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Abstract
BackgroundPerforming exercise in thermally stressful
environments impairs exercise capacity and performance.
Cooling during exercise has the potential to attenuate
detrimental increases in body temperature and improve
exercise capacity and performance.
Objective The objective of this review was to assess the
effectiveness of practical cooling strategies applied during
continuous exercise in hot environments on body temper-
ature, heart rate, whole body sweat production, rating of
perceived exertion (RPE), thermal perception and exercise
performance.
MethodsElectronic database searches of MEDLINE,
SPORTDiscus, Scopus and Physiotherapy Evidence Data-
base (PEDro) were conducted using medical subject
headings, indexing terms and keywords. Studies were eli-
gible if participants were deÞned as ÔhealthyÕ, the exercise
task was conducted in an environmentC25 � C, it used a
cooling strategy that would be practical for athletes to use
during competition, cooling was applied during a self-
paced or Þxed-intensity trial, participants exercised

continuously, and the study was a randomised controlled
trial with the comparator either a thermoneutral equivalent
or no cooling. Data for experimental and comparator
groups were meta-analysed and expressed as a standardised
mean difference and 95 % conÞdence interval.
ResultsFourteen studies including 135 participants met
the eligibility criteria. ConÞdence intervals for meta-anal-
ysed data included beneÞcial and detrimental effects for
cooling during exercise on core temperature, mean skin
temperature, heart rate and sweat production during Þxed-
intensity exercise. Cooling beneÞted RPE and thermal
perception during Þxed-intensity exercise and improved
self-paced exercise performance.
ConclusionCooling during Þxed-intensity exercise, par-
ticularly before a self-paced exercise trial, improves
endurance performance in hot environments by beneÞting
RPE and thermal perception, but does not appear to
attenuate increases in body temperature.

Key Points

Meta-analyses revealed unclear effects for cooling
during exercise on mean core temperature, end-
exercise core temperature, mean skin temperature,
mean heart rate, whole body sweat production and
stand-alone self-paced performance.

Cooling during exercise was beneÞcial for self-paced
exercise performance when cooling was applied
during a period of Þxed-intensity exercise before the
trial.

Rating of perceived exertion and thermal perception
were also improved and are likely mediators of
performance during continuous exercise.
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1 Introduction

Sporting events are frequently scheduled in hot and humid
environments (e.g. stages of the Tour de France, summer-
month marathons); thus evidence-based practical strategies
that can alleviate increases in body temperature, reduce the
risk of heat illness and improve performance are of interest
to scientists and applied practitioners. During cellular res-
piration, heat produced in active muscle is transferred by
conduction and convection to blood and surrounding tis-
sues [1, 2]. At the skin surface, heat must be transferred via
dry and evaporative mechanisms to the environment to
limit heat storage and increases in body temperature. When
the rate of metabolic heat production exceeds the rate of
external heat transfer [1], which frequently occurs when
exercise is combined with high ambient temperature
([ 25 � C) and water vapour pressure, heat is stored and
body temperature increases.

Performing exercise in thermally stressful environments
increases the risk of exercise-associated muscle cramps,
heat syncope, exhaustion, heat injury and exertional heat
stroke [3] and also impairs exercise capacity and perfor-
mance [4Ð11]. During Þxed-intensity exercise, the attain-
ment of high brain [12] and body temperature [5] and
subsequent cardiovascular demands limit exercise capa-
bility [ 13]. In contrast, during self-paced exercise perfor-
mance, external force production is limited so that the task
can be completed, possibly mediated through rating of
perceived exertion (RPE) [2], skin temperature [14, 15],
skin wettedness [16] and thermal sensation [2, 17].

Cooling the body has been the subject of several reviews
[18Ð22], two of which [18, 19] investigated the effects of
cooling during exercise and suggested that cooling
improved endurance performance in the heat. Siegel and
Laursen [21], however, noted that most cooling methods
are largely impractical for use during competition, a view
supported by Tyler et al. [19], who recognised that some
cooling methods would be unsuitable for use during per-
formance because of their mass, potential for irritability,
and sports regulations. Nevertheless, previous reviews
[18, 19] included strategies that would be impractical to
use during continuous exercise performance (e.g. heavy ice
vests, mechanically circulated cool water and fan-assisted
head cooling); although these might be useful during
intermittent exercise, care needs to be taken when con-
textualising analyses.

Tyler et al. [19] noted that the largest improvements in
performance were observed when core temperature and
heart rate were both reduced by cooling, but acknowledged
that further research is required to ascertain the mecha-
nisms that explain these performance improvements. This

mechanistic underpinning of performance has been iden-
tiÞed as an important step in translational physiology [23].

Accordingly, the primary research questions were:

€ In healthy participants, does practical cooling during
continuous exercise in a hot environment, attenuate
mean and Þnal core temperature responses compared
with a thermoneutral or no cooling condition in
randomised cross-over trials?

€ In healthy participants, does practical cooling during
continuous exercise in a hot environment, improve self-
paced endurance performance and exercise capacity
compared with a thermoneutral or no cooling condition
in randomised cross-over trials?

Secondary research questions sought to investigate the
effects of cooling during exercise on mean skin tempera-
ture, heart rate, whole body sweat production, RPE and
thermal perception, all of which have been implicated in
the regulation of performance during exercise in the heat.

2 Methods

This review was conducted in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) statement [24].

2.1 Inclusion and Exclusion Criteria

Studies were included if:

€ The participants were deÞned as ÔhealthyÕ or Ôable-
bodiedÕ and without disability or disease that inßuenced
exercise capability or thermoregulation.

€ The study was conducted in an environment where the
air temperature wasC25 � C.

€ The study used a cooling strategy that would be
practical for athletes to apply during competitive
performance.

€ Cooling was applied during a self-paced performance
trial or Þxed-intensity task.

€ The participants exercised continuously.
€ The study was a randomised controlled trial with the

comparator either being administered at a temperature
from 30 to 40� C or a no cooling trial.

€ The study assessed core body temperature, skin tem-
perature, heart rate, sweat loss, RPE, thermal comfort/
perception, exercise capacity or self-paced performance
as an outcome.

€ The study was original research published in the
English language in peer-reviewed journals (including
ahead of press/online Þrst).

518 A. Ruddock et al.

123



We did not exclude studies based upon exercise mode or
sex, but did exclude studies that were designed exclusively
to investigate ßuid balance. We received no funding for
translation services, so only research published in the
English language was included within the review.

