamic conditions, 

such as changes in the dynamical properties of the fluids in the supply-return manifolds 

and inside the anodes and cathodes of the PEM fuel cell stack, were determined and 

modelled, in order to determine the pressures and concentrations of hydrogen and 

oxygen in the anode and cathode respectively. This yielded a determination of the 

output voltage of the PEM fuel cell stack, as presented in Section 4.4. 

In particular, the following issues were considered: the impact and effects on the PEM 

fuel cell operation of load current, pressure and concentration of the oxygen and 

hydrogen in the cathode and anode of the fuel cell; changes in the pressure and 

temperature of the surroundings; stack operating temperature; relative humidity in the 

cathodes and anodes; water content in the electrolyte membrane; drag and diffusion of 

water molecules across the membrane; dimension of the membrane; and the volume of 

the cathode and anode. 

The mathematical model of the PEM fuel cell developed in this research was simulated 

using Matlab-Simulink, and was validated against the commercially available 1 kW 

Horizon (H-1000) PEM fuel cell stack. The Horizon stack was tested and operated 

under varied levels of load current and stack temperature, and the tests repeated several 

times on different occasions in order to capture the most accurate real data output. The 

results obtained from the tested Horizon (H-1000) stack, and the simulations of the 

developed model of the PEM fuel cell showed close matches in the output power and 

the steady state performance, which provides sufficient confidence in the validity and 

accuracy of the developed model of the PEM fuel cell, as presented in Section 5.1. 
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Different settings of the PID controller were investigated in terms of optimising the 

consumption of air and hydrogen and getting a faster time response from the controller. 

It was concluded that a proportional-integral (PI) controller with time response 0.679 

seconds, at proportional value 0.0655, and integral value 2.9393, provides the most 

adequate trade-off choice between fast response and optimising consumption of 

hydrogen and air, in comparison with other settings for the developed model of the 

PEM fuel cell used for the proposed UAS operation. These settings apply only to the 

developed PEM fuel cell model based on the Horizon (H-1000) stack; other PEM stacks 

may have different tuning parameters, as presented in Section 5.2. 

The proposed developed model in this research can be used by interested researchers as 

a generic model and simulation platform for a self-humidifying small-sized PEM fuel 

cell with an output power varying from 50 W to 1 kW. Moreover, extrapolation to 

higher powers is also possible; where the dimensions of the supply-return manifolds, 

cathodes, and anodes need to be resized in order to capacitate the increase in the mass 

flow rates of fuel and reactant necessary to produce power higher than 1 kW from the 

fuel cell stack. 

The impact of high altitudes on the operation and the consumption of air were 

determined in order to maintain a certain level of delivered power to the load. Also, the 

implications associated with operating the PEM fuel cell stack at high altitudes and 

different technical solutions were proposed. It was proved that warming the extracted 

air from the atmosphere at high altitudes (~10 km) in order to feed the stack must be 

avoided, as this would increase the flow of supplied air to the cathode by about 400% 

in comparison with sea level, in order to overcome the drop in the density of air at 

high altitudes and to produce consistent stable power from the stack, which would 

add more complexity, weight and cost to the system, as presented in Chapter Six. 
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Different types of hydrogen fuel for UAS applications were also investigated in order to 

choose the appropriate type of hydrogen to be used for UAS applications that can offer 

low cost and weight, and low complexity to the entire system. It was concluded that 

whether using chemical hydride or liquid hydrogen as a source of hydrogen gas, special 

requirements are needed to manage and control the process of hydrogen generation, 

which adds more cost, complexity and weight to the power system of a UAS. Thus, 

compressed hydrogen gas was considered to be the best source of supplied hydrogen to 

the fuel-cell-based UAS, as presented in Section 7.2. 

The maximum static thrust that needs to be produced by the prolusion system in order to 

accelerate the airplane to commence take-off was determined based on the capacity of 

the power system. Also, different sizes of propellers were examined in order to find an 

appropriate propeller that draws power from the BLDC motor based on maximum 

production capacity of the fuel cell stack power system, hence the maximum weight of 

the UAS was determined accordingly. Also, two different values for static thrust to 

weight ratio were adopted, in order to offer different operational scenarios for the UAS 

applications, as presented in Section 7.3. 

Pressure vessel designs for hydrogen and air-oxygen storing cylinders were 

investigated, in order to determine the weight and size of the vessel based on mass flow 

rates of gases and power demand per operational hour, for high altitude UAS 

operations. Three scenarios were adopted in determining the size and weight of the 

pressure vessels required to supply air or oxygen to the fuel cell stack, based on the 

governing equations of the pressure vessel design and the related mass estimation. Also, 

different types of stainless steel materials were used in the design of the pressure vessel 

so as to find an appropriate material that provides low size and weight advantages. 

