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Abstract. This paper presents the results of an experiment that inves-
tigates the presence of cues in the signal generated by a low-cost force
sensitive resistor (FSR) to recognise surface texture. The sensor is moved
across the surface and the data is analysed to investigate the presence
of any patterns. We show that the signal contain enough information to
recognise at least one sample surface.
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1 Introduction

Humans perform a repetitive lateral rubbing motion across a surface to feel
its texture, an action known as Lateral Motion Exploratory Procedure [5]. The
physiology of the human sense of touch suggests that the information the hu-
man brain receives during this motion is coming from force sensory elements
embedded in the skin and encoded by frequency modulation [4].

Researchers were able to interface an FSR sensor, installed on a fingertip of a
prosthetic hand, with the user’s nerves. The user reported the ability to perceive
“texture” of surfaces [8]. This suggests that the single point force data acquired
by the FSR hold enough information to perceive surface texture.

We propose that the same ability can be replicated in an artificial system
using the same sensor. It would be particularly useful to achieve this ability using
FSRs due to their low cost and low thickness that enables superficial installation
on robotic hands.

2 Related Work

In [3], researchers constructed a low-profile fabric tactile sensor which was able
to differentiate between three surface textures. The sensor was moved across
the surface with constant velocity and contact pressure. The data was acquired
through a Wheatstone bridge circuit and sampled at 100Hz. The signal process-
ing was performed in the time response domain.

In [7], researchers used a metal probe instrumented with an accelerometer
and two FSR sensors to classify 69 surface textures “during human freehand
movement” with non-constant speed and contact pressure. The accelerometer



signal was samples at 10KHz, the FSR data was only used to estimate surface
friction by measuring lateral forces exerted by the operator’s hand and was not
in contact with the surface.

Results of two different experiments conducted using a tactile array force
sensors attached to a robotic fingertip and moved across the test surfaces in a
rubbing motion are presented in [1] and [2]. The signals were processed using
Neural-Networks and was able to recognise surface textures.

3 Theory

The human sense of touch is achieved through four nerve channels that connects
the brain to four types of sensory elements in the skin known as mechanorecep-
tors [4]. The nerve channels are categorised according to receptor receptive field
diameter into type I (receptors with a small receptive field) and type II (recep-
tors with a large receptive field) and according to temporal response into Slowly
Adapting (SA) and Fast Adapting (FA). These channels encode information in
terms of nerve “firing” frequency.

Our hypothesis, based on the working principle of the channels, is that the
frequency of the signals mediated by one or more of the channels contain enough
information to recognise surface texture, and that this ability can be replicated in
an artificial system using only force sensors. We propose to use Force Sensitive
Resistors (FSR) to investigate this hypothesis due to their low cost and low
thickness which enables superficial installation on robotic hands.

4 Experimental setup

An FSR acts as a resistor whose resistance changes when pressure is applied on
the sensor’s active area. It is made of two flexible layers joined by an adhesive
spacer (Figure 1 Left). One layer contains a printed open circuit, while the other
contains a printed semi-conductor layer whose conductivity increases with pres-
sure. When pressure is applied, the two layers come in contact thus closing the
circuit. The circuit’s resistance is inversely proportional to the applied pressure
with a non linear relation (Figure 1 Right).
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Fig. 1. Left) exploded view of the sensor, and Right) resistance-force relation [6]



The sensor readings were recorded using an oscilloscope and an operational
amplifier circuit. The signals were sampled at 10kHz. Four sample surfaces were
selected to have textures that vary from smooth to rough. The selected surfaces
are shown in Figure 2: a) Velero loops, b) Velcro hooks, ¢) rough sandpaper, and
d) smooth plastic-coated cork.

Fig. 2. Surface samples Fig. 3. FSR held by a robotic arm

In the human case, the motion is performed with non-constant speed and
contact pressure. Therefore, our experiment investigates the presence of patterns
in signals acquired during motion with non-constant speed and contact pressure.
For this reason, a set of signals was recorded while performing the motion by
holding the sensor and manually moving it across the surfaces. However, for
verification purposes, a second set was recorded while the motion is performed
using a robotic arm to minimise variation in speed and contact pressure.

5 Results

The recorded samples were initially processed using fast Fourier transform (FFT)
to look for patterns in the signal frequency response. The data varied between
samples of the same surfaces; however, most samples showed a relatively consis-
tent pattern of very high magnitude at low frequencies followed by low magnitude
at higher frequency with a region of relatively high magnitude at frequencies be-
tween 2250 Hz and 3250 Hz (Figure 4). Surprisingly, this pattern only appeared
in samples recorded with non-constant motion speed and contact pressure but
not in samples recorded with constant speed and pressure.

The high magnitude at low frequencies is probably due to variation in contact
pressure. The regions of high magnitude at high frequencies appears to be related
to surface texture, and are centred around 2500 Hz for smoother surfaces (Velcro
loops and cork) and 3000 Hz for rougher surfaces (Velcro hooks and sandpaper).

The FFT analysis results prompted a second analysis; therefore, the data
was processed using the Covariance Spectrum Filter (Figure 5). The Covariance
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Spectrum Filter analysis results show the same peaks of activity close to 2500
Hz for smooth surfaces and close to 2800-3000 Hz for rough surfaces.

The results also suggest another region with potential identifying features
within the range of 900-1600 Hz (Figure 6). The peaks and valley points be-
tween the two frequencies for 120 samples (30 samples per surface) are plotted
in Figures 7 and 8. The plots show that the points are apparently randomly
distributed; however, there is a large area (about 50%) that is exclusively oc-
cupied by sandpaper points. In case of peaks points, this area contains 18 of
the 30 points from sandpaper samples. Also more than 60 points of the other
surfaces’ samples lie outside the total sandpaper area. In case of valley points,
the exclusive sandpaper area contains only 11 of the 30 sandpaper points, and
only 40 of the other surfaces data points lie outside the total sandpaper area.
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Fig. 7. Distribution map of peaks points

6 Discussion

The results show that some information do exist in the signal from a single point
FSR to differentiate between surfaces with different textures. One particularly
interesting observation is that the observed patterns mainly exist in samples
recorded with non-constant motion speed and contact pressure.

While the experiment would not completely isolate these features, the ob-
tained results clearly show a potential to differentiate between textures, partic-
ularly between rough and smooth textures.

Sandpaper in particular showed promising results. The distribution of the
peaks points in Figure 7 suggest that sandpaper can be positively detected 60%
of the time, while it can be correctly ruled out 67% of the time.

7 Conclusion And Future Work

In conclusion, a single point FSR sensor provides enough information to detect
difference in roughness of surface texture when the sensor is moved in a lateral
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Fig. 8. Distribution map of valley points

motion across the surface with non-constant speed and contact pressure. This
information is not sufficient to quantify the roughness of the surface texture.
In future experiments, we plan to investigate the effect of adding soft textured
surfaces on either side of sensor representing the skin and its surface irregularities
(fingerprint ridges). We also plan to investigate the effect of using two layers
of FSRs, one made of a single large sensor while the other is made of four
small sensors, to approximate the differences in receptive field diameters. These
experiments will also include low-pass and high-pass filters to imitate the slow
and fast adapting behaviour of human receptors and will be analysed using
neural networks to investigate possibility of real-time surface recognition.
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