2.2 Information Sources and Search Strategy

Initial electronic database searches were performed up to
10 March 2015 using MEDLINE, SPORTDiscus, Scopus
and Physiotherapy Evidence Database (PEDro). The elec-
tronic database search was updated on 17 May 2016.
Medical subject headings (MeSH), database indexing
terms, keywords and Boolean operators (AND/OR) were
used in the search strategy. Terms were grouped into
themes related to cooling, exercise and body temperature
regulation. For SPORTDiscus, search terms included
Ôcool*Õ, Ôcold*Õ, Ôcold temperatureÕ, ÔcryotherapyÕ, Ôexer-
ciseÕ, Ôphysical ÞtnessÕ, Ôexercise therapyÕ, Ôphysical
exertionÕ, ÔsportsÕ, Ôexercise movement techniquesÕ, Ôcore
temperatureÕ, Ôrectal or oesophageal or esophageal or int-
est* or tympanic AND temperatureÕ, Ôbody temperatureÕ,
Ôbody temperature regulationÕ, Ôthermosen*Õ, Ôthermor*Õ,
ÔhypothermiaÕ, ÔhyperthermiaÕ. All searches were con-
ducted by the same author (AR). Search results were col-
lated using Endnote software (Thomson Reuters, New
York), and duplicates were removed. The title and abstract
of the remaining studies were screened for relevance (AR).
Full texts of potentially appropriate studies were obtained
and independently assessed for eligibility by two authors
(AR/BR) according to the inclusion criteria. Reference lists
and citations (via Google Scholar search) of manuscripts
and relevant review articles were examined for potentially
eligible studies (AR).

2.3 Data Extraction Process

Study characteristics including sample size, age, body
mass, stature, aerobic capacity, health status, exercise
mode, intensity of exercise, duration of exercise, ambient
temperature and humidity, air/wind speed and description
of the intervention were extracted for selected studies
(AR). Means and standard deviations of the primary (core
temperature and self-paced performance) and secondary
outcomes (mean skin temperature, heart rate, whole body
sweat production, RPE and thermal perception) for
experimental and comparator groups were extracted (AR).
When relevant data were not reported in the text, they were
extracted from Þgures using GetGraph Graph Digitizer
(http://www.getdata-graph-digitizer.com/index.php) by one
author (AR). Validity of data extraction was veriÞed by
another author (BR). When there was reference to but no
pertinent data available from the manuscript, the authors

were contacted (AR). Reviewers (AR/BR) were not blin-
ded to authors or institutions at any stage of the selection or
data collection process.

2.4 Data Items

Core temperature (� C) was a primary outcome and deÞned
as an assessment at either rectal, intestinal, oesophageal or
tympanic sites. Mean skin temperature (� C) was deÞned as
at least a four-site weighted assessment using skin surface
thermometry. Heart rate (beats�min- 1) was deÞned as an
assessment using electrocardiography or short-range
telemetry. Whole body sweat loss (l) was deÞned as the
difference in body mass pre to post assessment, taking into
account ßuid ingestion and urine output. RPE and whole
body thermal perception were deÞned as choices made by
participants from a perception scale. Exercise capacity tests
were deÞned as those that had a Þxed external or internal
intensity applied until volitional exhaustion. Self-paced
exercise performance was deÞned as tests whereby the
participant was free to choose external intensity over a pre-
determined duration, distance or set amount of external
mechanical work.

2.5 Risk of Bias in Individual Studies

Risk of bias was assessed using the 6-point Cochrane Risk
of Bias assessment tool [25]. Two authors (AR/BR) inde-
pendently assessed risk of bias. Appraisal of study quality
was performed according to subject expertise (led by AR)
and guided by the risk of bias assessment tool.

2.6 Summary Measures

The mean and standard deviation of participant physical
characteristics, health status, intensity and duration of
exercise and exercise mode were used to subjectively
determine methodological heterogeneity prior to meta-
analysis (AR/BR). Data for experimental and comparator
groups were analysed using Cochrane CollaborationÕs
Review Manager 5.3 (Cochrane IMS, Melbourne, Aus-
tralia). Data were expressed as a standardised mean dif-
ference (adjusted HedgesÕg) and 95 % conÞdence interval
(CI). If the 95 % CI included zero, we concluded there was
no effect. Statistical heterogeneity was assessed using the
I2 statistic to determine the percentage of the variability in
effect estimates due to heterogeneity rather than sampling
error (chance). Pooled intervention effect estimates and
95 % CIs were calculated as a weighted average of the
standardised mean difference estimated in individual
studies. WhenI2 exceeded 40 % (moderate heterogeneity),
a random-effects model was used to calculate the pooled
intervention effect; otherwise it was calculated using Þxed-
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effect inverse variance. We performed a sensitivity analysis
on self-paced performance trials after we found that studies
had either (1) performed Þxed-intensity exercise before
performance trials [e.g. 60 % maximum aerobic capacity
( _VO2max) for 60 min followed immediately by a time-trial]
or (2) used self-paced performance trials only. Exercise to
exhaustion, however, was considered to have large
methodological heterogeneity for intensity and duration of
exercise and was not meta-analysed.

3 Results

3.1 Participants and Included Studies

Figure1 details the PRISMA [24] ßow chart. Participant
characteristics are detailed in Table1 and study details in
Table2. Mean Þxed intensity was 63± 7 % of _VO2max,
and mean duration of exercise was 74± 23 min, consist-
ing of running (n = 7 studies) and cycling (n = 7) as
modes of exercise. Mean ambient temperature, relative
humidity and wind speed were 31± 2 � C, 52± 17 % and
2.9 ± 3.5 m�s- 1, respectively. Participant characteristics,
intensity, duration and mode of exercise and environmental
conditions were considered to have small between-study
methodological heterogeneity; thus a meta-analysis was
performed on outcomes assessed using Þxed-intensity
exercise. Self-paced performance trials consisted of cycling
(n = 4 studies) and running (n = 2); the mean duration of
these trials was 32.6± 36.3 min (range from 15 to
97.4 min).

3.2 Mean and End-Exercise Core Temperature

Ten outcomes from eight studies [26Ð33] were included in
the meta-analysis for mean core temperature. Six studies
used rectal temperature to assess core temperature and two
studies used gastrointestinal pills. Studies used ice slurry
(n = 5), cold ßuid (n = 2), ice slurry mouthwash (n = 1),
neck cooling (n = 1) and palm cold pack (n = 1) as
interventions. There was no effect of cooling on mean core
temperature during exercise [HedgesÕg = - 0.08 (95 %
CI - 0.37 to 0.22)] (Fig.2).

Thirteen outcomes from ten studies [26Ð29, 31,
32, 34Ð36, 39] were included in the meta-analysis for end-
exercise core temperature. Nine studies used rectal tem-
perature to assess core temperature and one study used
gastrointestinal pills. Studies used neck cooling (n = 5),
ice slurry (n = 4), cold ßuid (n = 2), ice slurry mouthwash
and head/neck cooling (bothn = 1) as interventions. There
was no effect of cooling on core temperature at the end of

exercise [HedgesÕg = - 0.21 (95 % CI- 0.47 to 0.04)]
(Fig. 3).

