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Abstract

We present a method for applying a class of velocity-dependant
forces within a multi-component lattice Boltzmann equation simula-
tion which is designed to recover continuum regime incompressible
hydrodynamics. This method is applied to the problem, in two di-
mensions, of constraining to uniformity the tangential velocity of
a vesicle membrane implemented within a recent multi-component
lattice Boltzmann simulation method, which avoids the use of La-
grangian boundary tracers. The constraint of uniform tangential ve-
locity is carried by an additional contribution to an immersed bound-
ary force, which we derive here from physical arguments. The result
of this enhanced immersed boundary force is to apply a physically
appropriate boundary condition at the interface between separated
lattice fluids, defined as that region over which the phase-field varies
most rapidly. Data from this enhanced vesicle boundary method are
in agreement with other data obtained using related methods (e.g.
T. Krüger, S, Frijters, F. Günther, B. Kaoui and J. Harting, Eur.
Phys. J. 222, 177 (2013)) ) and underscore the importance of a
correct vesicle membrane condition.
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1 Introduction

The non-Newtonian flow properties of blood emerge from the behaviour of
its cellular constituents and the appropriately aggregated physics of cell de-
formation and lubrication flow must ultimately explain its description using
power-law approximations [1] etc. The principal cellular component of blood
comprises approximately 40% of its volume and is made-up of red blood
cells, or erythrocytes, of 7µ diameter, which are, therefore, continuum-scale
objects. Incorporating the fundamental physics and dynamics of this cellular
length-scale into our understanding of the flow properties of blood is clearly
an essential precursor to a correct description of continuum-scale haemody-
namics. Indeed, the physically discrete micro-structure of blood necessarily
implies that important modalites are coarse-grained out of any continuum
description e.g. the fluctuating nature of wall shear stress (WSS) and its
temporal and micro-spatial distribution at the arterial lumen, which is be-
lieved to condition endothelial cell shape and behaviour. In this article we
will show that the micro-distribution of WSS may be affected by the effective
boundary condition governing the embedded motion of the principal cellular
component of blood i.e. erythrocytes.

Physically, erythrocytes are deflated vesicles, filled with incompressible
liquid and bounded by lipid bi-layers, or membranes. Like fluid viscosity and
interfacial tension, the physical properties of a vesicle membrane (surface
tension, bending ratio and interfacial compressibility etc.) all originate at
the molecular micro-scale but they may be incorporated into a continuum-
scale description by an effective hydrodynamic boundary condition based
upon an immersed boundary force distribution [2]. In this and other work
located at the continuum scale e.g. [3,9] the vesicle membrane is regarded as
a deformable, impermeable boundary separating two immiscible Newtonian
fluids with conserved cross-sectional area, an unsteady conformation respon-
sive to flow stresses, which mediates stress boundary conditions between the
segregated fluids.

Our previous membrane model [10] was based upon immiscible, multi-
component lattice Boltzmann equation (MCLB) hydrokinetics. That model
is capable of producing correct vesicle conformations and hydrodynamic
boundary conditions over a wide range of parameter, but since it employs a
force distribution which is constrained by global membrane length conserva-
tion, the physical effect of uniform tangential motion in the vesicle membrane
is not recovered. An important consequence of this lost interfacial modal-
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ity is the phenomenon of vesicle tank-treading. We note that tank treading
motion is also observed in 2D droplets and capsules. In the case of vesi-
cles however it results in a constant value of the tangential velocity over the
length of the membrane which it is particularly important to recover. In the
rest of this article, the term tank-treading refers to a vesicle motion in which
all points on the boundary move with the same tangential velocity. The lim-
ited aim here is to close the physical content of our previous model and, as
indicated above, provide an illustration of the physiological importance of an
advance which brings the present model into line with others [5, 7], [9]. The
additional physical content will arise as a result of vesicle membrane element
length conservation which, in turn, arises from a newly postulated, physi-
cal force distribution which is velocity-dependant- a fact which introduces
certain complications.

The extended method we report inherits the ability efficiently to deal
with large numbers of intimately-interacting but separate vesicles from its
pre-cursor [10] and earlier memory-efficient, coalescence-controlling MCLB
methods for multiple liquid drops [11], [12]. Moreover, it requires no compu-
tational re-meshing and it is founded solely on a distribution function-based
technique, requiring no embedded system of connected Lagrangian points.
However MCLB is effectively an unsteady Navier-Stokes solver and as such
it requires the definition of explicit boundary conditions, so our methods are
unable exactly to recover the Re = 0 Stokes regime, the effects of vesicle
confinement cannot be removed and it cannot be efficiently applied to the
problem of interrogating vesicle phase spaces [7]. Indeed, it can be advanta-
geously distinguished from the very accurate boundary integral formulations
of fluid dynamics used by other workers only by its ability conveniently to
treat large numbers of interacting vesicles flowing in complex geometry [12].

