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1. Introduction

Quantum correlated photon pairs, also known as entan-
gled photon pairs, are the main ingredient in quantum
communications [1], quantum computing [1–3], quan-
tum key distribution (QKD) [4], quantum teleporta-
tion [5], superdense coding [6] and many other appli-
cations of quantum information theory. These pho-
ton pairs can be generated in spontaneous parametric
down conversion (SPDC), or in spontaneous four wave
mixing (SFWM) [7]. SPDC, which is also known as
parametric fluorescence [8], is based on second order
nonlinearity (χ(2)), while SFWM is based on third or-
der nonlinearity (χ(3)). Raman scattering noise, which
is hard to suppress in SFWM [9], has made the SPDC
scheme more attractive. The SPDC and SWFM pro-
cesses, producing entangled photon pairs, can be in-
duced in different media, like bulk crystals (possibly
with tailored inhomogeneous nonlinearity [10]), quan-
tum well heterostructures, in quantum dots [11, 12], or
NV centres in diamond [13].

This work focuses on SPDC process based
on intersubband transitions in the valence band
of quantum well heterostructures. The incentive
to consider this case comes from the fact that
SPDC based on intersubband transitions within the
conduction band Γ-valley (the most frequent case)
does not provide polarization entanglement, since
these transitions are active only for Z-polarization
of light (perpendicular to the well layer)[14]. In
contrast, valence band intersubband transitions are
active for various polarizations, which comes from
their p-like, rather than s-like character, enabling
polarization entanglement in the SPDC process (in
particular, the type II SPDC). Unlike the case of
conduction band intersubband transitions, the optical
parameters of valence band intersubband transitions
cannot be calculated by the effective mass method, but
rather by k · p method (in particular, for structures
based on wider band gap materials, assumed in this
work, the 6-band k · p method is sufficiently accurate).
As for the structure design and optimisation, the
methodology employer here is similar to what we have
used previously [14]

As pointed in [15], which considered the optimiza-
tion of the second harmonic generation (SHG) in p-
type GaAs-AlAs step quantum well structures, the
symmetry of hole state wavefunctions enables only 5
non-zero components of the second-order polarizabil-
ity: ZXY, ZXX, XYZ, XXZ and ZZZ, where the first
component denotes the generated SHG photon polar-
ization, the other two being the pump photons. SPDC
is similar to SHG, but reversed in time, so these se-
lection rules apply to SPDC as well. Therefore, gener-
ation of polarization-entangled twin photons can rely
on ZXY, XYZ or XXZ configuration. Practical consid-

erations, suggesting that SPDC will be used in waveg-
uide layout (co-propagating waves), imply that polar-
izations of the three waves cannot be all different, hence
only the XXZ polarization will be considered here.

2. SPDC based on valence intersubband
transitions

SPDC is a second order optical process, with the
nonlinear polarization

P = ε0χ
(2)E2 (1)

determined by the second-order nonlinear susceptibil-
ity χ(2) as given e.g. in [16, p. 174]. For intersubband
transitions involving hole states in quantum wells the
state energies El(kx, ky) depend on their quantum in-
dex l and the in-plane wave vector (kx, ky), and the
transition matrix elements also depend on (kx, ky),
so the summation over all states, discretised in the
(kx, ky) plane, is written as

χ(2) (ωp + ωq, ωp, ωq) =
e3∆kx∆ky

8π2Lzε0h̄
2 ×∑

kx,ky

∑
lmn

[
fFD(El(kx, ky), EF )− fFD(Em(kx, ky), EF )

]
{
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x
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z
ml

[(ωnl − ωp − ωq)− iΓnl] [(ωml − ωp)− iΓml]

+
dxlnd

z
nmd

x
ml

[(ωnl − ωp − ωq)− iΓnl] [(ωml − ωq)− iΓml]

+
dxlnd

x
nmd

z
ml

[(ωnm + ωp + ωq) + iΓnm] [(ωml − ωp)− iΓml]