3.3 Mean Skin Temperature

Ten outcomes from eight studies [26Ð32, 39] were included
in the meta-analysis for mean skin temperature. All
assessments were made using weighted four-site mean
calculation [37] via skin surface thermometry. Studies used
ice slurry (n = 5), cold ßuid (n = 2), ice slurry mouthwash
(n = 1), neck cooling and head/neck cooling (bothn = 1)
as interventions. There was no effect of cooling on mean
skin temperature [HedgesÕg = - 0.28 (95 % CI- 0.56 to
0.00)] (Fig.4).

3.4 Mean Heart Rate

Seven outcomes from six studies [27, 29Ð33] were inclu-
ded in the meta-analysis for mean heart rate. Studies used
ice slurry (n = 3), cold ßuid, palm cold pack, neck cooling
and ice slurry mouthwash (alln = 1) as interventions.
There was no effect of cooling on mean heart rate [HedgesÕ
g = - 0.03 (95 % CI- 0.37 to 0.32)] (Fig.5).

3.5 Rating of Perceived Exertion and Whole Body
Thermal Perception

Eight outcomes from seven studies [27, 31, 33, 34,
36, 38, 39] were included in the meta-analysis for mean
RPE. All studies used the Borg 6Ð20 RPE scale. Studies
used neck cooling (n = 4), palm cold pack, ice slurry, ice
slurry mouthwash and combined forehead and neck cooling
(all n = 1) as interventions. Cooling during exercise
improved RPE [HedgesÕg = - 0.49 (95 % CI - 0.81 to
- 0.17)] (Fig.6). Six outcomes from six studies
[27, 29Ð31, 34, 36] were included in the meta-analysis for
mean thermal perception. Studies used three different scales
[40Ð42]; one investigation did not report the scale used [31].
Studies used, neck cooling (n = 3), ice slurry (n = 2) and
cold ßuid (n = 1) as interventions. Cooling during exercise
improved thermal perception [HedgesÕg = - 0.67 (95 % CI
- 1.06 to- 0.29)] (Fig.7).

3.6 Whole Body Sweat Production

Six outcomes from Þve studies [32, 34Ð36, 39] were
included in the meta-analysis for whole body sweat pro-
duction. Studies used neck cooling (n = 4), ice slurry and
head and neck cooling as interventions (alln = 1). There
was no effect of cooling during exercise on whole body
sweat production [HedgesÕg = - 0.13 (95 % CI- 0.50 to
0.23)] (Fig.8).
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3.7 Exercise Duration

Four studies assessed time to exhaustion at a Þxed inten-
sity. Two studies reported mean improvements in time to
exhaustion using neck cooling; however, CIs suggested no
effect was observed [HedgesÕg = - 0.38 (95 % CI- 1.37
to 0.61); g = - 0.58 (95 % CI - 1.40 to 0.24), respec-
tively] [31, 34]. One study used a palm cold pack [33] and
reported no effect on time to exhaustion during running
[HedgesÕg = - 0.07 (95 % CI - 0.87 to 0.73)] and
another used cold ßuid [29] and documented no effect on

time to exhaustion during cycling [HedgesÕg = - 0.09
(95 % CI - 1.07 to 0.89)].

3.8 Self-Paced Performance

Eleven outcomes from six studies [26, 27, 30, 35, 36, 43]
were included in the meta-analysis for self-paced perfor-
mance. Studies used neck cooling (n = 4), cold ßuid
ingestion (n = 3), ice slurry (n = 3) and ice slurry
mouthwash (n = 1) as interventions. There was a beneÞ-
cial effect of cooling during exercise on self-paced

Fig. 1 PRISMA ßow diagram.PEDroPhysiotherapy Evidence Database,PRISMAPreferred Reporting Items for Systematic Reviews and Meta-
Analyses
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performance [HedgesÕg = - 0.48 (95 % CI - 0.78 to
- 0.18)] (Fig. 9). Sensitivity analysis demonstrated that
self-paced performance was improved after Þxed-intensity
exercise [HedgesÕg = - 0.47 (95 % CI- 0.83 to- 0.12)]
(Fig. 9), but the effect was only evident following a Þxed-
intensity pre-load and not for self-paced performance trials
only.

4 Discussion

The purpose of this review was to investigate the effects of
practical cooling strategies used during continuous exercise
in hot environments. Meta-analyses revealed no effect for
cooling during exercise on mean core temperature, end-
exercise core temperature, mean skin temperature, mean
heart rate, whole body sweat production and stand-alone
self-paced performance; although CIs for these estimates
overlapped beneÞcial and detrimental effects, suggesting
uncertainty in the point estimate, we interpret these Þnd-
ings as being unclear and that more data are required to
improve conÞdence in the interpretation of these outcomes.
Cooling during exercise, however, was beneÞcial for self-

paced exercise performance when cooling was applied
during a period of Þxed-intensity exercise before the trial;
RPE and thermal perception were also improved by cool-
ing. The unclear effects on stand-alone self-paced perfor-
mance and improved RPE and thermal perception oppose
Þndings from previous meta-analyses [18, 19]. These
studies found clear improvements in performance but
unclear Þndings for perceptual responses. These contra-
dictions are likely due to differences in study selection.

Our systematic search strategy identiÞed 14 studies that
met our inclusion criteria, whereas a previous meta-anal-
ysis included up to nine studies [19]. Tyler et al. [19] noted
that some cooling methods might have limited practicality
(e.g. excess mass, skin irritation and sport-rule constraints);
thus we only included studies that were deemed to be
practically applicable during continuous exercise. We
excluded studies that used Ôface/head fan or water coolingÕ,
Ôliquid/air cooling garmentsÕ, Ôpartial limb water immer-
sionÕ, Ôice cooling vestsÕ, and Ôßuid bolus[ 400 mlÕ; these
strategies were deemed to be impractical, especially during
competition. Studies utilising these methods, however,
were included in the two previous meta-analyses on cool-
ing during exercise [18, 19]. Bongers et al. [18] and Tyler

Table 1 Characteristics of participants in included studies

Study Number of
participants

Age
(years)

Body mass
(kg)

Stature
(cm)

_VO2max

(ml�kg- 1�min- 1)
Characterisation

Burdon et al. (2010) [26] 7 33 ± 6 81.1± 11.1 183± 9 59.4± 6.6 Non-acclimated males

Burdon et al. (2013) [27] 10 30 ± 7 75.1± 9.4 61.8± 5.6 Healthy, naturally acclimatised male
endurance cyclists

Burdon et al. (2015) [28] 10 30 ± 7 75.1± 9.4 175± 7 61.8± 5.6 Healthy, naturally acclimatised male
endurance cyclists and triathletes

Lee et al. (2008) [29] 8 27 ± 4 70.9± 7.9 174± 5 53.8± 6.2 Non-heat acclimated males