For flow containing a membrane constrained to have uniform tangential
velocity the hydrodynamic boundary condition may not appear to change
significantly relative to that implicit in our previous MCLB model, which
relied on global membrane length conservation, recall. Certainly, for steady
flow in 2D the vesicle boundary is a streamline in both models. The extent
to which a constraint of uniform membrane tangential velocity affects vesicle
dynamics is therefore unclear and a question arises as to the physical and
physiological impact of an enhanced effective boundary motion. We will
present limited evidence which suggests that the increased model complexity
and computational load is justified. It is appropriate however to remember
from the outset, a constraint of local membrane length element conservation,
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when extended to three dimensions, becomes one of constant local membrane
area. In the latter case, incompressible surface flows are possible which are
ruled-out in two-dimensional models. We also neglect the local cytoskeleton
present in e.g. erythrocytes [13] which imparts a local viscoelasticity (though
account could possibly be taken of this effect [14]) and a global effect of shape
memory, due to the presence of a spectrin network [15].

This article is set-out as follows. Section 2 reviews relevant features of
our previous method, in section 3 we consider examples of velocity-dependant
forces in hydrokinetic simulation, in section 4 we derive an appropriate physi-
cal force to carry local membrane length element conservation and in section
5 we consider how this force might be impressed on lattice fluid, within
MCLB, in section 6 we present and discuss results and in section 7 our con-
clusions. For simplicity we consider throughout a single vesicle. However,
we emphasise that the methods we report apply directly to multiple vesicle
simulations, without modification.

2 Background

Previously we generalised an established MCLB method designed to recover
Laplace law behaviour, based upon Lishchuk’s method [16], so that the phys-
ical properties of the interface between two completely immiscible flowing
fluids are consistent with a membrane of globally conserved length, preferred
curvature, specified interfacial tension and bending rigidity. [10]. In this
method, membrane physics and associated fluid kinematic effects arise from
a curvature and length dependent force density, impressed in regions where
the fluid components’ phase-field, ρN , varies most rapidly. In this method,
only distribution functions are required to carry the membrane information
and no other computational elements such as a Lagrangian mesh are required.
In this section we outline those elements of this model central to the task of
extending it to contain local membrane element length conservation.

Let two fluid distributions occupying lattice link i, at position r to be
described by distribution functions, Ri (r) and Bi (r) (of course with fi (r) =
Ri (r) +Bi (r)). The nodal density of the red and blue fluids:

ρR (r) =
∑
i

Ri (r) , ρB (r) =
∑
i

Bi (r) , (1)
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is used to define a local phase field [17]:

ρN (r) =
ρR (r)− ρB (r)

ρR (r) + ρB (r)
. (2)

Surfaces ρN = constant define the interface with ρN = 0 its centre. Through-
out the narrow but distributed interfacial region, the local interface normal
is obtained from numerical approximations for the following:

n̂ = − ∇ρ
N

|∇ρN |
. (3)

With the above definition, for a red drop in a blue fluid, the interface normal
unit vector, n̂ points away from the enclosed red fluid. Local interfacial
curvature is obtained from the surface gradient of n̂ = (n̂x, n̂y), which, in
two-dimensions, is [16] given by:

κ ≡ n̂xn̂y

(
∂n̂y
∂x

+
∂n̂x
∂y

)
− n̂2

y

∂n̂x
∂x
− n̂2

x

∂n̂y
∂y

. (4)

All the derivatives in equations 3 and 4 are usually computed to o(c4
i ) accu-

racy with a simple, local, compact stencil:

∂φ

∂xα
=

1

k2

∑
i 6=0

tiφ (r + ci) ciα +O(c4
i ), α ∈ [x, y], (5)

where the lattice isotropy constant k2 = c2
s = 1/3 for the D2Q9 lattice

used here, φ denotes any field variable and ti is the lattice link weight with
ti = 4/9 for |ci| = 0, ti = 1/9 for |ci| = 1 and ti = 1/36 for |ci| =

√
2.

Clearly, the number of grid-points required to calculate a gradient depends
upon the cardinality of the LBE lattice unit cell’s basis set, Q, as well as
other considerations, to be discussed.

