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Abstract. 
Hexapod robots are six legged robotic systems, which have been widely investigated in 
the literature for various applications including exploration, rescue, and surveillance. 
Designing hexapod robots requires to carefully considering a number of different as-
pects. One of the aspects that require careful design attention is the planning of leg trajec-
tories. In particular, given the high demand of fast motion and high energy autonomy it is 
important to identify proper leg operation paths that can minimize energy consumption 
while maximizing velocity of the movements. In this frame, this paper presents a prelim-
inary study on the application of a hybrid multi-objective optimization approach for the 
computer-aided optimal design of a legged robot. To assess the methodology, a kinematic 
and dynamic model of a leg of a hexapod robot is proposed as referring to the main de-
sign parameters of a leg. Optimal criteria have been identified for minimizing the energy 
consumption and efficiency as well as maximizing the walking speed and the size of ob-
stacles that a leg can overtake. We evaluate the performance of the hybrid multi-
objective evolutionary approach to explore the design space and provide a designer with 
optimal setting of the parameters. Our simulations demonstrate the effectiveness of the 
hybrid approach by obtaining improved Pareto sets of trade-off solutions as compared 
with a standard evolutionary algorithm. Computational costs show an acceptable in-
crease for an off-line path planner. 

Keywords: Multi-objective Optimization, Robot design, Legged robots, Hex-
apod robots. 

1 Introduction 

Hexapod walking robots (HWR) are six legged robots having a degree of autonomy that 
can range from partial autonomy, including teleoperation, to full autonomy without ac-
tive human intervention [1][2]. HWR usually have as high stability, low footprint, fault 



 

 

tolerant locomotion features [3]. They can also overcome obstacles that are comparable 
with the size of the robot leg [4]. These main characteristics make hexapod walking ro-
bots a suitable choice in several application scenarios such mine fields [5], planets explo-
ration [6], search and rescue operations [7], forests harvesting [8]. Despite the above 
referenced advantages and applications many challenges remain in the field of hexapod 
locomotion. In fact HWR are still complex and slow machines, consisting of many actua-
tors, sensors, transmissions and power supply hardware. 
During the last years the field of legged robots has been strongly influenced by the devel-
opment of efficient optimization techniques, which coupled with low-cost and fast com-
putational resources, have allowed for the resolution of such optimization problems. 
Nevertheless, challenges remain in the field of many legged robot locomotion such as 
Hexapods. Hexapods are walking that are, in fact, complex and slowly machines, consist-
ing of many actuators, sensors, transmissions and supporting hardware. 
One of the approaches that need more investigation in the field of is multi-objective op-
timization (MOO), which involves minimizing or maximizing multiple objective functions 
subject to a set of constraints. Indeed, optimizing the design of a hexapod robot includes 
analysing and selecting design trade-offs between two or more conflicting objectives. 
In the area of MOO, Multi-Objective Evolutionary Algorithms (MOEAs) demonstrated to 
be well-suited for solving several complex multi-objective problems [9, 10]. These algo-
rithms adopt the same basic principles of the single-object evolutionary algorithm by 
emulating the evolutionary process on a set of individuals (solutions), i.e. an evolutionary 
population, by means of the so-called evolutionary operators (fitness assignment, selec-
tion, crossover, mutation and elitism). In general, MOEAs differ on the fitness assignment 
method, but most of them are part of a family, called Pareto-based, which use the Pareto 
dominance concept as the foundation to discriminate solutions to guide their search [10]. 
For examples, the interested reader can refer to several surveys of multi-objective opti-
mization methods, such as for engineering [11][12], for data mining [13–15], for bio-
informatics [16], for portfolio and other financial problems [17]. 
A previous attempt of using an MOEA  to optimize the design of a leg mechanism has 
been presented in [18], where the authors compared the performance with that of an 
earlier study and in all cases the superiority and flexibility of the EMO approach was 
demonstrated. The MOEA used in this previous study was NSGA-II [19]. 
In this paper, we use a hybrid approach to extend and improve the previous result, 
which, at the best of our knowledge, is the only attempt of using a MOO approach to solve 
the problem of the design optimization of a robotic leg. 