Hydrogen pressure vessel design and mass estimation were also considered, as 

presented in Section 8.4. 
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It is clear from the results obtained for the pressure vessel design, as presented in 

Section 8.4, that it is not possible to use high flow rates of air (97.9162 m
3
/hour) or 

oxygen (20.5624 m
3
/hour) to supply the fuel cell stack, particularly for UAS 

applications, as it requires a large size and heavy mass of vessel to carry the 

compressed air or oxygen. Alternatively, using limited volumes and flow rates of 

hydrogen (0.637 m
3
/hour) and oxygen (0.6 m

3
/hour) can offer the optimum pressure 

vessel design, in terms of lowering the size and weight of the vessel, hence reducing 

power consumption and extending the endurance of the mission, and allowing 

further payload to be added for the same mission duration. 

Simulink tools of pressure vessel design were developed and formed in this research 

to estimate and determine the overall weight of the UAS, based on determining the 

size and weight of the combined power-plant of fuel cell stack, with hydrogen and 

air/oxygen vessels, and the propulsion system of the UAS for high altitude operation, 

as presented in Section 8.4. 

The developed model of a PEM fuel cell in this research, associated with estimations 

of the total masses of hydrogen and oxygen vessels and the mass of the propulsion 

system, can potentially extend the flying duration and altitude for more than five 

hours and a half, reaching up to 11 km altitude, for a UAS with an overall weight of 

32 kg, including a payload capacity of 2 kg; this is based on a Horizon (H-1000) PEM 

stack. A generic weight estimation mechanism could easily be inferred from the work. 

Furthermore, reducing the mass of the frame structure and the payload, and choosing 

light equipment to be carried on board would reduce the overall mass of the UAS. 

Furthermore, reduction of aerodynamic drag would extend the flying mission, as the 

power requirement is reduced, as presented in Section 8.5. 

The design of the power-plant system and UAS frame structure may vary according to 

the type of mission, in terms of cruising altitude, required flying hours, and the size and 
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weight of the payload. Therefore, the designer must consider all these parameters during 

the design stage of the entire UAS. 

9.2 Future Work 

There are many areas that could be considered as a potential starting point for future 

work, in order to extend and develop this part of the research further. 

1. The impact of water produced by the fuel cell in a vapour state and its impact on 

the open circuit voltage of a PEM fuel cell, and the impact of the two phases of 

water (vapour and liquid) in the gas diffusion layer and their impacts on the 

transport of gases and on the performance of the fuel cell, in particular when the 

pressure of water vapour has no unity value, needs further investigation. 

2. The capacitance impact of the charged double layer on the electrochemical 

model, in order to determine the transient response of fuel cell voltage needs to 

be involved in the model of the PEM fuel cell in order to increase the accuracy 

of the PEM fuel cell model. 

3. The impact of activation losses at the anode of the fuel cell and the electronic 

resistivity of the materials such as electrodes and bipolar plates on the output 

voltage of the PEM fuel cell, can be considered for further future investigation. 

4. The dynamic model needs to be further developed in order to determine the 

impact of non-linearity. Especially of dropping behaviours of the gaseous 

pressure and its impacts on the concentration losses and output voltages of the 

PEM fuel cell. 

5. Further work needs to be carried out in order to develop a thermal dynamic 

model to determine the impact of heat radiation or conduction between anodes-

cathodes and supply-return manifolds, and to understand the impact of produced 

heat as a result of electrochemical reaction, and the friction impact of the 
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flowing reactants inside the fuel cell on the performance and power output of the 

PEM fuel cell stack. 

6. Further investigations need to be carried out on the impact of non-uniform 

distribution of water content across the electrolyte membrane, and the variation 

of humidity levels between anode and cathode of the fuel cell stack, and the 

impact of back diffusion of water molecules from cathode to anode, in order to 

extend the simulation and the validation of the developed model for other 

applications. 

7. The level of aging and degradation of the electrolyte membrane over the 

operating time and its impact on the performance of the fuel cell needs to be 

investigated further in the future. 

8. Different control techniques, in terms of optimising the consumption of air and 

hydrogen and providing faster time responses, particularly at high altitude stack 

operation, could be investigated further. 

9. The implications associated with operating a PEM fuel cell stack at high 

altitudes, such as insulation and draining issues, could be taken for further 

investigation in the future. 

10. The impact of using limited volumes and flow rates of hydrogen and oxygen on 

the performance of the PEM fuel cell stack for high altitude UAS operations 

needs to be physically examined and investigated, so as to obtain further 

accurate calculations in terms of pressure vessel design, and consequently flying 

time estimation, with the possibility of adopting different operational scenarios. 