The effects of the a membrane emerge in simulations from the applica-
tion of the following normally-directed, weighted body force density at the
boundary between the two fluids:

F (0) =
1

2
∇ρN

(
κ

(
σ − α0

(
1− l

l0

))
− b

2
κ
(
κ2 − κ2

0

)
− b∂

2κ

∂s2

)
. (6)

Here 1
2
∇ρN is the weight [16], κ (κ0) is the (preferred) interfacial curvature,

α0 the interfacial compressibility, σ an interfacial tension further discussed
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below, l (l0) the (reference) length of the interface and b its bending rigidity.
In the above, s denotes distance measured along the direction of the mem-
brane. This purely normal force is derived from a free energy density [10].

The already complex MCLB immersed boundary force density in equa-
tion 6 does not produce a membrane tank-treading motion. However, it has
been shown to recover appropriate vesicle shapes and dynamics, for the con-
tinuum regime [10] i.e using that force density in equation 6, there results
an equilibrium shape which is consistent with a constant enclosed volume,
membrane cross-sectional area (length in 2D), membrane preferred curvature
and interfacial tension, which may nevertheless be deformed when external
traction is applied, as the embedding fluid flows. Note that the constraint
of constant vesicle volume is automatic as long as the enclosed fluid is in-
compressible. Note also that immersed boundary forces are known to be
responsible for inducing unphysical, spurious flow in MCLB models and that
correct interfacial kinematics arise from an appropriate segregation step [18].
So, for example, the kinematic property of mutual impenetrability emerges
from correctly-chosen, post-collision colour segregation rules, [10], developed
from the work of d’Ortona et.al. [18]. We shall return to the segregation
scheme in section 4, below.

Figure 1 illustrates the essential problem with the MCLB identified by
that force density in equation 6. This data was obtained for an unsteady
flow containing a deflated, sheared vesicle. It shows the velocity of the vesicle
membrane (top panel) resolved onto the local tangent with the effective solid-
body rotation removed, note. Clearly visible in the lower panel is a significant
variation of the membrane tangential velocity. Physically correct motion
requires all points on the membrane to move with the same instantaneous
speed in the direction of the local membrane tangent, viewed from the rest-
frame of the vesicle.

Before proceeding, we compare the body force density in equation 6 with
others in the literature. Equation 6 corresponds to one possible separation
of interfacial effects: our constant interfacial tension σ is a curvature inde-
pendent contribution to a membrane free energy density per unit area of
surface [19], which may be small for physical membranes. Salac uses an
interfacial tension γ in a similar way [20], also within an Eulerian method
using level-set tracking. Parameter σ does not appear as a Lagrange multi-
plier, introducing the constraint of local length element conservation, as in
the work of Kaoui et. al. [5, 7] (which is now widely implemented, includ-
ing within lattice Boltzmann [21], [22]). Rather, global length conservation
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(only) here arises as a consequence of continually adjusting a uniform in-
terfacial tension (σ − α0(1 − l

l0
)) and the surface tension is constant over

the membrane. In the last expression, α0 may be considered as a physi-
cal interface compressibility [10], which unfortunately does not achieve zero
change in a local membrane length element. We will use physical arguments
to devise a remedial force distribution which has a tangential component and
which may be argued to function practically in a manner similar to Salac’s
tangential gradient in interfacial tension, ∇sγ, [20] and to Kaoui’s Lagrange
multiplier [5, 7].

Now, the membrane force in equation 6 is applied as an external force
density to what is effectively a single lattice fluid described by distribution
function fi = Ri+Bi. He et al. [23] and Guo et al. [24] generalized the LBGK
model, originally devised by Qian et. al. [25], to describe lattice fluid subject
to a known, spatially variable external force density, F . Collision and forcing
of the distribution function when the system is close to equilibrium, note, is:

f †i = f
(0)
i (ρ, ρv) +

(
1− 1

τ

)
f

(1)
i (∇ρ, ..∂xvy.., F ) + Fi (τ, F , v) , (7)

where the dagger superscript indicates a post-collision, pre-propagate quan-
tity, f

(0)
i (ρ, v) denotes the equilibrium distribution function [29] and the

source term, Fi is [23], [24] :

Fi = ti

(
1− 1

2τ

)(
(ci − v)

c2
s

+
(ci.v) (ci)

c4
s

)
· F , (8)

where all symbols have their usual meaning. In the presence of any external
force F , the value of the fluid velocity depends upon that external force [23],
[24] :

v =
1

ρ

∑
i

fici +
1

2ρ
F . (9)

In summary, in the above method all the dynamics and kinematics is em-
bedded within a force distribution and the fluids’ phase field: it requires no
set of constrained Lagrangian points to indicate the location of its interface.
The extensions developed here preserve this property. It is clear from equa-
tion 9 however that a question arises when the external force depends upon
the fluid velocity, as is the case in e.g. magnetohydrodynamics, geophysical
flows as well as in vesicle hydrodynamics. We consider this matter in more
detail now.
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3 Velocity-Dependant Forces in Lattice Boltz-

mann Simulation

The problem of encapsulating velocity-dependant forces in the LB method
i.e. solving equation 9 for v may be achieved in different ways, depending
upon the complexity of the force and its physical origin.