2 Material and methods 

In this section we briefly present the material and methods used in this work. For the 
brevity required by a conference paper, we are only presenting the main characteristics 
of the algorithms and of the robotic platform used. The interested reader should refer to 
the cited publications in the provided reference list for more details.  
 



 

 

2.1 A hybrid multi-objective evolutionary approach 

The MOEA we considered for our experiments is a controlled elitist genetic algorithm, 
which is a variant of the well know and widely used NSGA-II [19]. An elitist GA always 
favours individuals with better fitness value (rank) whereas, a controlled elitist GA also 
favours individuals that can help increase the diversity of the population even if they 
have a lower fitness value. In our application domain, it is very important to maintain the 
diversity of population for convergence to an optimal Pareto front. This is done by con-
trolling the elite members of the population as the algorithm progresses. A non-
dominated rank is assigned to each individual using the relative fitness. Individual a 
dominates b (a has a lower rank than b) if a is strictly better than b in at least one objec-
tive and a is no worse than b in all objectives. This is same as saying b is dominated by a 
or a is non-inferior to b. Two individuals a and b are considered to have equal ranks if 
neither dominates the other. The distance measure of an individual is used to compare 
individuals with equal rank. It is a measure of how far an individual is from the other 
individuals with the same rank. For the rest, the standard process of evolutionary algo-
rithms still applies. It works on a population using a set of operators that are applied to 
the population. A population is a set of points in the design space. The initial population 
is generated randomly by default. The next generation of the population is computed 
using the non-dominated rank and a distance measure of the individuals in the current 
generation.  
To increase the performance of the MOEA we used a hybrid scheme to find an optimal 
Pareto front for our MO problem. In fact, a MOEA can reach the region near an optimal 
Pareto front relatively quickly, but it can take many further function evaluations to 
achieve convergence. For this reason, a commonly used technique is to run the MOEA for 
a relatively small number of generations to get near an optimum front. Then the Pareto 
set solution obtained by the MOEA is used as an initial point for another optimization 
solver that is faster and more efficient for a local search. We used the Goal Attainment 
Method [20] as the hybrid solver, which reduces the values of a linear or nonlinear vector 
function to attain the goal values given in a goal vector. The method used is a sequential 
quadratic programming (SQP), which represent the state of the art in nonlinear pro-
gramming methods [21]. The slack variable γ is used as a dummy argument to minimize 
the vector of objectives simultaneously; goal is a set of values that the objectives attain. In 
our case, the goals were set as 0, while the starting point was the Pareto set obtained by 
the MOEA. 
In our experiments, we used the MATLAB 2015a implementation for both algorithms, 
further details can be found in the software documentation. 

2.2 Measures for comparing the quality of the results 

The main performance measure we considered is the hypervolume [22], that is the only 
one widely accepted and, thus, used in many recent similar works. This index measures 
the hypervolume of that portion of the objective space that is weakly dominated by the 
Pareto set to be evaluated. The estimation is done through 106 uniformly distributed 
random points within the bounded rectangle. We took as bounding point vector [1000, 



 

 

100], because these are the maximum realistic values we allowed for the design of the 
hexapod robot [23]. 
Pareto dominance is equal to the ratio between the total number of points in Pareto-set P 
that are also present in a reference Pareto-set R (i.e., it is the number of non-dominated 
points by the other Pareto-set). In this case a higher value obviously corresponds to a 
better Pareto-set. Using the same reference Pareto-set, it is possible to compare quantita-
tively results from different algorithms. 
The reference Pareto was obtained in the following way: first, we combined all approxi-
mations sets generated by the algorithms under consideration, and then the dominated 
objective vectors are removed from this union. At last, the remaining points, which are 
not dominated by any of the approximations sets, form the reference set. The advantage 
of this approach is that the reference set weakly dominates all approximation sets under 
consideration [12, 24]. 
We also calculated the computational efficiency calculated as the total time spent by the 
MATLAB routines for each run of one approach divided by the number of generations for 
that run. This has been preferred to the simple computation time because for each run of 
the MOEA a different number of generations were employed by the algorithm for obtain-
ing the Pareto set. The computational efficiency allows a direct comparison of all the 
runs. The tests have been done on an Intel® Core™ i7-3770 3.40GHz using 4 parallel 
threads. 