Lee et al. (2014) [31] 12 24 ± 2 61.6± 8.1 172± 5 59.4± 5.3 Healthy males

Minniti et al. (2011) [38] 8 25 ± 5 77.4± 5.6 181± 8 53.7± 4.7 Healthy males

Morris et al. (2015) [32] 9 25 ± 5 75.9± 12.2 177± 7 50.9± 8.5 Healthy males

Scheadler et al. (2013) [33] 12 23 ± 4 76.1± 8.7 179± 6 53.8± 5.2 Healthy males

Schulze et al. (2015) [30] 7 33 ± 8 73.1± 3.3 179± 5 61.7± 3.0 Well trained male triathletes

Tyler et al. (2010) [36]a 9 25 ± 4 76.5± 5.9 181± 7 54.2± 4.6 Healthy males

Tyler et al. (2010) [36]a 8 25 ± 3 75.5± 7.0 180± 5 54.9± 3.1 Healthy males

Tyler and Sunderland (2011)
[34]

8 26 ± 2 77 ± 6.2 177± 6 56.2± 9.2 Endurance trained athletes

Tyler and Sunderland (2011)
[35]

7 25 ± 2 75.3± 8.4 179± 5 55.3± 3.6 Healthy males

Bulbulian et al. (1999) [39] 10 27 ± 6 80.5± 6.7 181± 4 38.6± 6.3 Healthy active males

Carvalho et al. (2014) [43] 10 25 ± 6 69 ± 2.7 170± 10 67.2± 1.8 Well trained male athletes (cyclists,
mountain bikers, triathletes)

Data presented as mean± SD

SD standard deviation,_VO2max maximum aerobic capacity
a Two-part experiment
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et al. [19] found that ice jackets had the greatest effect on
performance; Tyler et al. [19] recognised this and subse-
quently offered an alternative mean-weighted standardised
difference estimate with the ice jacket study [44] excluded
from their analysis. However, this was because the study
was conducted in an uncompensable environment, not
because of the unsuitability of ice jackets.

Tyler et al. [19] did not include cold water or ice slurry
ingestion in their analysis; however, we chose to include these
methods because they are practical methods during continu-
ous exercise in the heat. Bongers et al. [18] included one cold

water ingestion study in their analysis [45], but the comparator
to the experimental trial (4�C) was also cold ßuid (19�C) and
not thermoneutral; thus it was not included in the present
meta-analysis. Moreover, it is unclear whether a criterion for
inclusion in the previous meta-analyses required a ther-
moneutral or no cooling comparator trial. Whilst we recognise
that studies might be investigating ÔappliedÕ practices, using a
thermoneutral trial as a comparator is preferable to understand
the true effect of cooling during exercise, particularly the
mechanisms of action, which is an important component of
translational physiology [23].

Table 2 Details of included studies that used Þxed-intensity exercise

Study Exercise
mode

Intensity
(%
_VO2max)

Duration
(min)

Ambient
temperature
( � C)

Relative
humidity
(%)

Air
speed
(m/s)

Intervention

Burdon et al. (2010) [26] Cycling 65 90 28.0 70.0 1.0 2.3 ml�kg- 1 (185 ml) every 10 min of 4� C
7.4 % carbohydrate-electrolyte solution.
37 � C 7.4 % carbohydrate-electrolyte
solution. 37� C 7.4 % carbohydrate-
electrolyte solution? 30 ml ice slurry
(- 1 � C) every 5 min

Burdon et al. (2013) [27] Cycling 62 90 32.1 40.0 1.0 260± 38 g of 7.4 % carbohydrate-
electrolyte solution every 10 min as either
ice slurry (- 1 � C) or thermoneutral
(37 � C)

Burdon et al. (2015) [28] Cycling 62 90 32.0 40.0 1.0 260± 38 g of 7.4 % carbohydrate-
electrolyte solution every 10 min as either
ice slurry (- 1 � C) or thermoneutral
(37 � C)

Lee et al. (2008) [29] Cycling 50 90 25.3 60.0 400 ml of 10 or 37� C water ingested at 30,
45, 60 and 75 min of exercise

Lee et al. (2014) [31] Running 70 75 30.2 71.0 155-g neck cooling collar worn throughout.
No neck cooling collar

Minniti et al. (2011) [38] Running 60 75 30.4 53.0 155-g neck cooling collar worn throughout.
Uncooled collar

Morris et al. (2015) [32] Cycling 55 75 33.5 23.7 2.25 3.2 mg�kg- 1 (240 ml) or 37� C of ice slurry
ingested at 15-min intervals for Þrst
45 min of exercise

Scheadler et al. (2013) [33] Running 75 53 30.0 50.0 Refrigerated gel pack on single palm. No
refrigerated gel pack

Schulze et al. (2015) [30] Cycling 60 30.0 80.0 9.1 Ad libitum ingestion of either
carbohydrate-electrolyte solution ice
slurry (- 1 � C) or thermoneutral beverage
(30 � C)

Tyler et al. (2010) [36] Running 60 75 30.4 53.0 155-g neck cooling collar worn throughout.
Uncooled collar

Tyler and Sunderland (2011)
[34]

Running 70 41 32.2 53.0 155-g neck cooling collar worn throughout.
No cooling collar

Tyler and Sunderland (2011)
[35]

Running 60 75 30.4 53 155-g neck cooling collar worn throughout.
Neck cooling collar replaced at 30 and
60 min. No cooling collar

Bulbulian et al. (1999) [39] Cycling 60 30 30 25 8.9 Headband and neck cooling collar soaked
in ice water. No cooling

_VO2maxmaximum aerobic capacity
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To understand the mechanistic actions of cooling during
exercise, we discriminated between studies that used Þxed-
intensity exercise and self-paced performance trials. Dur-
ing self-paced exercise, participants are free to choose
external intensity and regulate performance, but between-
trial differences in intensity make interpretations of ther-
mophysiological data difÞcult. During Þxed-intensity
exercise, however, thermophysiological effector responses
are forced [46]. Such responses (e.g. core temperature) are
typically reliable [47] and enable valid comparisons
between interventions. Bongers et al. [18] did not dis-
criminate between Þxed-intensity exercise or self-paced
performance and it was not the aim of Tyler et al. [19] to do
so, but both studies reported thermophysiological

responses. This distinction between study designs is a
possible explanation for the differences reported in per-
ceptual responses between the present study and that of
Tyler et al. [19]. Our analysis indicates that RPE and
thermal perception are improved with cooling during Þxed-
intensity exercise; however, Tyler et al. [19] reported
unclear Þndings.