Within the two-dimensional f -approximation of geophysical flow, with
the z-axis taken as locally parallel to g, the effective Coriolis acceleration
acing upon a two-dimensional fluid (i.e a shallow layer) is given by:

F (v) = Ω× v = (−Ωzvy,Ωzvx, 0) , (10)

where all symbols have their usual meaning. Using equation 9, the velocity
field of a lattice fluid subject to a Coriolis force may be obtained explicitly,
by inverting the following system of equations using straightforward linear
algebra: [

ρ Ωz
2

−Ωz
2

ρ

]
×
[
vx
vy

]
=
∑
i

fi

[
cxi
cyi

]
. (11)

In other cases, it is not so straightforward to introduce a velocity-dependant
force. Guo and Zhao who were first to recognise and address the problem of
finding explicit solutions to equation 9 [26] considered LB models of porous
flow using a velocity-dependant force due to Nithiarasu [28], F (v) = εν

K
v −

εFε√
K
|v|v + εG, which, when substituted into equation 9, gives the following

quadratic for |v|: c1|v|2 +2c0|v|−V = 0, where V ≡
∑

i fici+
ρε
2
G, c1 = εFε

2
√
K

,

c0 = 1
2

(
1 + εν

2K

)
. Taking the positive root of the above, Guo and Zhao find

an explicit expression for v in this model of porous flow:

v =
V

c0 +
√
c2

0 + c1|V |
. (12)

Clearly therefore, some cases of velocity-dependant forces in fluid dynamics
could be approached using forced LB simulation directly

Next consider the case of F = F (v,∇.v..). If it is possible to write F (v)
in finite differences with constant coefficients, then equation 9 might generate
a system of linear equations, the numerical or analytical solution of which
might be possible, though costly.

The more complex and inter-dependant force distribution required to
eliminate tangential gradients of membrane velocity is not so amenable to
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analysis as the examples above. A more elaborate, iterative procedure is nec-
essary. We continue by considering an additional, velocity-dependant force
contribution F ′(v) which is (i) effectively linear (ii) small relative to the
principal forces, F (0), acting and (iii) small relative to its argument in the
following sense:

F ′(v + w) = F ′(v) + F ′(w), (13)

|F ′(v)|
|F (0)|

= O(δ),

|F ′(δv)|
|F (0)|

= O(δ2),

etc.

Here label δ is used as a measure of magnitude with δ < 1 assumed. Write
v = v(0) + δv(1) + δ2v(2) + .... The total force acting at time t is given by the

sum expression
(
F (0) + F (v(t))

)
. From equation 8 therefore:

v(0) +
∑
j

δjv(j) =
1

ρ

∑
i

fici +
1

2ρ
F (0) +

1

2ρ
F ′

(
v(0) +

∑
j

δjv(j)

)
, (14)

and using the assumed properties in equations 13 we equate powers of pa-
rameter δ to obtain, at lowest order:

v(0) =
1

ρ

∑
i

fici +
1

2ρ
F (0). (15)

In our case F (0) is the principal membrane force given in equation 6. At
higher order in δ:

δjv(j) =
1

2ρ
F ′(v(j−1)), j > 0. (16)

Once a membrane velocity gradient constraining force has been defined, in
the next section, we shall use equations 15 self-consistently to incorporate its
effects.

4 Force Distribution for Local Membrane Length

Conservation

In previous work we presented an algorithm which conserved the global length
of membrane [10]. Here we use physical arguments and assumptions about
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the properties of a membrane to derive an additional force distribution which
tends to conserve length in any one element of a two dimensional boundary.
This extra contribution is obtained by determining the physical force associ-
ated with extension or compression of an element of the bounding membrane
about its unstrained equilibrium length. Application of this additional force
contribution to the interfacial fluid will then introduce the constraint of uni-
form tangential boundary motion. Put another way, a physical force will now
enforce local length element conservation, embedding tank-treading, in the
emergent dynamics of the system of internal, external and interfacial fluid.

