Rietveld refinement of Ba5(AsO4)3Cl from high-resolution synchrotron data

BELL, Anthony M. T., HENDERSON, C. Michael B., WENDLANDT, Richard F. and HARRISON, Wendy J.

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/12759/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

BELL, Anthony M. T., HENDERSON, C. Michael B., WENDLANDT, Richard F. and HARRISON, Wendy J. (2008). Rietveld refinement of Ba5(AsO4)3Cl from high-resolution synchrotron data. Acta Crystallographica Section E, E64 (9), i63-i64.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Theapatite-type compound Ba₅(AsO₄)₃Cl, pentabarium triarsenate(V) chloride, has been synthesized by ion exchange at high temperature from a synthetic sample of mimette (Pb₈(AsO₄)₀Cl₁), with BaCO₃ as a by-product. The results of the Rietveld refinement, based on high resolution synchrotron X-ray powder diffraction data, show that the title compound crystallizes in the same structure as other halogenoapatites with general formula A₅(YO₄)ₓX (A = divalent cation, Y = pentavalent cation, X = Cl, Br) in space group P₆₃/m. The structure consists of isolated tetrahedral AsO₄³⁻ anions (m symmetry), separated by two crystallographically independent Ba²⁺ cations that are located on mirror planes and threefold rotation axes, respectively. The Cl⁻ anions are at the 2h sites (3 symmetry) and are located in the channels of the structure.

Related literature

For crystal chemistry ofapatites, see: Mercier et al. (2005); White & ZhiLi (2003); Wu et al. (2003). For powder diffraction data on Ba-containing As-apatites, see: Kreidler & Hummel (1970); Dunn & Rouse (1978). Atomic coordinates as starting parameters for the Rietveld (Rietveld, 1969) refinement of the present phases were taken from Chengjun et al. (2005); Dai et al. (1991); de Villiers et al. (1971). For related Ba—Cl-apatites, see: Đorđević et al. (2008); Hata et al. (1979); Reinen et al. (1986); Roh & Hong (2005); Schiff-Francois et al. (1979). For synthetic work, see: Baker (1966); Essington (1988); Harrison et al. (2002).

Experimental

Crystal data

AsBa₅ClO₁₂ λ = 0.998043 Å μ = 56.07 (1) mm⁻¹ T = 298 K
Hexagonal, P₆₃/m Specimen shape: cylinder
a = 10.5770 (1) Å 40 × 0.7 × 0.7 mm
\(c = 7.73912 (8) \text{ Å} \) Specimen prepared at 100 kPa
V = 746.98 (1) Å³ Specimen prepared at 1258 K
Z = 2 Particle morphology: powder, white

Data collection

<table>
<thead>
<tr>
<th>Data collection</th>
<th>Specimen mounting: capillary</th>
<th>Specimen mounted in transmission mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-house design diffractometer</td>
<td>Scan method: step</td>
<td>Profile function: Fundamental</td>
</tr>
<tr>
<td>Specimen mounting: capillary</td>
<td>Absorption correction: none</td>
<td>Parameters</td>
</tr>
<tr>
<td>Specimen mounted in transmission mode</td>
<td>464 Bragg reflections</td>
<td>21 parameters</td>
</tr>
<tr>
<td></td>
<td>21 parameters</td>
<td>Preferred orientation correction: none</td>
</tr>
</tbody>
</table>

Refinement

<table>
<thead>
<tr>
<th>Refinement</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rp = 0.059</td>
<td></td>
</tr>
<tr>
<td>(R_{wp} = 0.082)</td>
<td></td>
</tr>
<tr>
<td>(R_{exp} = 0.067)</td>
<td></td>
</tr>
<tr>
<td>(R_B = 0.090)</td>
<td></td>
</tr>
<tr>
<td>(S = 1.23)</td>
<td></td>
</tr>
<tr>
<td>Excluded region(s): 2-6 degrees 2θ</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Selected geometric parameters (Å, °)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba₁—O₁ 2.67 (5) Ba₂—O₁¹ 3.14 (4)</td>
</tr>
<tr>
<td>Ba₁—O₂¹ 2.81 (4) Ba₂—Cl¹ 3.281 (5)</td>
</tr>
<tr>
<td>Ba₁—O₃³ 3.12 (3) As₁—O₃ 1.64 (2)</td>
</tr>
<tr>
<td>Ba₂—O₂³ 2.59 (4) As₁—O₁ 1.70 (8)</td>
</tr>
<tr>
<td>Ba₂—O₃³ 2.62 (4) As₁—O₂ 1.70 (4)</td>
</tr>
<tr>
<td>Ba₂—O₃³ 3.05 (4) As₁—O₃³ 1.70 (4)</td>
</tr>
</tbody>
</table>