11. Finally, the design and calculations of the pressure vessel and power-plant mass 

estimation were carried out based on the developed model for the PEM fuel cell, 

for approximately 1 kW maximum power output – the design could be extended 
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to develop and validate a power-plant system of up to 5 kW for high altitude 

UAS operations. 

 
However, points (5, 9, 10, and 11) listed above, could be recommended as the most 

prioritise investigation issues for future work. 
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Appendices  

Appendix A 

According to the specifications of Horizon (H-1000) fuel cell stack, the dimensions of 

the stack are (26.7 x 21.6 x 8.0 cm), and the dimensions of assembled fuel cells are 

(21.6 x 19.6 x 4.0 cm). Therefore, the estimated volume of whole stack is approximately 

equal to 4,614 cm3, and the estimated volume for the assembly of 72 fuel cells is 

approximately equal to 1,693 cm3, which represents the total volume of anodes and 

cathodes. The difference between whole stack volume and total volume of anodes-

cathodes represents the volume of the supply-return manifolds, which is approximately 

equal to 2,921 cm3. Thickness of electrolyte membrane is (25*10-4 cm), and thickness of 

assembly bipolar plates for anode-cathode is approximately 0.05 cm. And a maximum 

production capacity of current is 400-500 mA/cm2 at 0.6 V/cell [81]. 

Area of Single Fuel Cell    = 19.6 x 4.0 = 78.4 cm2 

Area of Supply Manifolds of Cathodes  = 21.6 x 19.6 = 423.4 cm2 

Area of Supply Manifolds of Anodes  = 19.6 x 4.0 = 78.4 cm2 

Volume of anodes and cathodes for a stack of 72 cells can be estimated from the 

dimensional properties of the stack, as determined below: 

 cm 3.0
72

 21.6
 Cell Singel of Thickness ==  

cm 2475.010*25-0.05- 0.3 Cathode)(Anode Single of Thickness 4 == −
-  

3cm 702.9
2

4*6.19* 2475.0
 Anode Single of Volume ==  

3cm 699 72*702.9  AnodeStack  of Volume ≈=  



216 
 

Hence, volume of fuel cell stack cathode is 699 cm3. For Horizon (H-1000) fuel cell 

stack, in order to produce maximum current of 24 A at 43.2 V, a maximum flow rate of 

supplied hydrogen to the stack is 14 L/min at pressure 55 kPa, and maximum flow rate 

of supplied air is 1.95 m3/min at pressure of 1atm (101.325 kPa) and ambient 

temperature of 15 °C (288 K), for air density equals to 1.225 kg/m3 [81, 86]. 

The ideal gas law equation is given below [114]: 

TR
M

m
TRNVP  .  .  .  .  . ==          (A.1) 

Where, P is the pressure (kPa), V is the volume of gas (m3), T is absolute temperature in 

kelvin (K), R is universal gas constant (R = 8.31441 kPa.m3/kmol.K), N is the number 

of moles which is the ratio of mass m in (kg) to the molar mass of gas M in (kg/kmol). 

The term (R/M) represents the specific gas constant Rs in (kPa.m3/kg.K). 

TRTR
V

m
P ss  .  .  .  . ρ==          (A.2) 

Where, the term (m/V) is the density of gas ρ in (kg/m3). For two volumes of gas, the 

pressures of gas are defined as given below, 

1
1

1
1  .  . TR

V

m
P s=  

2
2

2
2  .  . TR

V

m
P s=  

Under condition of constant temperature and for a fixed mass of gas, hence (T1 = T2 and 

m1 = m2) yields; 

2211  .  . VPVP =           (A.3) 

Table A.1 shows the values of specific gas constant Rs for several gases. As it has been 

defined previously in Chapter Four, the constant Ksm,out represents the nozzle constant of 

supply manifold outlet, which is the ratio of flow rate of gas (kg/s) to the pressure (kPa). 

P

W
K sm,out =  
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Assuming that at any specific second of time, the mass flow rate W (kg/s) of hydrogen 

or air will be equal to the mass of that component m (kg) at that time. Then, by 

replacing m by W in the Equation (A.1) of ideal gas above yields; 

TR
M

W
VP  .  .  . =  

C
TR

VM

P

W
K outsm *

 . 

 . 
, ==          (A.4) 

Where, R is the universal gas constant (R = 8.31441 kPa.m3/kmol.K), T is standard 

temperature in kelvin (K), V is the volume (m3), M is the molar mass of gas (kg/kmol), 

and C is the correction constant which will be used to tune the flow rate of the gas in 

our model with the actual flow rate of Horizon (H-1000) fuel cell stack. 