Consider the material derivative of an elongated boundary length element
of unstrained length δl0, stretched between r1 = (x1, y1), r2 = (x2, y2) where
the fluid velocity is v1, v2, respectively. After some algebra we find:

D

Dt
δl = t̂ · (v2 − v1) = vt2 − vt1. (17)

Here δl = r2 − r1 and δl/δl = t̂. Let us now assume Hookean behaviour of
the membrane material and write δl = (1 + ε)δl0 hence:

Dε

Dt
=

(vt2 − vt1)

δl0
=
∂vt
∂s

, (18)

where s denotes distance measured along the membrane. Using the definition
of the material derivative following the motion, we arrive at a partial differ-
ential equation governing the evolution of strain in a Hookean membrane:

∂ε

∂t
=
∂vt
∂s
− vx

∂ε

∂x
− vy

∂ε

∂y
, (19)

Let us now consider the corresponding force distribution. The unbalanced
force acting within the length element under consideration is:

δF =
[
kεδlt̂

]
r2
−
[
kεδlt̂

]
r1

= kδldr · ∇
(
εt̂
)
, (20)

where dr = r2 − r1, k is the membrane spring constant and t̂ is the unit
vector tangent to the membrane, whence:

δF = kδl
∂

∂s

(
εt̂
)

= kδlε
∂t̂

∂s
+ kδlt̂

∂ε

∂s
, (21)

which, on using the Frenet-Seret formulae gives the following velocity-dependant
force per unit length of membrane for ensuring a uniform tangential motion
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of the membrane: δF
δl

=
(
kεκn̂+ k ∂ε

∂s
t̂
)
. This force, which has a tangential

component, note, must be applied as a body force to the lattice fluid which
occupies the interfacial region, with exactly the same weight as that used in
equation 6:

F ′(v) =
1

2

∣∣∇ρN ∣∣ (kεκn̂+ k
∂ε

∂s
t̂

)
. (22)

In the body force above, strain ε must be obtained by solving equation
22. This force density is velocity-dependant through ε = ε(v). We assume
that k is large i.e. the membrane strongly resists compression and may be
expected to relax any strains very rapidly, compared with the timescales
characteristic of the flow, to a state of uniform strain. We note that the
interface compressibility term in equation 6 is not now omitted α0 6= 0.
The physical effect of F ′ is to homogenise the strain distribution within a
membrane of given length but that length is regulated in part by the term
in α0 in equation 6.

Before proceeding, we suppose equation 18 may be accurately integrated
for a finite time along a characteristic line to give ∆(δl) = ∂vt

∂s
∆t. From this

expression we can approximate the force generated by this strain as ∆F ′ =
k ∂vt
∂s

∆t. This crude argument supports the underlying linearity property of
F ′ assumed in section 3

5 Multi-Component Lattice Boltzmann Scheme

Care must be taken in the integration of equation 19. Using the trapezium
rule, an implicit scheme with up-winding for those terms corresponding to
the spatial derivatives of velocity is:

ε
(n+1)
ij = ε

(n)
ij − Dx

(
v

(n)
xij + v

(n+1)
xij

2

)
Dx

(
ε

(n)
xij + ε

(n+1)
xij

2

)
δt (23)

− Dy

(
v

(n)
yij + v

(n+1)
yij

2

)
Dy

(
ε

(n)
yij + ε

(n+1)
yij

2

)
δt

+ Ds

(
v

(n)
ts + v

(n+1)
ts

2

)
δt.

Here Dα(f) denotes an upwind numerical derivative of the quantity f . No
confusion should arise between the introduction of spatial position subscript
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j and the velocity correction index (j), which is used as a superscript. To-
gether, equations 19, 23 (expressed in finite differences) and 8 form a com-

plicated system of equations from which, in principle, the ε
(n+1)
ij may be

eliminated and v
(n+1)
ij determined. Bearing in mind the discussion of sec-

tion 3 however, we must take a different approach evolving self-consistent
instantaneous strain, ε

(n+1)
ij , and lattice velocity v.

The following (annotated) steps were used to compute the velocity-dependant
component of membrane force, F ′(v) in each MCLB time step. Beginning
from the post-collision state at time n, for the whole lattice:

1. propagate,

2. compute the principal force contribution, F
(0)
ij , using equation 6,

3. estimate v
(n+1)
ij using equation 15,

4. estimate ε
(n+1)
ij from the last estimate of v

(n+1)
ij using equation 16 (Re-

mark initially, use the v
(n+1)
ij from step (3) above.),

5. compute velocity-dependant force contribution F ′, using equations 5
and 19,

6. correct v
(n+1)
ij (Remark equation 16 now implies that change to the

velocity used in steps (3)..(5) which we have denoted δjv(j).),

7. if max |δjv(j)| is larger that 1% return to (4),

8. collide the lattice.