+
dzlnd

x
nmd

x
ml

[(ωnm + ωp + ωq) + iΓnm] [(ωml − ωq)− iΓml]

}
, (2)

where e is the electron charge, ∆kx and ∆ky are the
mesh steps in x- and y-directions, Lz is the total length
of the structure in z-direction, ε0 is the free space
permittivity, ωp, ωq and ωp + ωq are the frequencies
of three photons interacting in the nonlinear system,
and h̄ωnm = En(kx, ky) − Em(kx, ky) is the subband
spacing at a particular (kx, ky). In the SPDC case,
ωp and ωq may denote the signal and idler photons,
while ωp + ωq is the pump photon that will be down-
converted in the SPDC process. Γij is the linewidth of
i→ j transition, and dxij is the x-component of dipole
matrix element for this transition. The state energies
Em(kx, ky) and the matrix elements dxij were calculated
using 6×6 k.p method [17, p. 407].

The state populations in (2) are given by the
Fermi-Dirac function fFD:

fFD(Ea(kx, ky), EF ) =

[
1 + e

(
Ea(kx,ky)−EF

kT

)]−1

. (3)

where EF is the Fermi energy in the structure, k is the
Boltzman’s constant and T is the temperature.
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3. Degenerate Twin Photon Generation

Quantitative analysis of twin-photon generation in the
presence of optical losses [18] shows that the degenerate
twin photon generation is given by

PTwin =
4|κ|2P3L

3/2

3
√

2π|g|
3e−|α123|L

2|α12−3L|3/2

×
∫ √|α12−3L|

0

sinh(|α12−3L| − x2) dx . (4)

where α123 = α1 + α2 + α3, α12−3 = α1 + α2 − α3,
g = [∂2β/∂ω2], and β = 2πn1/λ1. The αi in (4) is the
absorption coefficient at photon frequency ωi, L is the
length of the device, P3 is the pump power, and κ is
related to χ(2) via

κ = ε0deff

√
2ω1ω2

n1n2n3Seff

(
µ0

ε0

) 3
2

(5)

where deff = 0.5χ(2), Seff is the pump beam cross
section. It should be noted that the three waves (1,2,3)
each have generally different absorption coefficients
αi, either because of their frequency (pump vs.
signal/idler) or because of their polarization (signal
vs. idler, which are degenerate in frequency, but
not in polarization). The ni in Eqs.(4) and (5)
is the refractive index at frequency ωi, calculated
from Sellmeyer’s equation for GaAs and AlGaAs [19],
including the temperature dependence [20], and then
using the weighted average of the refractive indices
for the constituent binaries in the structure (this is
justified because the wavelengths involved are far larger
than any layer thickness in the structure).

The absorption coefficient α in (4) is calculated
from the imaginary part of linear susceptibility (χ(1)),
as [16, p. 167]

α = χ(1)′′ω/c , (6)

where χ(1)′′ is calculated as

χ(1)′′ =
∆kx∆ky
(2π)2Lz

e2

3h̄ε0

∑
kx,ky

∑
n

{
fFD(El(kx, ky), EF )−

fFD(Em(kx, ky), EF )
}
|dilm|2 ×[

Γlm

Γ2
lm + (ωlm − ω)

2 −
Γlm

Γ2
lm + (ω + ωlm)

2

]
. (7)

For resonant structures the absorption peaks at pump
and signal / idler photon energies, just as the nonlinear
susceptibility does, and must be accounted for.