Symmetry codes: (i) \(-x, y, z\); (ii) \(-y + 1, x, -z\); (iii) \(-x, y + 1, z\); (iv) \(x, y, z\); (v) \(-x + y + 1, -z\); (vi) \(-x + y, -x + 1, z\); (vii) \(x, -y, z\); (viii) \(y, x, -z + \frac{1}{2}\).

Data collection: local software; cell refinement: CELREF (Laugier & Bochu, 2003); data reduction: local software; method used to solve structure: coordinates taken from a related compound; program(s) used to refine structure: TOPAS (Coelho, 2000); molecular graphics: Balls and Sticks (Kang & Ozawa, 2003); software used to prepare material for publication: pubCIF (Westrip, 2008).

AMTB acknowledges the use of the EPSRC’s Chemical Database Service at Daresbury (Fletcher et al., 1996). AMTB also acknowledges the referees and Co-editor whose suggestions and comments helped to improve this paper.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2188).

References

inorganic compounds

supplementary materials
Rietveld refinement of Ba$_5$(AsO$_4$)$_3$Cl from high-resolution synchrotron data

A. M. T. Bell, C. M. B. Henderson, R. F. Wendlandt and W. J. Harrison

Comment

Apatites are minerals and synthetic compounds with general formula $A_5(YO_4)_3X$, containing tetrahedrally coordinated YO_4^{3-} anions (Y = pentavalent cation) and a monovalent anion X such as F$^-$, Cl$^-$ or OH$^-$. The divalent cations frequently belong to the alkaline earth group, but other cations like Pb$^{2+}$ are also known. For a review of the structures and crystal-chemistry of these materials, see Mercier et al. (2005) and White & Dong (2003). Apatites containing arsenic (As-apatites) are of interest as hosts for storage of arsenic removed from contaminated water (Harrison et al., 2002). Powder diffraction data for the Ba containing As-apatites Ba$_5$(AsO$_4$)$_3$Cl (Kreidler & Hummel, 1970) and for (Ba$_{2.25}$Ca$_{1.65}$Fe$_{0.06}$Mg$_{0.06}$)(AsO$_4$)$_{2.56}$(PO$_4$)$_{0.3}$Cl$_{1.09}$ (mineral name morelandite; Dunn & Rouse, 1978) were indexed in space group $P6_3/m$. Related crystal structures have also been reported for Ba$_5$(AsO$_4$)$_2$SO$_4$S (Schiff-Francois et al., 1979) and (Sr$_{1.66}$Ba$_{0.34}$)(Ba$_{2.61}$Sr$_{0.39}$)(AsO$_4$)$_3$Cl (Dordevic et al., 2008). The crystal structure of Ba$_5$(AsO$_4$)$_3$Cl in space group $P6_3/m$ is reported in the present communication.

Table 1 shows refined interatomic distances and angles for the Ba$_5$(AsO$_4$)$_3$Cl structure. The averaged Ba1—O and Ba2—O distances of respectively 2.87 Å and 2.84 Å are similar to those in other Ba and Cl containing apatites. In comparison, the average Ba1—O and Ba2—O distances are 2.84 Å and 2.78 Å for Ba$_5$(VO$_4$)$_3$Cl (Roh & Hong, 2005), 2.83 Å and 2.79 Å for Ba$_5$(PO$_4$)$_3$Cl (Hata et al., 1979) and 2.83 Å and 2.76 Å for Ba$_5$(MnO$_4$)$_3$Cl (Reinen et al., 1986). The As—O distances are characteristic for tetrahedral AsO$_4$ units. The O—As—O angles deviate significantly from the ideal tetrahedral angle of 109.5°, indicating a strong distortion.