The data presented in the next section become insensible to further iteration,
once steps (4)..(7) have been repeated 5 times, with an average of about three
iterations necessary to satisfy the criterion in (6). The algorithm above is
essential to the stability of our MCLB method with a velocity-dependant
membrane force contribution: with those parameters considered in the next
section, stable simulations are impossible without their use, probably because
the relative magnitude of an effective force correction is large.

Let us consider dimensionless ratio:

R(j) = lim
t→∞

(〈
|δjv(j)|
|δ0v(0)|

〉
ij

)
, j ∈ [1, 5] (24)
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where angle brackets indicate an average taken over that part of space occu-
pied by the membrane i.e. on a range of the subscripts i, j. Table 1 below
illustrates the convergence of the overall membrane force, measured by R(n)
as defined in equation 24. Note that it follows from the data in table 1 that
the first estimate of correction |F ′| is large, (being approximately |F 0|/2,
with F 0 defined in equation 6).

The scheme defined in this section constrains the tangential motion of the
interface only in a statistical sense, as we now discuss. We have indicated
that, in most MCLB, the interface between fluids is smoothly distributed with
interface-normal distance, n. Viewed as a function of n, ρN has a variation:

ρN(n) ∼ tanh (βn) ⇐⇒ n ∼ 1

β
tanh−1

(
ρN
)
. (25)

Here β an adjustable segregation parameter (β = 0.67 in the present work)
and the interface is assumed to be stationary. (The variation in equation 25
above was shown in [10] to arise as a consequence of using the segregation
scheme of d’Ortona et.al. [18]). Hence the weight in equations 6 and 22 has
a normal variation which may be expressed as follows:

1

2
|∇ρN | = β

2

(
1− ρN2

)
, (26)

our constraint force in equation 22 will be distributed (with a peak intensity
at the centre of the interface, ρN = 0) and we expect vt will vary in the
normal direction. To illustrate this consider how vt varies with the curvilinear
coordinate tangential to the membrane, at chosen values of n. In figure 2, we
present data for a sheared vesicle of approximate deflation 0.83, filled with
fluid of the same viscosity as that of the exterior fluid. The value of the
tangential velocity in the interfacial region was interpolated onto sub-lattice
contours ρN = 0,±0.585,±0.872,±0.965 (which correspond to distance n =
0,±1, pm2,±3,±4 respectively) to form data sets characterised by a value of
ρN as effective normal coordinate. The mean, µ, and standard deviation, σ,
of these data sets is plotted against ρN in figure 2. This data supports the
conclusion that membrane’s tangential velocity is well-defined and constant
along contour ρN = 0, at its centre. However, along parallel contours there
is more variation.
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6 Results and Discussion

A tank-treading of a vesicle membrane is clearly inconsistent with motion in
certain geometries. For instance, the membrane of a two-dimensional vesicle
which is propelled along the centre of a duct, by a pressure gradient or body
force, must move with the same velocity at all points- that of the centre
of mass of the vesicle. In this section we study motions which allow for
tangential motion of the membrane, the simplest being a shear flow. All
the data presented corresponds to k = 1, large: a value was determined by
progressively increasing k, until our results were insensible to further change.

Results from the present model compare favourably with others, once the
force distribution F ′ is installed. We consider the change from tank-treading
to tumbling motion, which has been carefully studied for bounded flow by
Kaoui et. al. who studied confinement effects [21] and the effect of a viscosity
contrast [22]. In 2013, Krüger et. al. reported the result of a simulations
performed with LBM-FEM [30], performed on a moderately deflated 2D
vesicle with confinement, at two values of viscosity contrast parameter:

Λ ≡ η2

η1

, (27)

where η2 (η1) denotes the vesicle interior (exterior) fluid viscosity. In Fig.
3 of reference [30] , Krüger et. al. summarise, for a vesicle in the x − y
plane, subjected to a shear in the x direction (i) a tank-treading behaviour
for Λ = 1 and (ii) a tumbling motion for Λ = 12. To validate, we match
the deflation parameter and system size to the data of this figure and non-
dimensionalizing time in the same way (using the unperturbed shear rate, γ̇),
we obtain the responses shown in figure 3 below, which agree well. Inclination
angle θ, is the angle subtended at the horizontal (i.e. unperturbed flow
direction), of the long-axis of the vesicle. As shown by Krüger et. al., the
vesicle orientates at positive θ in tank-treading but it rotates unsteadily with
dθ
dt
< 0 when tumbling. Physically, these two motions accord, respectively,

with the behaviour of an immiscible drop and an almost-rigid particle which
acquires angular momentum (due here to the persistent uniform motion of
its boundary) and so is induced to rotate in a direction consistent with the
applied shear. We note that intermediate values of Λ ∈ [1, 12] may also show
tumbling, depending upon the values of deflation. While a full investigation
of these effects is beyond present scope, it is appropriate briefly to consider
membrane velocity, vt, as function of Λ and θ in our model next.
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Beaucourt et. al., [27] studied steady and unsteady dynamics in a vesicle.
Here, we only consider vt as a function of angle θ for particular cases of
sheared systems with finite lattice Reynolds number, based upon exterior
fluid’s kinematic viscosity (or LB collision parameter, τ1):