As illustrated in Figs. 1(a) and 1(b), the product
of dipole matrix elements depends on (kx, ky), but the
pattern is replicated in each quarter of the kx–ky plane,
which is used in summation over kx, ky points in Eq.(2)
to speed up the calculations by a factor of 4, which is
important for the optimisation process. In calculating
χ(2) the summation should include all k-points which
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Figure 1: (a,b) The value of the {. . .} term in Eq.(2),
calculated for the first structure from Table 1, as it
depends on (kx, ky) and (c) The dispersion of quantised
states in this structure, with the transition which,
although off-resonant, gives the largest contribution to
χ(2) denoted (however, various other transitions also
contribute significantly). The small (A) and large (B)
wave vector ranges give opposite-in-sign contributions
to χ(2)).
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may have any significant population of holes, and with
the in-plane dispersion of hole state varying from one
structure to another: 10% of the Brillouin zone was
taken as a safe limit. The number of k-points within
this range is taken as 15 in each direction, which gives a
reasonable convergence of the calculated value of χ(2).
In numerical calculations the pump power P3 = 1 kW,
and cross section Seff = 100 × 100 µm2 were used for
reference.

Fig. 1 shows an example of the variation of the
{. . .} term in (2) (product of matrix elements and
resonance terms in denominators, but without the
hole density-dependent Fermi-Dirac terms), as it varies
across the (kx, ky) plane.

4. Optimization of SPDC efficiency

Quantum well structures suitable for SPDC were
designed by performing a genetic optimization, with
SPDC efficiency as the target. We consider the
degenerate SPDC, with signal and idler photon
energies fixed to 100 meV and the pump to 200 meV,
while the linewidth Γ was assumed to have the ’typical’
value of 10 meV for all transitions. Non-zero χ(2)

requires asymmetric quantum wells, and the simplest
structures of this type are double quantum wells
(DQW) and step quantum wells. The DQW structure
with equally deep wells was chosen, because it can
be more easily fabricated with good accuracy. Even
for the technologically well developed AlGaAs system,
the variable-width rectangular profiled structures (with
just two different material compositions) can presently
be grown with better accuracy than the variable-
composition structures (even the simplest among them,
the stepped quantum wells). They are the only
type of heterostructures practically used nowdays for
intersubband devices, e.g. in complex devices like
quantum cascade lasers, despite the fact that an even
better performance could sometimes idealistically be
expected from carefully tailored variable-composition
structures. The parameters to be varied are the
widths of the two wells and the barrier, and the well
depth is taken constant, determined by the material
composition. The holes density is kept low (3.2 ×
106 cm−2) so that space charge potential could be
neglected. The method of optimization is similar to
that described in [14], the only difference being that
we have chosen here the SPDC efficiency, rather than
the value of χ(2), as the target, so the effects of pump
and signal/idler absorption are included.

The material system considered in this work
is the technologically most developed AlGaAs alloy,
with GaAs taken as the well and AlGaAs as
the barrier material, with the Al content in the
alloy equal to 48%. In Table 1, the structural

unit is AlGaAs/GaAs/AlGaAs/GaAs/AlGaAs double
quantum well (DQW), with the first and last layers
being thick AlGaAs barriers, their thickness being
somewhat arbitrarily set to 100 Angstrom (Å) to make
neighbouring DQWs independent, i.e. well isolated
from each other. The widths of the three inner layers,
coming from the optimisation procedure, are also given
in Table 1 in Å units.

Table 1: The partially or fully optimized DQW
structures, their SPDC efficiency, and the value of χ(2),
respectively.

structure SPDC efficiency χ(2) (m/V)

100/34/5/76/100 2.11×10−21 1.09×10−13

100/36/12/62/100 1.31×10−21 1.22×10−12

100/82/5/24/100 3.88×10−22 9.87×10−14

100/13/18/54/100 3.18×10−22 5.46×10−14

100/40/9/68/100 3.03×10−22 1.81×10−13

100/68/9/40/100 2.64×10−22 1.67×10−13

100/11/58/49/100 1.11×10−22 2.72×10−14

100/55/29/81/100 2.77×10−22 5.24×10−14

Table 1 shows a number of best daughter struc-
tures, coming from different parents, retained before
selecting the best one at the end of the optimisa-
tion procedure. This illustrates a limited correlation
between nonlinear susceptibility and conversion effi-
ciency, and in particular the fact that the highest value
of χ(2) does not imply that this structure will deliver
the highest efficiency. The reason behind this is the ab-
sorption, as will be discussed in more detail in Sec. 5.