We discriminated between time-to-exhaustion trials and
self-paced performance trials, which the two previous
meta-analyses did not. These types of test are suggested to
be regulated by different mechanisms; in self-paced trials
participants are free to choose external intensity, and whilst
this choice might have a physiological origin, behaviour is
regulated by RPE within acceptable limits for the task [2]

Fig. 2 Intervention effect estimates, 95 % CIs and weighted average of the Std for mean core temperature.CI conÞdence interval,IV inverse
variance,SD standard deviation,Stdstandardised mean difference

Fig. 3 Intervention effect estimates, 95 % CIs and weighted average of the Std for end-exercise core temperature.CI conÞdence interval,IV
inverse variance,SD standard deviation,Stdstandardised mean difference
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Fig. 4 Intervention effect estimates, 95 % CIs and weighted average of the Std for mean skin temperature.CI conÞdence interval,IV inverse
variance,SD standard deviation,Stdstandardised mean difference

Fig. 5 Intervention effect estimates, 95 % CIs and weighted average of the Std for mean heart rate.CI conÞdence interval,IV inverse variance,
SD standard deviation,Stdstandardised mean difference

Fig. 6 Intervention effect estimates, 95 % CIs and weighted average of the Std for mean rating of perceived exertion.CI conÞdence interval,IV
inverse variance,SD standard deviation,Stdstandardised mean difference
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to avoid excessive physiological strain. In Þxed-intensity
exercise, participants cannot freely choose external inten-
sity and the increasing demands on cardiovascular, neu-
romuscular and central nervous systems as a result of
metabolic heat production and heat storage [48] integrate
with psychological factors to determine time to exhaustion.
Therefore, these types of tests should be analysed sepa-
rately to avoid confusion in interpretation. Furthermore, it
is well established that time-to-exhaustion tests have a
greater magnitude of test-retest error than time trials [49]
and such variance might contribute to wider CIs resulting
in an unclear effect. Indeed, we found unclear effects of
neck cooling [31, 34], cold ßuid ingestion [29] and a palm
cold gel pack [33] on exercise time to exhaustion.

4.1 Core Temperature

Bongers et al. [18] suggested that cooling during exercise
might attenuate the increase in core temperature, increase
heat storage capacity and improve exercise capacity based
on the theory for a single terminal tissue temperature
(Ôcritical core temperatureÕ) for cessation of exercise. This
assertion was based upon the purported effectiveness of an

ÔaggressiveÕ cooling strategy using an ice vest [50]. Ice
vests, however, are not practical for use during continuous
exercise performance and the mechanistic theory (critical
core temperature hypothesis) underpinning this recommen-
dation is likely too simple to explain human behavioural
thermoregulation [48, 51]. Nevertheless, we investigated this
hypothesis using Þxed-intensity exercise trials. None of the
practical cooling methods demonstrated clear reductions in
either mean or end-exercise core temperature. A possible
explanation is that the enthalpy of cooling methods was
insufÞcient or the site at which cooling was applied had
limited tissue perfusion (required for effective heat transfer).
This might have been the case in cold water and slurry
ingestion given the documented reduction in splanchnic
blood ßow during exercise in the heat [52] and also for neck
cooling. Continuous cooling at a site with potential for high
rates of perfusion would seem to be an ideal method for
attenuating increases in body temperature.

4.2 Perceptual Responses

Flouris and Schlader [2] suggested that thermal perception
is an important mediator of behavioural thermoregulation

Fig. 7 Intervention effect estimates, 95 % CIs and weighted average of the Std for thermal perception.CI conÞdence interval,IV inverse
variance,SD standard deviation,Stdstandardised mean difference

Fig. 8 Intervention effect estimates, 95 % CIs and weighted average of the Std for whole body sweat production.CI conÞdence interval,IV
inverse variance,SD standard deviation,Stdstandardised mean difference
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that integrates with RPE in its role as the predominant
controller of the intensity of exercise. We found that RPE
and thermal perception were improved by cooling during
Þxed-intensity exercise, and this is a key Þnding from our
analysis. Prior to increases in core temperature, self-se-
lected intensity of exercise is likely mediated by thermal
perception and its inßuence on RPE, whereas when core
and skin temperature are elevated, cardiovascular strain is a
key RPE input [2]. Studies included in the present meta-
analysis used neck cooling, ice slurry and ßuid ingestion.
Cooling the neck during heat exposure elicits feelings of
thermal comfort at rest [53], a Þnding extended to two

[31, 36] of three studies of neck cooling during exercise.
We found an unclear effect for one study [34]; the reason
for this is unknown as the neck cooling collar was the same
and participants and environmental conditions were similar
in all three investigations. The study, however, was
designed to investigate time to exhaustion and the Þnal
core temperature was[ 39 � C; therefore cardiovascular
strain might have been the key RPE mediator rather than
thermal perception. However, it is worth noting that RPE
was similar between conditions. There was also a clear
beneÞcial effect of ice slurry ingestion on thermal per-
ception in one study [27], but not in another [30]. These

Fig. 9 Intervention effect estimates, 95 % CIs and weighted average
of the Std for self-paced performance. ÔTyler et al. [36]Õ refers to the
second experiment reported in the manuscript.CI conÞdence interval,

IV inverse variance,SD standard deviation,Std standardised mean
difference
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differences might be attributed to the study design,
speciÞcally, a beneÞcial effect of set-planned [27] rather
than ad libitum [30] ingestion of slurry. Lee et al. [29]
reported similar between-trial responses for thermal per-
ception (400 ml of 10� C ßuid versus 37� C ßuid ingested
at 15-min intervals), although the mean ambient tempera-
ture of 25.3�C combined with an intensity of 50 %_VO2max

was among the least thermally stressful of included
studies; indeed Þnal core temperature was 38.11� C, less
than the mean of included studies, which was
38.48± 0.58 � C.

Six out of eight studies reported mean improvements for
RPE. Standardised mean differences for neck cooling [34]
and palm cold pack [33] were similar for experimental and
comparator trials. It is unclear whether palm cooling
occurred in the latter study [33] because palm skin tem-
perature was not reported; thus absence of cooling might be
an explanation for the similar between-trial RPE. Never-
theless, the weighted standardised mean difference and
95 % CI indicate that cooling during exercise has the
potential to improve RPE; possibly mediated via beneÞcial
effects of cooling on thermal perception.

4.3 Performance

Our Þndings indicate that cooling during Þxed-intensity
exercise before a self-paced time trial improves performance
(Fig. 9). Strictly, this could be considered cooling before
performance, but we included these studies in our analysis
because of the number of studies that have classiÞed this type
of design as cooling during exercise. These data are infor-
mative for those sports whereby Ôsub-maximalÕ intensities
precede an intense period of activity, such as in team road
cycling. In these circumstances, tactical efforts are used to
position a rider (or group) for an ÔattackÕ at key points within
a race. Cooling during the sub-maximal phase of the race,
whereby ßuid ingestion and external cooling aids are less
constrained by logistics, might beneÞt performance in a
subsequent ÔattackÕ. In stand-alone self-paced performance
trials, there are usually observable Ôend spurtsÕ, which prior
cooling might also beneÞt; however, we did not investigate
pacing proÞles in these studies. Furthermore, we found
unclear effects of cooling during stand-alone self-paced
performance trials, but the three trials included in the meta-
analysis all reported mean improvements; a larger sample
size would improve the precision of the effect.