Re ≡ (γ̇∗a∗)a∗

ν∗
= 1.8, ν∗(τ1) =

1

6
(2τ1 − 1) , (28)

where asterisks denote dimensionless lattice quantities and a∗ is the largest
vesicle dimension. First we consider deflated, tumbling vesicles with Λ =
1, second more circular, tank-treading vesicles at a range of Λ ∈ [1, 2.5].
Specifically, in figure 4 we plot vt with θ for two collapsed vesicles, with
deflations of α = 0.7, 0.8, Λ = 1. The two sets of data in this figure show
qualitatively similar variation, note. In figure 5 we consider more circular
vesicles with α = 0.93 at a range of Λ ∈ [1, 2.5], which reach a steady
inclination (computations were suspended when dθ

dt
= 0).

The remainder of our results all relate to a deflated vesicle i.e. one at
a smaller value of α, and emphasise the importance of a membrane bound-
ary condition vt = constant. Recall, figure 1 shows the variation over the
membrane, or interface, of vt for a particular orientation of the long axis
of the vesicle. vt is calculated in the vesicle rest frame, viewed from which
its membrane should, even in unsteady flow, now move with a tangential
velocity component which is constant along its length. We further compare
the vesicle dynamics with and without the effects of body force density F ′,
focusing upon the fluid dynamics of the interaction of the vesicle with a solid
boundary, at short length and time-scales.

A physiological parameter affected by the modifications developed here
is the wall shear stress (WSS), which is important in e.g. the study of
atherosclerosis. We consider a proxy WSS signal at the surface of the lu-
men or y = 0 boundary, for a single vesicle transit, with and without local
length conservation i.e. for a vesicle membrane which can move like the in-
terface between immiscible liquids and one subject to constraining force F ′.
In figures 6 and 7 we show data for 2D vesicles with approximate deflation
0.65, bending rigidity b = 1.4 and interfacial tension σ = 0.004 (all expressed
in lattice units) as they pass close to a flat, no–slip boundary, occupying
x = 0. The figures compare WSS signals i.e. stress component η ∂vx

∂y
for

equivalent angular orientations with and without global membrane length
conservation. For this data, the simulation box size measured in lattice units
is 130 × 130, the viscosity contrast between interior and exterior fluids is

14



Λ = 12 and the local lattice Reynolds number Re = 0.98. This value of Re
ensures that micro-currents generated by the complex immersed boundary
forces are small compared with flow velocity. Of course, other values of Re
small or large may be addressed with this method, subject to the following
consideration. It is necessary to ensure that the interfacial micro-current for
the chosen parameterisation is insignificant compared with the flow velocities
over the majority of the domain. In figure 6 we show a WSS signal for an ori-
entation of a translating and rotating vesicle for which the deflated vesicle’s
long axis is approximately parallel to the streamlines of undisturbed flow.
The difference between the WSS signals is small. Consider the vesicle orien-
tation shown in figure 7. The reduction in vt as we proceed anti-clockwise
along the membrane, from the contact region, allows a nearby recirculation
to exist (to the right of the contact). This allows an inversion of the WSS
in the contact region. From figure 7, this inversion occurs over a length
which is small compared with the diameter of the vesicle. This observation
suggests that, during the transit of an erythrocyte through a capillary or
close the to lumen of a larger vessel, an inversion in the WSS signal over the
length a single lumen-bound endothelial cell is effectively avoided when that
erythrocyte’s membrane motion is constrained to move uniformly.

We note that all our data relate to vesicles at Re ≥ 1. The present
method overcomes the key limitation in terms of physical behaviour present
in our previous method [10]. However, there remains the issue of access to
computations within the Stokes regime of flow, where the interfacial micro-
current induced at the interface is significant.

7 Conclusion

In this article we have presented a method for applying a class of velocity-
dependant forces within a multi-component lattice Boltzmann equation sim-
ulation, which is designed to recover continuum regime incompressible hy-
drodynamics, at Re > 1, where the impact of the interfacial micro-current is
restricted.