Since air flows from supply manifold to the cathode (i.e. flows between two different 

volumes) is going to occupy the volume of cathode, then by substituting the value of 

cathodes volume (as estimated above 699 cm3) in Equation (A.4) to estimate the value 

of the constant Ksm,out,ca for Horizon (H-1000) fuel cell stack, at standard temperature 

15°C (288 K), and for C equals to 100. Yielding the following: 

 10*457.8100*
288*31447.8

10*699*97.28
*

 . 

 . 4
6

,,
−

−

=== C
TR

VM
K

st

caair
caoutsm  

Similarly, by using Equation (A.4) to the determine the value of Ksm,out,an for anode. 

 10*59.0100*
288*31447.8

10*699*02.2
*

 . 

 . 4
6

2
,,

−
−

=== C
TR

VM
K

st

anH
anoutsm  

At standard temperature 15 °C, the constant of specific heat ratio (k = cp/cv) which is 

equal to 1.4 for dry air and 1.409 for hydrogen. The value of cp is determined by the 

Equation (A.5) given below [114]: 

sp R
k

k
c  . 

1−
=            (A.5) 

0045.1287.0*
14.1

4.1
=

−
=airpc , and 21.14125.4*

1409.1

409.1
2 =

−
=Hpc  
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Table A.1: Values of specific gas constant for several gases 

Gas 
Molar Mass M, 

(kg/kmol) 

Specific Gas 

Constant Rs, 

(kPa.m3/kg.K) 

Dry Air 28.97 0.287 

Hydrogen, H2 2.016 4.125 

Oxygen, O2 32.00 0.260 

H2O, (Vapour) 18.02 0.4614 

Carbon dioxide CO2 44.01 0.1889 

Nitrogen N2 28.01 0.297 

Helium, He 4.004 2.077 

Argon, Ar 39.94 0.208 

 

 

Figure A.1: Pressure-flow performance curve for Delta axial fan (cited from Delta 

Electronics [115]) 



219 
 

 

 

 
Figure A.2: Voltage-Current and Power-Current for Horizon (H-1000) fuel cell stack, 

(cited from [81]) 
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Figure A.3: Hydrogen and air flow rates for Horizon (H-1000) fuel cell stack, (cited from 

[81, 86]) 
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Table B.2: Second test for Horizon (H-1000) fuel cell stack under different levels of 

varying current load 

Fuel cell stack test at 

18°C ambient 

temperature 

Temperature of exit air (°C) from the stack  

Operating 

Time 

(Minutes) 

Current 

(A) 

Outlet 

Fan-1 

Outlet 

Fan-2 

Outlet 

Fan-3 

Outlet 

Fan-4 

Average 

Stack 

Temperature 

6.00 0.00 18.4 18.7 19 19.4 18.88 

8.00 1.25 19.9 20.1 20.4 20.6 20.25 

10.00 2.50 20.9 21.3 21.4 21.6 21.30 

12.00 4.00 21.7 22 22 22 21.93 

14.00 5.00 22.5 22.9 23 23.2 22.90 

16.00 6.00 22.6 22.8 23.3 23.4 23.03 

18.00 7.50 23.1 23.4 23.5 23.5 23.38 

20.00 9.00 22.9 23.3 23.5 23.6 23.33 

22.00 10.00 23.1 23.4 23.9 23.9 23.58 

24.00 11.00 23.7 24.3 24.6 24.7 24.33 

26.00 14.00 24.9 25.3 25.7 25.1 25.25 

28.00 16.00 26.4 26.3 26.6 26.8 26.53 

30.00 18.00 27.7 27.9 28.4 28.2 28.05 

32.00 22.00 29.1 29.9 30.2 30.1 29.83 

34.00 25.00 29.7 30.4 30.9 30.8 30.45 

38.00 25.00 29.7 30.4 30.9 30.9 30.48 
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Appendix C 

C.1 First Scenario: Pressure Vessel for Compressed Air  

At sea level, based on developed model of PEM fuel cell stack for one hour operation of 

stack at maximum current of 20 A, and power 877 W, the required supply of air is 

(119.948 kg/hour) which is equal to (97.9162 m3/hour) under 1atm ambient pressure, 

and by using Equation (A.3) in appendix A. 

2 . 21 . 1 VPVP =  

Assuming P1= 1atm = 1.01317 bar = 14.504 psi, and V1 = 97.9162 m3, and assuming 

that air is going to be pressurized up to 200 bar (2,900.8 psi) in order to reduce the 

volume of the storage vessel as it has been produced by BOC Industrial Gases UK 

[111]. 

3m 49.0
8.900,2

504.14*9162.97
2 ==V  

 
First Metal: AK 2205 Duplex Stainless Steel  

Assuming that (E = 0.85), and (S = 90,069.5 psi), inner radius of the cylinder can be 

determined by using Equation (8.5) above, for material thickness equals to 2.29 mm 

(0.09 inch), and material density about 7.85 g/cm3. 