The refined lattice parameters for Ba$_5$(AsO$_4$)$_3$Cl are similar to the previously published parameters of $a = 10.54$ Å, $c = 7.73$ Å given by Kreidler & Hummel (1970). A study of 108 existing and predicted apatites with different compositions made use of elemental radii to calculate their lattice parameters (Wu et al., 2003). Only 52 of these compositions had known lattice parameters. The predicted lattice parameters for Ba$_5$(AsO$_4$)$_3$Cl were $a = 10.3979$ Å, $c = 7.6105$ Å. These predicted parameters are respectively 1.51% and 1.66% smaller than the measured lattice parameters, and only 2 of the 52 apatite compositions had bigger differences between observed and calculated lattice parameters.

Fig. 1 shows the Rietveld difference plot for the present refinement. The crystal structure of Ba$_5$(AsO$_4$)$_3$Cl, showing the isolated tetrahedral AsO$_4^{3-}$ anions separated by Ba$^{2+}$ cations and Cl$^-$ anions, is displayed in Fig. 2.

Experimental

This work was part of an attempt to synthesize analogues of Pb$_5$(AsO$_4$)$_3$Cl (mimetite) with Pb$^{2+}$ substituted by alkaline earth cations. All starting materials were well crystallized solids. Pb$_5$(AsO$_4$)$_3$Cl was precipitated by titration of 0.1M Na$_2$HAsO$_4$ into a well stirred, saturated PbCl$_2$ solution at room temperature (procedure modified from methods of Baker (1966) and
supplementary materials

Essington (1988)). The molar ratio of Pb:As was slightly greater than 5:3, allowing for excess PbCl$_2$ during the precipitation. A very fine-grained pure solid formed immediately, which was then separated, washed, and dried. Typically, five de-ionized water washes were needed to reduced the conductivity of the wash water to $< 50 \mu S \text{cm}^{-1}$. Ba$_5$(AsO$_4$)$_3$Cl was successfully synthesized by ion exchange of Pb$_5$(AsO$_4$)$_3$Cl with molten BaCl$_2$ at 1258 K (modified from the method given by Kreidler & Hummel (1970)). Two fusions were required to completely eliminate formation of Pb containing solid solutions and to yield the Pb free title compound. Excess metal in the form of BaCl$_2$ was removed from the solids by repeated washing with de-ionized water followed by centrifugation and filtration to separate the solid from the solution.

Refinement

The powdered sample was loaded into a 0.7 mm diameter borosilicate capillary, prior to high-resolution synchrotron X-ray powder diffraction data collection using station 9.1 of the Daresbury Synchrotron Radiation Source. The beam on the sample was 13 mm wide and 1.2 mm high. 9 powder datasets were collected, all were with a step with of 0.01°/2θ and a counting time of 2 s per point. Three of these datasets were collected between 5–70°/2θ, two between 30–70°/2θ, two between 40–70°/2θ, one between 31.73–70°/2θ and one between 2–13.2°/2θ. All of these data were summed and normalized to account for decay of the synchrotron beam with time. The main Bragg reflections of the powder diffraction pattern could be indexed in space group $P6_3/m$ with similar lattice parameters to those of the published powder diffraction data (Kreidler & Hummel, 1970). Some broad and weak Bragg reflections were matched by the pattern of BaCO$_3$ in space group $Pmcn$. The synchrotron X-ray wavelength was calibrated as 0.998043Å with an external NIST 640c silicon standard reference material.

Initial lattice parameters for the two phases were refined using CELREF (Laugier & Bochu, 2003). The $P6_3/m$ crystal structure of Ba$_5$(PO$_4$)$_3$(OH) (Chengjun et al., 2005) was used as a starting model for the Rietveld (Rietveld, 1969) refinement of the structure of Ba$_5$(AsO$_4$)$_3$Cl. The crystal structure of witherite (de Villiers et al., 1971) was used as a starting model for refinement of the structure of BaCO$_3$. Isotropic atomic displacement parameters were used for both phases. For the Ba$_5$(AsO$_4$)$_3$Cl phase the As—O distances in the AsO$_4$ tetrahedral units were constrained to those for mimetite (Dai et al., 1991). For the BaCO$_3$ phase the C—O distances of the trigonal carbonate anion were constrained to those in witherite, and the U_{iso} factors for all atoms in the carbonate anion were constrained to be the same. As the Ba$_5$(AsO$_4$)$_3$Cl phase was prepared by ion-exchange of Pb$_5$(AsO$_4$)$_3$Cl, Rietveld refinements were done with the metal sites partially occupied by both Pb and Ba. However, this resulted in the refined Pb occupancies falling to zero. Therefore the occupancies of the metal sites were fixed as fully occupied by Ba and no Pb was included for the final refinement of the Ba$_5$(AsO$_4$)$_3$Cl phase. Proportions of the two phases were refined as 64.7 (9) wt.% Ba$_5$(AsO$_4$)$_3$Cl and 35.3 (9) wt.% BaCO$_3$.