2.3 The Cassino Hexapod robot 

In a recent past, research activities have been undergoing at LARM, Laboratory of Robot-
ics and Mechatronics of Cassino and Southern Lazio University, for developing six-legged 
robots within the so called “Cassino Hexapod” series (for more details see [25–28]. The 
main features of the proposed design solutions have been the use of low-cost mechanism 
architectures and user friendly operation features. Cassino Hexapod is legged waling 
robot, whose intended main application task is the inspection and analysis of historical 
sites. In particular, the robot should be able to move inside archaeological and/or archi-
tectural sites by carrying surveying devices and by avoiding damage to the delicate sur-
faces or historical items of the site. Additionally, the robot should be able to operate also 
in environments that cannot be reached or that are unsafe for human operators. 

 
Fig. 1. The Cassino Hexapod II 



 

 

3 Kinematic model of one leg 

The kinematic model of one leg can be established by considering two links in a 3R configura-
tion as shown in Fig.  The 3 R revolute joints have parallel rotation axes. The first and second 
revolute joints are connected to the first and second link, respectively. The third revolute joint is 
allowing the rotation of a wheel relative to the second link. The kinematic path planning task 
consists of identifying proper values of the revolute joint angles θ1 and θ2 as function of time. 
Typically a robot controller will updated the values of the joint angles θ1 and θ2 at a fixed clock 
speed rate that can be assumed as equal to 10 milliseconds. Values of joint angles are often ob-
tained in path planning techniques by search algorithms or by means of interpolation equations 
such as 5th order polynomials, as proposed for example by Frankovský et al. [29]. Accordingly 
for the joint angles θ1 and θ2 one can write 

𝜃1(𝑡) = 𝑎1 𝑡5 + 𝑎2𝑡4 + 𝑎3 𝑡3 + 𝑎4 𝑡2 + 𝑎5 𝑡 + 𝑎6  (1) 

𝜃2(𝑡) = 𝑏1 𝑡5 + 𝑏2𝑡4 + 𝑏3 𝑡3 + 𝑏4 𝑡2 + 𝑏5 𝑡 + 𝑏6  (2) 

Specific boundary conditions can help in simplifying the required models by reducing the 
number of parameters to be searched or set-up in Eqs. (1) and (2). For example, one can assume 
that a leg motion starts from the fully straight leg configuration having θ1 and θ2 equal to zero. 
Additionally, the initial and final angular speed and acceleration can be assumed as equal to 
zero at the beginning and at the end of a leg motion. Based on the above boundary conditions 
one can set up the following parameters in Eqs. (1) and (2) 

𝜃1(𝑡 = 0) = 0 → 𝑎6 = 0 
𝜃2(𝑡 = 0) = 0 → 𝑏6 = 0 
𝜃̇1(𝑡 = 0) = 0 → 𝑎5 = 0 
𝜃̇2(𝑡 = 0) = 0 → 𝑏5 = 0 
𝜃̈1(𝑡 = 0) = 0 → 𝑎4 = 0 
𝜃̈2(𝑡 = 0) = 0 → 𝑏4 = 0 

 

 
Fig. 2. Kinematic scheme of a robotic leg, 



 

 

Accordingly, the kinematic path planning of a leg requires identifying the parameters in 
Eqs. (1) and (2). These parameters can be obtained by using search scripts in optimiza-
tion algorithms. 

4 Dynamic model of one leg 

Dynamic effects play a significant role in the operation of a leg especially as referring to 
energy consumption and operation speeds. Accordingly, a basic dynamic model has been 
established by referring to the basic double pendulum architecture of a leg as shown in 
(Fig. 2). Accordingly, dynamic equations can be established by referring to the Euler-
Lagrange formulation in the form  
 

d
dt

�
∂L

∂q̇1
� −

∂L
∂q1

=  τI   (3) 

in which 

i = 1,2 … n 
L = Lagrangian = T - U 
T = total kinetic energy of the system 
U = Potential energy of the system 
qi = generalized coordinates of manipulator 
qı̇  = time derivatives of the generalized coordinates 
τi = generalized force (torque) that is needed at the i-th joint for moving the link li  
The inverse dynamic problem can be written by referring to Eq. (3) in terms of the tor-
ques τi that are needed to obtain the prescribed movement of the leg. Inputs are the pre-
scribed θ1 and θ2 versus time as obtained from Eqs. (1) and (2).  