( )
cm 9.5inch  3214.2

8.900,2

09.0*)8.900,2*6.0()85.0*5.069,90(
==

−
=ir  

Hence actual stress inside the vessel can be determined by using Equation (8.3): 

( ) psi 7.271,76
2

09.0
3214.2*

09.0

8.900,2
 5.0 =








+=+= tr

t

p
itσ  

It is clear that actual internal stress caused by the pressurised air is lower than the 

maximum allowable stress of the shell material. The outer radius of the shell is: 

cm 6.125 inch  2.4114 09.03214.2 ==+=+= trr iο  
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Using Equation (8.6) above to determine the maximum external pressure that the vessel 

can handle under impact of uniform external pressure. 

bar 8.231psi 36164,3
4114.2

09.0*5.069,90 .
====

οr

tS
P

y
c  

Since the required vessel needs to carry a volume of 0.49 m3 of compressed air, then 

using Equation (8.12) above to determine the height (h) of the cylinder. 

cm 4,472.8m 728.44

100

9.5
 

100

9.5
 

3

4
49.0

2

3

==


















−

=

π

π

h  

Using Equations (8.9) and (8.10) above to determine the mass and volume of the shell 

for a cylindrical pressure vessel with hemispherical ends: 

( ) ( )[ ] ( ) ( )[ ] 33322
cm 9.120,389.5125.6 

3

4
9.5125.6*8.472,4* =−+−= ππVshell  

kg 25.299 g 250,29985.7*9.120,38 ===shellM  

Total mass of filled cylinder of compressed air for one hour operation is (299.25 + 

119.948 = 419.198 kg) (~ 419.2 kg). While, the overall height of the shell can be 

determined by using Equation (8.11): 

m 44.8505cm 4,485.056.125)( *28.472,4 ==+=shellh  

 
Second Metal: AK 15-5 PH Stainless Steel 

Assuming that (E = 0.85), and (S = 159,979 psi), inner radius of the cylinder can be 

determined by using Equation (8.5) above, for material thickness equals to 3.18 mm 

(0.1252 inch), and material density about 7.78 g/cm3. 

( )
cm 7167.14inch  794.5

8.900,2

1252.0*)8.900,2*6.0()85.0*979,159(
==

−
=ir  

Hence actual stress inside the vessel can be determined by using Equation (8.3): 
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( ) psi 5.693,135
2

1252.0
794.5*

1252.0

8.900,2
 5.0 =








+=+= tr

t

p
itσ  

It is clear that actual internal stress caused by the pressurised air is lower than the 

maximum allowable stress of the shell material. The outer radius of the shell is: 

cm 035.15inch 9192.51252.0794.5 ==+=+= trr iο  

Using Equation (8.6) above to determine the maximum external pressure that the vessel 

can handle under impact of uniform external pressure: 

bar 3.233psi 8.383,3
9192.5

1252.0*979,159 .
====

οr

tS
P

y
c  

The required vessel needs to carry a volume of 0.49 m3 of compressed air, then using 

Equation (8.12) above to determine the height (h) of the cylinder: 

cm 700.53m 0053.7

100

7167.14
 

100

7167.14
 

3

4
49.0

2

3

==


















−

=

π

π

h  

Using Equations (8.9) and (8.10) above to determine the mass and volume of the shell 

for a cylindrical pressure vessel with hemispherical ends: 

( ) ( )[ ] ( ) ( )[ ] 33322
cm 5.726,217167.14035.15 

3

4
7167.14035.15*53.700* =−+−= ππVshell

 

kg 04.169g 040,16978.7*5.726,21 ===shellM  

Total mass of filled cylinder of compressed air for one hour operation is (169.04 + 

119.948 = 288.988 kg) (~ 289 kg). While, the overall height of the shell can be 

determined by using Equation (8.11): 

m 7.306cm 730.615.035)( *253.700 ==+=shellh  
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Third Metal: AK 440A Stainless Steel 

Assuming that (E = 0.85), and (S = 240,040.4 psi), inner radius of the cylinder can be 

determined by using Equation (8.5) above, for material thickness equals to 3.68 mm 

(0.14489 inch), and material density about 7.74 g/cm3. 