5. Effect of Holes Density on the SPDC
Efficiency

In this section we consider the effect of the hole
density, while keeping the interaction length limited
to 100µm, on the SPDC efficiency. The holes density
was varied from 5×106 to 2×1012 cm−2, and the best
(fully optimised) structure from Table 1 was used. As
shown in Fig. 2(a), there exists an optimum density,
for which the SPDC efficiency is largest. The reason
behind this is that, as shown in Fig. 1, there are areas
in the (kx, ky) plane where the relevant combination of
dipole matrix elements has very high values. At low
temperatures (T=77K) holes populate almost fully all
the (kx, ky) states below the Fermi level, and states
above it are almost empty. Increasing the hole density
increases the Fermi level, and expands the range of
(kx, ky) states which are populated. The value of
χ(2) then increases, because all the small (kx, ky)
states have significant (and same sign) contributions
to χ(2), as shown in Fig. 1. However, adding even
more holes does not necessarily mean that χ(2) will
steadily increase. There is an area in the (kx, ky)
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plane where the {. . .} term in Eq.(2) changes sign,
(Figs. 1(a),(b) and (c)) , and if this becomes populated
with holes, the value of χ(2) will actually decrease, as
displayed in Fig. 2(b) (point after the optimum holes
density). In addition, more holes will also increase
the absorption (which only gets positive contributions
from any (kx, ky)), as can be seen from Figs. 2(c)-
(e), hence decreasing the SPDC efficiency. Therefore,
choosing the correct value of holes density is important
for achieving the highest SPDC efficiency, Fig. 2(a).

As shown in Fig. 2(c), the optimum interaction
length L is always small for reasonably large values of
hole density, across the temperature range of practical
interest. Noteworthy, the coherence length lc for
this degenerate SPDC case is 1500 µm, as calculated
from Sellmeyer’s equation [19], and this value is
applicable to large cross-section (’bulk-like’) MQW
structures. For L comparable to lc the effective χ(2)

would decrease, and would even become very small if
L >> lc. However, employing quasi-phase-matching
schemes would enable just a moderate reduction of lc
(by a factor of 2/π) [21]. Alternatively, dispersion
engineering (e.g. by dispersion engineering of the
waveguide structure, to give the same velocity of
pump and signal waves) would increase lc itself. To
avoid going into details on this side, we have used
Eq.(4) in calculations, having in mind that some
further reduction of efficiency might take place in real
structures if the interaction length is large.

6. Effect of Pump Frequency Variation on the
SPDC Efficiency

It is interesting to explore how ’broadband’ a particular
structure can be considered to be, so we next consider
the effects of variation of the pump frequency around
the value a particular structure is designed / optimised
for (200 meV), on the SPDC efficiency. We take the
optimum structure (100/34/5/76/100), at 77K and
300K, and choose the optimal values of hole densities
and interaction lengths (extracted from Fig. 2(c), and
given in Table 2), which deliver the peak efficiency
at the design pump frequency, Fig. 2(a). The SPDC
efficiency is then calculated for a range of pump photon
energies, from 160 to 240 meV (while the signal and
idler photon energies are always kept to a half of that
value). The results are shown in Fig. 3.