4.4 Skin Temperature and Heart Rate

We observed unclear effects of cooling during exercise on
mean skin temperature and heart rate during Þxed-intensity
exercise. Burdon et al. [28] investigated a potential link

between ice slurry ingestion, decreased skin temperature
and heart rate during exercise. Although Burdon et al. [28]
reported a statistically signiÞcant difference (P\ 0.05)
between ice slurry and thermoneutral trials for mean skin
temperature towards the end of 90 min of cycling at 62 %
_VO2max in 30 � C, our analysis found an unclear effect on

mean skin temperature [HedgesÕg = - 0.88 (95 % CI
- 1.81 to 0.05)] for this study. These unclear effects were
replicated across all included studies apart from Burdon
et al. [26], where there was a beneÞcial effect of cold ßuid
ingestion (4� C, * 185 ml every 10 min for 90 min) on
mean skin temperature [HedgesÕg = - 1.40 (95 % CI
- 2.62 to- 0.19)]. There were no beneÞcial effects on heart
rate across the range of included studies (Fig.5) in the
present meta-analysis. This does not, however, indicate
there were no beneÞcial effects on skin blood ßow or
stroke volume, as skin temperature and heart rate are only
indexes of these variables in this context.

The effect of cooling during exercise on whole body
sweat rate was unclear (Fig.8), although one study [32]
reported a clear decrease in whole body sweat rate after
ingesting 3.2 ml�kg- 1 of ice slurry (* 240 ml) at three
15-min intervals (15, 30 and 45 min) during the Þrst
45 min of 75 min of exercise. The authors suggested that
intra-abdominal thermoreceptors integrate with the central
nervous system to elicit strong thermoeffector responses at
the skin surface, in particular sudomotor function. There-
fore, despite an internal heat sink caused by slurry inges-
tion, the decreased evaporative heat loss impaired net heat
loss and increased heat storage. It should be noted that this
was the only study included in the meta-analysis that used
ice slurry during exercise to investigate whole body sweat
rate responses; more research is required to corroborate
these Þndings.

4.5 Study Methods and Reporting

All studies included in the present investigation were ran-
domised cross-over trials; however, it was unclear as to
how randomisation and allocation concealment occurred
(Table3). Researchers should report this information to
facilitate appraisal of bias and study quality. Some studies
(e.g. Tyler and Sunderland [35]) reported changes in local
temperature as a result of cooling; however, most studies
did not. Tyler et al. [19] recognised that such information is
required to conÞrm whether local cooling occurred as a
result of the intervention and is particularly relevant for
external cooling methods. In addition, researchers should
indicate the practicality of the method and report feelings
of uncomfortableness, irritations, adverse effects and gen-
eral appraisals from participants. This information would
be helpful to scientists, coaches and athletes who are in the
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process of evaluating the suitability of a particular cooling
method for their own speciÞc use.

4.6 Limitations

A potential limiter to the application of all cooling studies
is that there is no consensus as to what constitutes a
practical or impractical cooling strategy. The suitability of
a particular technique is ultimately based upon complex
interplay between the logistical constraints of the situation,
coaching philosophy and athlete perceptions. Nevertheless,
researchers have investigated strategies that might not be
feasible for use during continuous exercise, a problem that
has been previously identiÞed in the scientiÞc literature
[19, 21]. In the absence of such consensus, we have
excluded strategies that we deem to be impractical for use
during actual competition. This might have introduced
selection bias within our included studies, but we are
conÞdent that we have captured strategies that are useful
for athletes, coaches and scientists. Including studies that
used impractical strategies would have limited the

ecological validity of the present review and thus its
applied impact. We acknowledge that the data presented
here are based entirely on samples from male participants.
There is some evidence indicating a lower sweat rate in
females compared with males [54]; however, we did not
Þnd any differences in sweat rate as a result of cooling.
Nevertheless, a reduced capability for sweating and lower
aerobic capacity might feed forward to thermal perception
and RPE. Therefore we recommend cautious application of
our Þndings to females and encourage future research in
this area.

4.7 Recommendations

Our analysis provides evidence that self-paced perfor-
mance is improved when the cooling strategy is adminis-
tered during continuous exercise before the performance
trial. Ice slurry ingestion and neck cooling are the most
studied practical cooling interventions and are both asso-
ciated with beneÞcial effects on thermal perception, RPE
and performance. We suggest that improvements in self-

Table 3 Risk of bias assessment

Study Random sequence
generation

Allocation
concealment

Blinding of participants
and personnel

Blinding of outcome
assessment

Incomplete
outcome data

Selective
reporting

Burdon et al. (2010)
[26]

? ? - ? ? ?

Burdon et al. (2013)
[27]

? ? - ? ? ?

Burdon et al. (2015)
[28]

? ? - ? ? ?

Lee et al. (2008) [29] ? ? - ? ? ?

Lee et al. (2014) [31] ? ? - ? ? ?

Minniti et al. (2011)
[38]

? ? - ? ? ?

Morris et al. (2015)
[32]

? ? - ? ? ?

Scheadler et al.
(2013) [33]

? ? - ? ? ?

Schulze et al. (2015)
[30]

? ? - ? ? ?

Tyler et al. (2010)
[36]

? ? - ? ? ?

Tyler and Sunderland
(2011) [34]

? ? - ? ? ?

Tyler and Sunderland
(2011) [35]

? ? - ? ? ?

Bulbulian et al.
(1999) [39]

? ? - ? ? ?

Carvalho et al. (2014)
[43]

? ? - ? ? ?

? Low risk of bias,- high risk of bias,? unclear risk of bias
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paced performance are mediated via the beneÞcial effects
of cooling on thermal perception and RPE. This is con-
sistent with human behavioural thermoregulatory theory
[2], which states that self-selected intensity of exercise
increases or decreases dependent on the magnitude of
thermal or cardiovascular strain, which integrates with the
predominant intensity controller, RPE. In principle, par-
ticipants felt cooler during exercise and perceived the
intensity of exercise to be less. Consequently, participants
chose to increase external intensity, resulting in a perfor-
mance improvement. This is clearly beneÞcial for high-
performance athletes; however, it is associated with a risk
of heat-related illness, particularly for novice and youth
athletes, as an increased intensity causes a greater magni-
tude of metabolic heat production, heat storage and body
temperature. This combination is of particular concern if
the environment is uncompensable or the thermoregulatory
responses of the participant are inadequate to equilibrate
the basic heat balance equation [1].