This method has been applied to the problem of constraining to unifor-
mity the tangential velocity of a vesicle membrane implemented within a
recent, pure multi-component lattice Boltzmann simulation method, which
avoids the use of Lagrangian boundary tracers (Phys. Rev. E. 87, 023307
(2013)). The constraint of uniform tangential velocity is carried by an ad-
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ditional contribution to an immersed boundary force, which we derive here
from physical arguments. The result of this enhanced immersed boundary
force is to apply a physically appropriate boundary condition at the inter-
face between separated lattice fluids, defined as that region over which the
phase-field varies most rapidly.

The limited quantity of data collected from our enhanced vesicle boundary
method are in reasonable agreement with other data obtained using related
methods (e.g. T. Krüger, S, Frijters, F. Günther, B. Kaoui and J. Harting,
Eur. Phys. J. 222, 177 (2013)) and underscore the importance of a correct,
effective vesicle membrane condition.

It is important to emphasise that the model advanced by the work re-
ported (Phys. Rev. E. 87, 023307 (2013)) is able to simulate many vesicles,
by exploiting memory-efficient multi-component lattice Boltzmann methods
already developed for immiscible drops (Phil. Trans. Roy. Soc. A. 362, 1775
(2004)). That crucial property is inherited in the present, extended model.
Were that not the case, the model and its extensions reported here might be
viewed as unnecessary.
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Appendices

A Figures and Captions and Tables

Table 1: Convergence of R(j)
j R(j) log10 (R(j))

1 3.97× 10−1 −0.401
2 1.89× 10−1 −0.723
3 2.35× 10−4 −3.630
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Figure 1: The tangential component of membrane velocity for a sheared
vesicle without control of the tangential membrane motion i.e with global
length conservation. Upper panel shows the locations of the contour ρN = 0.
Using only the normal force distribution of equation 6, the 2D vesicle with
perimeter depicted in the upper panel is embedded within a sheared fluid,
with its top layer moving right. The bottom panel shows equally spaced
contours of clockwise-positive tangential velocity, vt, in the region of the
interface. vt clearly varies significantly (approx 50 %) over the length of the
membrane.
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Figure 2: Variation of the tangential velocity with the constraint force F ′

in equation 22 applied. The tangential velocity in the interfacial region was
interpolated onto phase field contours ρN = 0,±0.585,±0.872,±0.965 The
mean, µ, (red open circles, right ordinate) and standard deviation, σ (black
open circles, right ordinate) on each contour is plotted against ρN . A repre-
sentation of the weight function is also shown (black asterisks) for reference.
The mean (standard deviation) data is normalised to µ0, the mean, (σ0, stan-
dard deviation) on contour ρN = 0. All lines are added only to guide the
eye.
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Figure 3: Top figure : the initial, mildly-deflated vesicle represented within
the simulation domain. Lower figure: the angular position of the long axis
of vesicle as a function of time, relative to the direction of unperturbed flow.
Note that time has been non-dimensionalized using γ̇. The black (red) line
corresponds to Λ = 1 (Λ = 12).
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Figure 4: Plots of vt with θ for two collapsed, tumbling vesicles α = 0.7, (red
circles) α = 0.8 (black circles). Both vesicles have Λ = 1. Data were obtained
at equal intervals of time hence the local density of points is an indication of
the angular velocity of the vesicle. The tumbling motion is accompanied by
shape changes, note. See also companion figure 5 below.
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Figure 5: Plot of vt vs. θ for sheared vesicles with α = 0.93, at a range of
Λ ∈ [1, 2.5]. The steady inclination reached by the vesicle systems shown
here was identified in computations when dθ

dt
= 0).
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Figure 6: Data for a tumbling vesicle with that vesicle orientated approxi-
mately parallel with the direction of undisturbed horizontal shear flow. First
row, top left panel: vt without the constraint of constant tangential motion,
top right panel: WSS i.e. ∂vx

∂y
without the constraint of constant tangential

motion. Second row, top left panel: vt with the constraint of constant tan-
gential motion, second panel: WSS i.e. ∂vx

∂y
with the constraint of constant

tangential motion. That is, the bottom row shows corresponding data for a
membrane subject to our constraint force.
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Figure 7: Data for a tumbling vesicle with that vesicle approximately perpen-
dicular to the direction of undisturbed horizontal shear flow. First row, top
left panel: vt without the constraint of constant tangential motion, top right
panel: WSS i.e. ∂vx

∂y
without the constraint of constant tangential motion.

Second row, top left panel: vt with the constraint of constant tangential mo-
tion, second panel: WSS i.e. ∂vx

∂y
with the constraint of constant tangential

motion. The bottom row shows corresponding data for a membrane subject
to our constraint force.
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