 
Fig. 3. Scheme of control architecture 



 

 

Using the above mentioned values of θ1 and θ2 and referring to the model in Fig. 3 one 
can calculate the coordinates of the leg joints in the form 
 
x1 = l1 senθ1; y1 = −l1 cosθ1; 
x2 = l1 senθ1 + l2 senθ2; y2 = −l1 cosθ1 − l2 cosθ2  (4) 

The time derivatives of Eq.(4) can be written as 
 
ẋ1 = l1 cosθ1 ∙ θ̇1   ẏ1 = l1 senθ1 ∙ θ̇1 
ẋ2 = l1 cosθ1 ∙ θ̇1 + l2 cosθ2 ∙ θ̇2 ẏ2 = l1 senθ1 ∙ θ̇1 + l2 senθ2 ∙ θ̇2 (5) 

 
Eq.(5) can be also used to write 
 
ẋ1

2 + ẏ1
2 = l1

2cos2θ1 ∙ θ̇1
2 + l1

2sen2θ1 ∙ θ̇1
2 = l1

2 ∙ θ̇1
2          (6) 

 
Eq.(5) can be also rewritten as follows 
 
ẋ2

2 = l1
2cos2θ1 ∙ θ̇1

2 + l2
2cos2θ2 ∙ θ̇2

2 + 2l1 l2 cosθ1cosθ2θ̇1θ̇2 
ẏ2

2 = l1
2sen2θ1 ∙ θ̇1

2 + l2
2sen2θ2 ∙ θ̇2

2 + 2l1 l2 senθ1senθ2θ̇1θ̇2 
ẋ2

2 + ẏ2
2 = l1

2 ∙ θ̇1
2 + l2

2 ∙ θ̇2
2 + 2 l1 l2 θ̇ 1θ̇2 cos(θ1 − θ2)   

(7) 

 
Considering the effects of gravity, in terms of mass and inertia in Eqs. (4)-(6) one can 
write the potential energy U as 
 
U= m1gy1 + m2gy2 = −m1gl1cosθ1 + m2g(l1cosθ1 + l2cosθ2)        (8) 
 
The kinetic energy T can be written as 
 
    T= 1

2
mv2 = 1

2
m(ẋ2 + ẏ2) = 1

2
m1(ẋ1

2 + ẏ1
2) + 1

2
m2(ẋ2

2 + ẏ2
2)        (9) 

 
Substituting Eqs. (6) and (7) into Eq. (9) one can write  
T = T1+T2 = 1

2
m1l1

2θ̇1
2 + 1

2
m2l1

2θ̇1
2 + 1

2
m2l2

2θ̇2
2 + 1

2
m2�2θ̇1l1 θ̇2l2 cos(θ1 − θ2)�    (10) 

 
The Lagrangian can be finally written by using Eqs. (8) and (10) in the form 
 
L = T − U = 1

2
(m1 + m2) l1

2θ̇1
2 + 1

2
m2l2

2θ̇2
2 + m2l1 l2 θ̇1θ̇2 cos(θ1 − θ2) +       (11) 

+(m1 + m2) gl1 cosθ1 + m2l2 cosθ2   
 

Substituting Eq.(11) in Eq.(3) leads to the calculation of the required input torques τi 
that are needed to obtain the prescribed movement of the leg in the form 

 
τ1 = (m1 + m2) l1

2θ̈1 + m2l1 l2 θ̈2 cos(θ1 − θ2) + m2l1 l2 θ̇2
2 s en(θ1 − θ2) + 

+ gl1 (m1 + m2) senθ1  
τ2 = m2l2

2θ̈2+m2l1 l2 θ̈1 cos(θ1 − θ2) − m2l1 l2 θ̇1
2 s en(θ1 − θ2) + l2 m2g senθ2 

(12) 



 

 