( )
cm 6648.25inch  10424.10

8.900,2

14489.0*)8.900,2*6.0()85.0*4.040,240(
==

−
=ir  

Hence actual stress inside the vessel can be determined by using Equation (8.3): 

( ) psi 4.744,203
2

14489.0
10424.10*

14489.0

8.900,2
 5.0 =








+=+= tr

t

p
itσ  

It is clear that actual internal stress caused by the pressurised air is lower than the 

maximum allowable stress of the shell material. The outer radius of the shell is: 

cm 26.0328 inch  10.24913 14489.010424.10 ==+=+= trr iο  

Using Equation (8.6) above to determine the maximum external pressure that the vessel 

can handle under impact of uniform external pressure: 

bar234psi 4.3933
24913.10

144890  4040,240 .
 ,

.*.

r

tS
P

y
c ====

ο

 

The required vessel needs to carry a volume of 0.49 m3 of compressed air, then using 

equation (8.12) above to determine the height (h) of the cylinder: 

cm 202.575 m 02575.2

100

6648.25
 

100

6648.25
 

3

4
49.0

2

3

==


















−

=

π

π

h  

Using equations (8.9) and (8.10) above to determine the mass and volume of the shell 

for a cylindrical pressure vessel with hemispherical ends: 

( ) ( )[ ] ( ) ( )[ ]
3

3322

cm 4.197.15          

6648.250328.26 
3

4
6648.250328.26*575.202*

=

−+−= ππVshell  

kg 63.117g 630,11774.7*4.197,15 ===shellM  
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Total mass of filled cylinder of compressed air for one hour operation is (117.63 + 

119.948 = 237.578 kg) (~ 237.6 kg). While, the overall height of the shell can be 

determined by using Equation (8.11): 

m 5464.2cm 254.64)0328.26( *2575.202 ==+=shellh  

C.2 Second Scenario: Pressure Vessel for Compressed Oxygen 

At sea level, based on developed model of PEM fuel cell stack for one hour operation of 

stack at maximum current of 20 A, and power of 877 W, the required supply of pure 

oxygen is (29.384 kg/hour) which is equal to (20.5624 m3/hour) under 1atm ambient 

pressure, and by using Equation (A.3) in appendix A. 

2 . 21 . 1 VPVP =  

Assuming P1= 1atm = 1.01317 bar = 14.504 psi, and V1 = 20.5624 m3, and assuming 

that oxygen is going to be pressurized up to 230 bar (3,335.92 psi) in order to reduce the 

volume of the storage vessel as it has been produced by BOC Industrial Gases UK 

[112]. 

3m 09.0
92.335,3

504.14*5624.20
2 ==V  

 
First Metal: AK 2205 Duplex Stainless Steel 

Assuming that (E = 0.85), and (S = 90,069.5 psi), inner radius of the cylinder can be 

determined by using Equation (8.5) above, for material thickness equals to 2.29 mm 

(0.09 inch), and material density about 7.85 g/cm3. 

( )
cm 10921.5inch  0115.2

92.335,3

09.0*)92.335,3*6.0()85.0*5.069,90(
==

−
=ir  

Hence actual stress inside the vessel can be determined by using Equation (8.3): 

( ) psi722576
2

090
01152 

090

923353
50  .,

.
.*

.

.,
 t.r

t

p
it =








+=+=σ  
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It is clear that actual internal stress caused by the pressurised oxygen is lower than the 

maximum allowable stress of the shell material. The outer radius of the shell is: 

cm 5.33781 inch  2.1015 09.00115.2 ==+=+= trr iο  

Using Equation (8.6) above to determine the maximum external pressure that the vessel 

can handle under impact of uniform external pressure: 

bar 266psi 4.857,3
1015.2

09.0*5.069,90 .
====

οr

tS
P

y
c  

Since the required vessel needs to carry a volume of 0.09 m3 of oxygen, then using 

Equation (8.12) above to determine the height (h) of the cylinder: 

cm 1,090.7m 907.10

100

10921.5
 

100

10921.5
 

3

4
09.0

2

3

==


















−

=

π

π

h  

Using Equations (8.9) and (8.10) above to determine the mass and volume of the shell 

for a cylindrical pressure vessel with hemispherical ends: 

( ) ( )[ ] ( ) ( )[ ]
3

3322

cm 6.261,8          

10921.533781.5 
3

4
10921.533781.5*7.090,1*

=

−+−= ππVshell
 

kg 854.64g 854,6485.7*6.261,8 ===shellM  

Total mass of filled cylinder of oxygen for one hour operation is (64.854 + 29.384 = 

94.238 kg) (~ 94.24 kg). While, the overall height of the shell can be determined by 

using Equation (8.11): 

m 11.0138cm 1,101.385.33781)( *27.090,1 ==+=shellh  

 
Second Metal: AK 15-5 PH Stainless Steel 

Assuming that (E = 0.85), and (S = 159,979 psi), inner radius of the cylinder can be 

determined by using Equation (8.5) above, for material thickness equals to 3.18 mm 

(0.1252 inch), and material density about 7.78 g/cm3. 
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( )
cm 7722.12inch  02841.5

92.335,3

12525.0*)92.335,3*6.0()85.0*979,159(
==

−
=ir  

Hence actual stress inside the vessel can be determined by using Equation (8.3): 