Practitioners should also be aware relatively large vol-
umes of ice slurry (240 ml) or cold water ingestion
([ 400 ml) might decrease sweat gland activity and limit
the potential for evaporative heat loss, resulting in heat
storage and high body temperature. This is another concern
for underprepared novice and youth populations whose
whole body sweat responses and evaporative heat transfer
potential are likely inadequate to match that required to
attain heat balance. Such a bolus, however, is associated
with discomfort [32], and an ingestion of this magnitude
would likely be avoided ad libitum. We are not aware of
any meaningful detriment on whole body sweat rate
occurring due to neck cooling; however, neck cooling is
associated with the attainment of a high body temperature
(Fig. 3). Indeed, none of the practical cooling methods
were sufÞcient to attenuate an increase in body tempera-
ture. Therefore, we suggest practitioners undertake a
thorough evaluation of the environment where competition
or training will take place and that metabolic heat pro-
duction and evaporative heat loss requirements are esti-
mated prior to activity. Adequate body temperature, ßuid
balance and perceptual monitoring procedures [3, 55]
should be in place, especially for highly motivated novice
and youth athletes. Such an approach will improve the
likelihood that appropriate cooling strategies are imple-
mented during exercise. To date, no studies have investi-
gated a combination of neck cooling, ice slurry and cold
ßuid ingestion; these strategies might have additive effects
and be more beneÞcial than administering a single method
alone. Future research should also consider exploiting sites,
such as the hands, that have potential to attenuate increases
in body temperature [56, 57]. In addition, opinions of
coaches, athletes and support staff regarding the practi-
cality of cooling methods should be evaluated to guide

scientists towards research that has high ecological validity
and sound mechanistic underpinning.

5 Conclusion

We found that practical cooling strategies administered
during exercise before a self-paced endurance trial improve
performance in hot environments, but not by decreasing core
temperature as previously thought [18]. Instead we suggest
that current methods improve performance by beneÞting
thermal perception and RPE, resulting in greater self-se-
lected external intensities compared with a thermoneutral or
no cooling trial, thus improving endurance performance. We
encourage practitioners to explore the use of cold ßuid, ice
slurry ingestion and neck cooling for endurance performance
enhancement after examining the thermal constraints of the
environment. Future research should investigate a combi-
nation of approaches to cooling during continuous exercise
as well as additional sites, such as the hands, that have the
potential to attenuate increases in body temperature.

Compliance with Ethical Standards

Funding No funding or Þnancial support was received to conduct
this study.

Conßict of interest Alan Ruddock, Brent Robbins, Garry Tew, Liam
Bourke and Alison Purvis declare they have no conßict of inter-
est relevant to the content of this review.

Open AccessThis article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Kenny GP, Jay O. Thermometry, calorimetry, and mean body
temperature during heat stress. Compr Physiol. 2013;3:1689Ð719.

2. Flouris AD, Schlader ZJ. Human behavioral thermoregulation
during exercise in the heat. Scand J Med Sci Sports.
2015;25:52Ð64.

3. Casa DJ, DeMartini JK, Bergeron MF, et al. National athletic
trainersÕ association position statement: exertional heat illnesses.
J Athl Train. 2015;50:986Ð1000.

4. Galloway SDR, Maughan RJ. Effects of ambient temperature on
the capacity to perform prolonged cycle exercise in man. Med Sci
Sports Exerc. 1997;29:124Ð1249.

5. Gonza«lez-Alonso J, Teller C, Andersen SL, et al. Inßuence of
body temperature on the development of fatigue during prolonged
exercise in the heat. J Appl Physiol. 1999;86:1032Ð9.

6. Parkin JM, Carey MF, Zhao S, et al. Effect of ambient temper-
ature on human skeletal muscle metabolism during fatiguing
submaximal exercise. J Appl Physiol. 1999;86:902Ð8.

530 A. Ruddock et al.

123



7. Tatterson AJ, Hahn AG, Martin DT, et al. Effect of heat stress on
physiological responses and exercise performance in elite
cyclists. J Sci Med Sport. 2000;3:186Ð93.

8. Tucker R, Rauch L, Harley YXR, et al. Impaired exercise
performance in the heat is associated with an anticipatory
reduction in skeletal muscle recruitment. Pßugers Arch.
2004;448:422Ð30.

9. Guy J, Deakin G, Edwards A, et al. Adaptation to hot environ-
mental conditions: an exploration of the performance basis,
procedures and future directions to optimise opportunities for
elite athletes. Sports Med. 2014;45:303Ð11.

10. Ely BR, Cheuvront SN, KeneÞck RW, et al. Aerobic performance
is degraded, despite modest hyperthermia, in hot environments.
Med Sci Sports Exerc. 2010;42:135Ð41.

11. Ely MR, Cheuvront SN, Roberts WO, et al. Impact of weather on
marathon-running performance. Med Sci Sports Exerc.
2007;39:487Ð93.

12. Nybo L, Secher NH, Nielsen B. Inadequate heat release from the
human brain during prolonged exercise with hyperthermia.
J Physiol. 2002;545:697Ð704.

13. Gonza«lez-Alonso J, Calbet JA. Reductions in systemic and
skeletal muscle blood ßow and oxygen delivery limit maximal
aerobic capacity in humans. Circulation. 2003;107:824Ð30.

14. Levels K, de Koning J, Broekhuijzen I, et al. Effects of radiant
heat exposure on pacing pattern during a 15-km cycling time
trial. J Sports Sci. 2014;32:845Ð52.

15. Schlader ZJ, Perry BG, Jusoh MRC, et al. Human temperature
regulation when given the opportunity to behave. Eur J Appl
Physiol. 2013;113:1291Ð301.

16. Fukazawa T, Havenith G. Differences in comfort perception in
relation to local and whole body skin wettedness. Eur J Appl
Physiol. 2009;106:15Ð24.

17. Morante SM, Brotherhood JR. Thermoregulatory responses dur-
ing competitive singles tennis. Br J Sports Med. 2008;42:736Ð41.

18. Bongers CCWG, Thijssen DHJ, Veltmeijer MTW, et al. Pre-
cooling and percooling (cooling during exercise) both improve
performance in the heat: a meta-analytical review. Br J Sports
Med. 2015;49:377Ð84.

19. Tyler CJ, Sunderland C, Cheung SS. The effect of cooling prior
to and during exercise on exercise performance and capacity in
the heat: a meta-analysis. Br J Sports Med. 2015;49:7Ð13.

20. Burdon CA, Connor HTO, Gifford JA, et al. Inßuence of bev-
erage temperature on exercise performance in the heat: a sys-
tematic review. Int J Sport Nutr. 2010;20:166Ð74.

21. Siegel R, Laursen PB. Keeping your cool heat with internal
cooling methods. Sports Med. 2012;42:89Ð98.

22. DeGroot DW, Gallimore RP, Thompson SM, et al. Extremity
cooling for heat stress mitigation in military and occupational
settings. J Therm Biol. 2013;38:305Ð10.