A formulation for optimal path planning problem 
The path planning task for a hexapod leg with n DoFs can be described using m knots in 
the trajectory of each k-th joint of a manipulator. The prescribed task can be given by the 
initial and final points P0 and Pm of the trajectory. The movement of the leg can be ob-
tained by the simultaneous motion of the n joints in order to perform the prescribed task. 
Among the many available criteria, one can assume the energy aspect as one of the most 
significant performance in order to optimize the manipulator operation, since the energy 
formulation can consider simultaneously dynamic and kinematic characteristics of the 
performing motion. It should also be considered that a maximization of the operation 
speed of a leg corresponds to a maximization of the amplitude of the movement, when 
time is fixed. 
An optimality criterion concerning with energy aspects of the path motion can be con-
veniently expressed in terms of the work that is needed by the actuators. In particular, 
the work by the actuators is needed for increasing the kinetic energy of the system in a 
first phase from a rest condition to actuators states at which each actuator is running at 
maximum velocity. In a second phase bringing the system back to a rest condition, the 
kinetic energy will be decreased to zero through the actions of actuators and brakes. The 
potential energy of the system will contribute to size the necessary work by the actuators 
and friction effects in the joints can be assumed as negligible as compared to the actions 
of actuators and brakes. Thus, we have considered convenient to use the work Wact done 
by the actuators in the first phase of the path motion as an optimality criterion for opti-
mal path generation as given by the expression  

   ∑ ∫
=





=

3

1
0

k

t

kkact
k dtW at     (13) 

 in which tk is the k-th actuator torque; 𝛼𝑘̇ is the k-th shaft angular velocity of the actua-
tor; and tk is the time coordinate value delimiting the first phase of path motion with in-
creasing speed of the k-th actuator. 
Therefore, minimizing Wact has the aim to size at the minimum level the design dimen-
sions and operation actions of the actuators while generating a path between two given 
extreme positions. Indeed, in general once the actuator work is minimized, energy con-
sumption of the system operation will be optimized consequently. 

 The other factor to optimize is the average speed, which is as follows: 

 
    vavg = x2−x1

tf−t0
    (14) 

in which x1 and x2 are the coordinates at the beginning (t0) and at the end (tf) of the 
movement. Note that, in this work, we assumed (y2 - y1) = (x2 - x1) due to the symmetry 
of the model that has been proposed in Fig.3. 
The two optimal criteria that have been considered are conflicting, because an increase in 
the speed will result in higher energy consumption. Therefore, it can be established a 
multi-criteria optimization problem as follows: 
 



 

 

    𝑚𝑚𝑚𝐝(W𝑎𝑎𝑎(𝐝), 1
𝑣𝑎𝑣𝑣(𝐝)

)   (15) 

where d is the vector of design variables: [a1 a2 a3 b1 b2 b3]. 

5 Experimental Results 

Using the experimental setup described in Section 2, we ran both standard MOEA and the 
hybrid MOEA twenty-one times with different random seed. Identical parameter setting 
is used for the MOEAs: population size = 300; Tournament selection, size = 4; number of 
individuals in the Pareto set = 100; Elite count = 15; individual recombination (crosso-
ver) probability = 0.8; Gaussian mutation function. The MOEA stopped when the average 
change in the spread of the Pareto front over last 100 generations is less than 10-4. 
Median values for performance indicators are presented to represent the expected (mid-
range) performance. For the analysis of multiple runs, we compute the quality measures 
of each individual run, and report the median and the standard deviation of these. Since 
the distribution of the algorithms we compare are not necessarily normal, we use the 
Mann-Whitney U test (a.k.a. Wilcoxon rank sum test) test [30] to indicate if there is a 
statistically significant difference between distributions. We recall that the significance 
level of a test is the maximum probability p, assuming the null hypothesis, which the sta-
tistic will be observed, i.e. the null hypothesis will be rejected in error when it is true. The 
lower the significance level the stronger the evidence. In this work we assume that the 
null hypothesis is rejected if p < 0.01. 
Considering all the runs, the median number of generations was 229 (standard deviation 
= 102, minimum = 10; maximum = 544). 