( ) psi 6.648,135
2

1252.0
02841.5*

1252.0

92.335,3
 5.0 =








+=+= tr

t

p
itσ  

It is clear that actual internal stress caused by the pressurised oxygen is lower than the 

maximum allowable stress of the shell material. The outer radius of the shell is: 

cm 09.13inch 15361.51252.002841.5 ==+=+= trr iο  

Using Equation (8.6) above to determine the maximum external pressure that the vessel 

can handle under impact of uniform external pressure: 

bar 268psi 5.886,3
15361.5

1252.0*979,159 .
====

οr

tS
P

y
c  

The required vessel needs to carry a volume of 0.09 m3 of oxygen, then using Equation 

(8.12) above to determine the height (h) of the cylinder: 

cm 158.6m 586.1

100

7722.12
 

100

7722.12
 

3

4
09.0

2

3

==


















−

=

π

π

h  

Using Equations (8.9) and (8.10) above to determine the mass and volume of the shell 

for a cylindrical pressure vessel with hemispherical ends: 

( ) ( )[ ] ( ) ( )[ ] 33322
cm 763,47722.1209.13 

3

4
7722.1209.13*6.158* =−+−= ππVshell  

kg 06.37g 060,3778.7*763,4 ===shellM  

Total mass of filled cylinder of oxygen for one hour operation is (37.06+ 29.384 = 

66.444 kg) (~ 66.5 kg). While, the overall height of the shell can be determined by using 

Equation (8.11): 

m 1.8478cm 184.7813.09)( *26.158 ==+=shellh  
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Third Metal: AK 440A Stainless Steel 

Assuming that (E = 0.85), and (S = 240,040.4 psi), inner radius of the cylinder can be 

determined by using Equation (8.5) above, for material thickness equals to 3.68 mm 

(0.14489 inch), and material density about 7.74 g/cm3. 

( )
cm 2885.22inch  775.8

92.335,3

14489.0*)92.335,3*6.0()85.0*4.040,240(
==

−
=ir  

Hence actual stress inside the vessel can be determined by using Equation (8.3): 

( ) psi 702,203
2

14489.0
775.8*

14489.0

92.335,3
 5.0 =








+=+= tr

t

p
itσ  

It is clear that actual internal stress caused by the pressurised oxygen is lower than the 

maximum allowable stress of the shell material. The outer radius of the shell is: 

cm 22.6566 inch  8.91989 14489.0775.8 ==+=+= trr iο  

Using Equation (8.6) above to determine the maximum external pressure that the vessel 

can handle under impact of uniform external pressure: 

bar8.268psi 8993
919898

1448904040,240 .
 ,

.

.*.

r

tS
P

y
c ====

ο

 

The required vessel needs to carry a volume of 0.09 m3 of oxygen, then using Equation 

(8.12) above to determine the height (h) of the cylinder: 

cm 28 m 28.0

100

2885.22
 

100

2885.22
 

3

4
09.0

2

3

==


















−

=

π

π

h  

Using Equations (8.9) and (8.10) above to determine the mass and volume of the shell 

for a cylindrical pressure vessel with hemispherical ends: 

( ) ( )[ ] ( ) ( )[ ] 33322
cm 4.791,32885.226566.22 

3

4
2885.226566.22*28* =−+−= ππVshell  

kg 345.29g 345,2974.7*4.791,3 ===shellM  
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Total mass of filled cylinder of oxygen for one hour operation is (29.345+ 29.384 = 

58.729 kg) (~ 58.73 kg). While, the overall height of the shell can be determined by 

using Equation (8.11): 

m 0.7331cm 73.313)6566.22( *228 ==+=shellh  

C.3 Third Scenario: Pressure Vessel for Limited volume of Compressed Oxygen  

At sea level, as it has been proposed in (Section 8.4.3) that for one hour operation of 

stack consists of 72 cells, and at load current of 20 A, the necessary proposed mass flow 

rate of supplied oxygen is assumed to be equal to (0.6 m3/hour) (0.8574 kg/hour) under 

1atm ambient pressure, and by using Equation (A.3) in appendix A. 

2 . 21 . 1 VPVP =  

Assuming P1= 1atm = 1.01317 bar = 14.504 psi, and V1 = 0.6 m3, and assuming that 

oxygen is going to be pressurized up to 230 bar (3,335.92 psi) in order to reduce the 

volume of the storage vessel as it has been produced by BOC Industrial Gases UK 

[112]. 

333- cm 609,2m 10*609.2
92.335,3

504.14*6.0
2 ===V  

Using AK 2205 Duplex Stainless Steel material, and assuming that (E = 0.85), and (S = 

90,069.5 psi), inner radius of the cylinder can be determined by using Equation (8.5) 

above, for material thickness equals to 2.29 mm (0.09 inch), and material density about 

7.85 g/cm3. 