As shown in Figs. 3(a), the structure optimised
for 200 meV pump, with a low value of hole density,
gives at 77K the highest efficiency for the pump
energy at 205 meV (with the signal/idler at 102.5
meV), while at 300K its efficiency is highest for 210
meV pump (with signal/idler at 110 meV). However,
these peak efficiencies are only slightly higher than for
200 meV pump. In fact, in this optimal structure

 0

 10

 20

 30

 40

 50

 60

e
ff

ic
ie

n
c
y
 x

 1
0

-1
8

77K

200K

300K

 0

 5

 10

 15

 20

 25

 30

χ
(2

)  x
 1

0
-1

0
 (

m
/V

)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

In
te

ra
c
ti

o
n

 l
e
n

g
th

 (
µ

 m
)

 0

 10

 20

 30

 40

 50

 60

 70

α
p
 x

 1
0

4
 (

m
-1

)

 0

 5

 10

 15

 20

 25

 30

α
s
 x

 1
0

4
 (

m
-1

)

 0

 5

 10

 15

 20

 25

 30

10
10

10
11

10
12

α
i 
x
 1

0
4
 (

m
-1

)

Hole density (cm
-2

)

(f)

(e)

(d)

(c)

(b)

(a)

Figure 2: The hole density dependence of relevant
parameters in the fully optimised structure at different
temperatures: (a) conversion ratio, (b) χ(2), (c)
optimal interaction length, (d)-(e) the absorption
coefficient for the pump, signal and idler wave (note
that the signal and idler have the same frequency but
different polarization). The solid red line in Fig. 2(a) is
scaled down by 0.2, so that all lines are clearly visible
.
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Table 2: The optimal values of hole density and
interaction length for the structure (100/34/5/76/100),
at different temperatures.

T (K) Optim. hole density (cm−2) L (µm)

77 8.5×1011 9.3
200 9.5×1011 3.8
300 1.0×1012 2.9

neither the nonlinear susceptibility nor the absorption
have any prominent resonant features, Figs. 3(b)-
(e). Although χ(2) decreases with increasing pump
energy, the efficiency is still somewhat better in the
higher energy range (200-240 meV) than in the lower
energy range (160-200 meV), Fig. 3(a), because the
absorption behaves in the opposite manner, and the
resulting efficiency comes from the interplay of the
two. Generally, the structure has a rather large useful
bandwidth for SPDC, of ∼ 40 meV, before its efficiency
drops to a half of its peak value. This feature makes
these devices perspective for communication systems.

It is interesting to note that the values of the
conversion efficiency, Fig.3, depend quite strongly
on temperature, but the position of the peak (and
also its width) depend rather weakly on temperature.
This comes from the fact that the general shape
(frequency dependence) of nonlinear susceptibility and
absorption coefficients of the three waves, Fig.3(b-
e), does not change much with temperature, and the
conversion efficiency, which depends on all these effects,
inherits the temperature insensitivity of its frequency
dependence (however the actual values of efficiency, on
or off peak, are affected).

7. Conclusion

Optimization of p-doped quantum well structures
to deliver efficient polarization-entangled twin-photon
generation by spontaneous parametric down-conversion
in the mid-infrared spectral range was performed using
a genetic algorithm. Calculations show that the opti-
mal structure lengths are rather small, with practically
accessible levels of hole densities, and have a reason-
ably large bandwidth, which makes them practically
interesting.
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Harrison P 2016 Superlattices. Microstruct. 90 107–116

[15] Cusack M, Shaw M and Jaros M 1994 Phys. Rev. B 49
16575

[16] Boyd R W 2008 Nonlinear Optics (New York USA:
Academic Press)

[17] Harrison P 2009 Quantum wells, wires and dots: theoretical
and computational physics of semiconductor nanostruc-
tures (UK: John Wiley & Sons)

[18] Suhara T and Nosaka T 2006 IEEE J. Quant. Electron. 42
777–784

[19] Adachi S 1985 J. Appl. Phys. 58 R1–R29
[20] Skauli T, Kuo P, Vodopyanov K, Pinguet T, Levi O, Eyres

L, Harris J, Fejer M, Gerard B, Becouarn L and Lallier
E 2003 J. Appl. Phys. 94 6447–6455

[21] Suhara T and Kintaka H 2005 IEEE J. Quant. Electron.
41 1203–1212