 

Fig. 4. Average hypervolume values over generations. 
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Fig. 4 shows the hypervolume values over generations. We can see that the stop condi-
tion (Pareto spread is lower than 10-4) still allows a quite high number of generations 
without significant improvements in terms of minimization of the hypervolume. This test 
confirms that we should not expect a significant increase in the performance with more 
generations. 
Table 1 presents the experimental results on the three performance measures consid-
ered. For all measures, the Hybrid MOEA significantly outperforms the Standard MOEA. 
This is evidenced in Fig. 5, which reports the box plots for hypervolumes and efficiency 
comparison. It is evident from the figure the significant increase given by the hybrid ap-
proach used at the average cost of 0.1422 seconds for generation. This is confirmed by 
the statistical test which rejects the hypotheses that the distributions are the same in 
both cases. 

Table 1. Multi-metric comparison of the Pareto sets obtained by the Standard and Hybrid MOEAs. 
Values are the medians of each distribution and the standard deviation is in parentheses. Statistical 
significance (p) has been evaluated with the Mann-Whitney U test (Hypervolume and Efficency: the 

lower the better; Reference and Dominance: the higher the better). 

Measure Standard MOEA Hybrid MOEA p 
Hypervolume 0.0367(0.0013) 0.0343 (0.0014) <0.001 

Dominance (%) 0.00 (0021) 4.39 (1.18) <0.001 
Efficiency (sec/gen) 0.2301 (0.0860) 0.3723 (0.0851) <0.001 

 
 

  
(a) (b) 

Fig. 5. Box plot comparisons: (a) hypervolumes of 21 runs of the standard and hybrid MOEA; (b) 
computational efficiency calculated as the total time divided by the number of generations (varia-

ble for each run). 

Fig. 6 presents the cumulative Pareto Sets obtained merging the Paretos of each run of 
the two approaches. These graphically confirm the numerical results that the hybrid ap-
proach significantly increases the performance of the MOEA. In particular, comparing the 
two cumulative Pareto sets, we can see that the improvement is well spread along the 
objective space and the most significant results is achieved in the central area which is 
the most common selection for the designer. 
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Fig. 6. Best Cumulative Pareto sets comparison: Standard MOEA Pareto set (red) and the Hybrid 

MOEA (blue). The central area of the figure is zoomed to highlight the difference. 

 
Fig. 7. Plot of Length and Height of the movement over Energy. 
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Indeed, from the designer point of view, the reader can clearly see the improvement giv-
en by the hybrid approach over the standard MOEA can be seen in Fig. 7, which plots the 
length and height of the movement over energy. Indeed, the possible designs obtained by 
the Hybrid MOEA can produce a movement of 0.3520 meters amplitude (length and 
height) consuming only 89.60 watts, while the matching solution of the standard MOEA 
requires 286.21 watts (3 times more) for the a similar amplitude (0.3502). 
In terms of real applicability of the solutions, this result can allow to include smaller bat-
teries and, thus, increase the available payload. Furthermore, one can note that the leg 
can reach about 3.5 times the link length (not considering the wheel radius) with energy 
values that can be even lower than 100 watts. These values can be seen as feasible also as 
compared to standards [1]. 

6 Conclusions 

In this paper, we present a preliminary study on the use of a hybrid multi-objective evo-
lutionary approach for the optimal path planning of a hexapod robot leg. To this end, we 
evaluated the performance of a hybrid multi-objective optimization approach to explore 
the design space and provide the designer with the optimal setting of the parameters. To 
preliminary assess the optimization approach, a kinematic and dynamic model of a leg of 
a hexapod robot has been proposed as referring to the main design parameters. Optimal 
criteria have been identified for minimizing the energy consumption and efficiency as 
well as maximizing the size of obstacles that the robot can overtake. In our simulations, 
the hybrid approach demonstrated to achieve statistically significantly better Pareto sets 
of trade-off solutions than the standard evolutionary algorithm with acceptable time 
increase. These solutions are also better in comparison with other non-evolutionary al-
gorithms applied to similar design problems. Our future work will focus on the applica-
tion of the hybrid MOEA approach to the optimized design of all the six legs of the robot, 
which is a constrained optimization problem with a larger design space to explore. 
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