( )
cm 10921.5inch  0115.2

92.335,3

09.0*)92.335,3*6.0()85.0*5.069,90(
==

−
=ir  

Hence actual stress inside the vessel can be determined by using Equation (8.3): 

( ) psi 7.225,76
2

09.0
0115.2*

09.0

92.335,3
 5.0 =








+=+= tr

t

p
itσ  
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It is clear that actual internal stress caused by the pressurised oxygen is lower than the 

maximum allowable stress of the shell material. The outer radius of the shell is: 

cm 5.33781 inch  2.1015 09.00115.2 ==+=+= trr iο  

Using Equation (8.6) above to determine the maximum external pressure that the vessel 

can handle under impact of uniform external pressure: 

bar 266psi 4.857,3
1015.2

09.0*5.069,90 .
====

οr

tS
P

y
c  

Since the required vessel needs to carry a volume of (2,609 cm3) of oxygen, then using 

Equation (8.12) above to determine the height (h) of the cylinder: 

cm 25m 25.0

100

10921.5
 

100

10921.5
 

3

4
)10*609.2(

2

3
3

==


















−

=

−

π

π

h  

Using Equations (8.9) and (8.10) above to determine the mass and volume of the shell 

for a cylindrical pressure vessel with hemispherical ends: 

( ) ( )[ ] ( ) ( )[ ] 33322
cm 962.26510921.533781.5 

3

4
10921.533781.5*25* =−+−= ππVshell  

kg 09.2g 090,285.7*962.265 ===shellM  

Total mass of filled cylinder for limited amount of oxygen for one hour operation is 

(2.09 + 0.8574 = 2.9474 kg) (~ 2.95 kg). While, the overall height of the shell can be 

determined by using Equation (8.11): 

cm 35.6765.33781)( *225 =+=shellh  

C.4 Pressure Vessel for Compressed Hydrogen 

At sea level, based on developed model of PEM fuel cell stack for one hour operation of 

stack at maximum current of 20 A, and power 877 W, the required supply hydrogen is 
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(0.05725 kg/hour) which is equal to (0.637 m3/hour), under 0.55 bar of supply pressure 

of hydrogen, by using Equation (A.3) in appendix A. 

2 . 21 . 1 VPVP =  

Assuming P1= 0.55 bar = 7.98 psi, and V1 = 0.637 m3, and assuming that hydrogen is 

going to be pressured up to 175 bar (2,538.2 psi) in order to reduce the volume of the 

storage vessel as it has been produced by BOC Industrial Gases UK [113]. 

333 cm 002,2m 10*002.2
2.538,2

98.7*637.0
2 === −V  

Using AK 2205 Duplex Stainless Steel material, and assuming that (E = 0.85), and (S = 

90,069.5 psi), inner radius of the cylinder can be determined by using Equation (8.5) 

above, for material thickness equals to 2.29 mm (0.09 inch), and material density about 

7.85 g/cm3. 

( )
cm 6.758 inch  6607.2

2.538,2

09.0*)2.538,2*6.0()85.0*5.069,90(
==

−
=ir  

Hence actual stress inside the vessel can be determined by using Equation (8.3): 

( ) psi 8.306,76
2

09.0
6607.2*

09.0

2.538,2
 5.0 =








+=+= tr

t

p
itσ  

It is clear that actual internal stress caused by the pressurised hydrogen is lower than the 

maximum allowable stress of the shell material. The outer radius of the shell is: 

cm 6.9868 inch  2.7507 09.06607.2 ==+=+= trr iο  

Using Equation (8.6) above to determine the maximum external pressure that the vessel 

can handle under impact of uniform external pressure: 

bar 2.203psi 947,2
7507.2

09.0*5.069,90 .
====

οr

tS
P

y
c  

Since the required vessel needs to carry a volume of 2,002 cm3 of hydrogen, then using 

Equation (8.12) above to determine the height (h) of the cylinder: 
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cm 4.943m 04943.0

100

758.6
 

100

758.6
 

3

4
)10*002.2(

2

3
3

==


















−

=

−

π

π

h  

Using Equations (8.9) and (8.10) above to determine the mass and volume of the shell 

for a cylindrical pressure vessel with hemispherical ends: 

( ) ( )[ ] ( ) ( )[ ] 33322
cm 643.184758.69868.6 

3

4
758.69868.6*943.4* =−+−= ππVshell  

kg 45.1g 450,185.7*643.184 ===shellM  

Total mass of filled cylinder of hydrogen for one hour operation is (1.45 + 0.05725 = 

1.50725 kg) (~1.5 kg). While, the overall height of the shell can be determined by using 

Equation (8.11): 

cm 19cm 18.91666.9868)( *2943.4 ≈=+=shellh   

 