23. Seals DR. Translational physiology: from molecules to public
health. J Physiol. 2013;591:3457Ð69.

24. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement
for reporting systematic reviews and meta-analyses of studies that
evaluate healthcare interventions explanation and elaboration.
BMJ. 2009;339:b2700.

25. Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane
CollaborationÕs tool for assessing risk of bias in randomised tri-
als. BMJ. 2011;343:d5928.

26. Burdon C, OÕconnor H, Gifford J, et al. Effect of drink temper-
ature on core temperature and endurance cycling performance in
warm, humid conditions. J Sports Sci. 2010;28:1147Ð56.

27. Burdon CA, Hoon MW, Johnson NA, et al. The effect of ice
slushy ingestion and mouthwash on thermoregulation and
endurance performance in the heat. Int J Sport Nutr Exerc.
2013;23:458Ð69.

28. Burdon CA, Ruell P, Johnson N, et al. The effect of ice-slushy
consumption on plasma vasoactive intestinal peptide during
prolonged exercise in the heat. J Therm Biol. 2015;47:59Ð62.

29. Lee JKW, Maughan RJ, Shirreffs SM. The inßuence of serial
feeding of drinks at different temperatures on thermoregulatory
responses during cycling. J Sports Sci. 2008;26:583Ð90.

30. Schulze E, Daanen H, Levels K, et al. Effect of thermal state and
thermal comfort on cycling performance in the heat. Int J Sport
Physiol Perform. 2015;10:655Ð63.

31. Lee JKW, Koh ACH, Koh SXT, et al. Neck cooling and cognitive
performance following exercise-induced hyperthermia. Eur J
Appl Physiol. 2014;114:375Ð84.

32. Morris NB, Coombs G, Jay O. Ice slurry ingestion leads to a
lower net heat loss during exercise in the heat. Med Sci Sport
Exerc. 2016;48:114Ð22.

33. Scheadler CM, Saunders NW, Hanson NJ, et al. Palm cooling
does not improve running performance. Int J Sports Med.
2013;34:732Ð5.

34. Tyler CJ, Sunderland C. Cooling the neck region during exercise
in the heat. J Athl Train. 2011;46:61Ð8.

35. Tyler CJ, Sunderland C. Neck cooling and running performance
in the heat: single versus repeated application. Med Sci Sports
Exerc. 2011;43:2388Ð95.

36. Tyler CJ, Wild P, Sunderland C. Practical neck cooling and time-
trial running performance in a hot environment. Eur J Appl
Physiol. 2010;110:1063Ð74.

37. Ramanathan NL. A new weighting system for mean surface
temperature of the human body. J Appl Physiol. 1964;19:531Ð3.

38. Minniti A, Tyler CJ, Sunderland C. Effects of a cooling collar on
affect, ratings of perceived exertion, and running performance in
the heat. Eur J Sport Sci. 2011;11:419Ð29.

39. Bulbulian R, Shapiro R, Murphy M, Levenhagen D. Effective-
ness of a commercial head-neck cooling device. J Strength Cond
Res. 1999;13:198Ð205.

40. Young AJ, Sawka MN, Epstein Y, et al. Cooling different body
surfaces during upper and lower body exercise. J Appl Physiol.
1987;63:1218Ð23.

41. Gagge AP, Stolwijk JA, Hardy J. Comfort and thermal sensations
and associated physiological responses at various ambient tem-
peratures. Environ Res. 1967;1:1Ð20.

42. Parsons K. Human thermal environments: the effects of hot,
moderate, and cold environments on human health, comfort, and
performance. 3rd ed. Boca Raton: CRC Press; 2014.

43. Carvalho M, de Andrade M, Ramos G, et al. The temperature of
water ingested ad libitum does not inßuence performance during
a 40-km self-paced cycling trial in the heat. J Sports Med Phys
Fitness. 2015;55:1473Ð9.

44. Kenny GP, Schissler AR, Stapleton J, et al. Ice cooling vest on
tolerance for exercise under uncompensable heat stress. J Occup
Environ Hyg. 2011;8:484Ð91.

45. Mu¬ndel T, King J, Collacott E, et al. Drink temperature inßu-
ences ßuid intake and endurance capacity in men during exercise
in a hot, dry environment. Exp Physiol. 2006;91:925Ð33.

46. Sawka MN, Leon LR, Montain SJ, et al. Integrated physiological
mechanisms of exercise performance, adaptation, and maladap-
tation to heat stress. Compr Physiol. 2011;1:1883Ð928.

47. Ruddock AD, Tew GA, Purvis AJ. Reliability of intestinal tem-
perature using an ingestible telemetry pill system during exercise
in a hot environment. J Strength Cond Res. 2014;28:861Ð9.

48. Nybo L, Rasmussen P, Sawka MN. Performance in the heat-
physiological factors of importance for hyperthermia-induced
fatigue. Compr Physiol. 2014;4:657Ð89.

49. Currell K, Jeukendrup AE. Validity, reliability and sensitivity of
measures of sporting performance. Sports Med. 2008;38:
297Ð316.

Practical Cooling Methods During Continuous Exercise in Hot Environments 531

123



50. Luomala MJ, Oksa J, Salmi JA, et al. Adding a cooling vest
during cycling improves performance in warm and humid con-
ditions. J Therm Biol. 2012;37:47Ð55.

51. Nybo L, Gonza«lez-Alonso J. Critical core temperature: a
hypothesis too simplistic to explain hyperthermia-induced fati-
gue. Scand J Med Sci Sports. 2015;25:4Ð5.

52. Rowell LB. Human cardiovascular adjustments to exercise and
thermal-stress. Physiol Rev. 1974;54:75Ð159.

53. Nakamura M, Yoda T, Crawshaw LI, et al. Relative importance
of different surface regions for thermal comfort in humans. Eur J
Appl Physiol. 2013;113:63Ð76.

54. Gagnon D, Kenny GP. Does sex have an independent effect on
thermoeffector responses during exercise in the heat? J Physiol.
2012;590:5963Ð73.

55. Armstrong LE, Casa DJ, Millard-Stafford M, et al. American
College of Sports Medicine position stand. Exertional heat illness
during training and competition. Med Sci Sports Exerc.
2007;39:556Ð72.

56. Hsu AR, Hagobian TA, Jacobs KA, et al. Effects of heat removal
through the hand on metabolism and performance during cycling
exercise in the heat. Can J Appl Physiol. 2005;30:87Ð104.

57. Taylor NAS, Machado-Moreira CA, van den Heuvel AMJ, et al.
Hands and feet: physiological insulators, radiators and evapora-
tors. Eur J Appl Physiol. 2014;114:2037Ð60.

532 A. Ruddock et al.

123