Figures

Fig. 1. Rietveld difference plot for the multi-phase refinement of Ba$_5$(AsO$_4$)$_3$Cl and BaCO$_3$. The black dots, and grey and black lines show respectively the observed, calculated and difference plots. Calculated Bragg reflection positions are indicated by triangles for the Ba$_5$(AsO$_4$)$_3$Cl phase and by crosses for the BaCO$_3$ phase.
Fig. 2. The crystal structure of Ba$_5$(AsO$_4$)$_3$Cl. Pink tetrahedra show AsO$_4$ units with As$^{5+}$ cations as yellow spheres and O$^{2-}$ anions as red spheres. Large blue spheres represent Ba$^{2+}$ cations and small green spheres Cl$^-$ anions.

pentabarium tris(arsenate(V)) chloride

Crystal data
As$_3$Ba$_5$Cl$_1$O$_{12}$; $Z = 2$

$M_r = 1138.85$

Hexagonal, $P6_3/m$

$a = 10.5570 (1)$ Å

$b = 10.5570 (1)$ Å

$c = 7.73912 (8)$ Å

$α = 90^\circ$

$β = 90^\circ$

$γ = 120^\circ$

$V = 746.98 (1)$ Å3

$D_x = 5.063 (1)$ Mg m$^{-3}$

$\lambda = 0.998043$ Å

$\mu = 56.07$ (1) mm$^{-1}$

$T = 298$ K

Specimen shape: cylinder

$40 \times 0.7 \times 0.7$ mm

Specimen prepared at 100 kPa

Specimen prepared at 1258 K

Particle morphology: powder, white

Data collection
In-house design diffractometer

Monochromator: Si(111) channel-cut crystal

$2\theta_{\text{min}} = 2$, $2\theta_{\text{max}} = 70^\circ$

Specimen mounting: capillary

Increment in $2\theta = 0.01^\circ$

Specimen mounted in transmission mode

Increment in $2\theta = 0.01^\circ$

Scan method: step

Refinement
$R_p = 0.059$

$R_{wp} = 0.082$

$R_{exp} = 0.067$

$R_B = 0.090$

$S = 1.23$

$\Delta/\sigma$$_{\text{max}} = 0.001$

Wavelength of incident radiation: 0.998043 Å

Excluded region(s): 2-6 degrees 2θ.

Profile function: Fundamental Parameters

21 parameters

3 constraints

$\text{Preferred orientation correction: None}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$)

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>$U_{\text{iso}/\text{eq}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba1</td>
<td>0.3333</td>
<td>0.6667</td>
<td>0.0061 (9)</td>
<td>0.059 (1)</td>
</tr>
<tr>
<td>Ba2</td>
<td>0.2445 (4)</td>
<td>0.9874 (6)</td>
<td>0.2500</td>
<td>0.065 (1)</td>
</tr>
</tbody>
</table>
supplementary materials

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>As1</td>
<td>0.4047 (7)</td>
<td>0.3716 (7)</td>
<td>0.2500</td>
<td>0.059 (2)</td>
</tr>
<tr>
<td>O1</td>
<td>0.347 (7)</td>
<td>0.495 (6)</td>
<td>0.2500</td>
<td>0.13 (2)</td>
</tr>
<tr>
<td>O2</td>
<td>0.591 (4)</td>
<td>0.473 (4)</td>
<td>0.2500</td>
<td>0.08 (1)</td>
</tr>
<tr>
<td>O3</td>
<td>0.354 (2)</td>
<td>0.280 (3)</td>
<td>0.068 (3)</td>
<td>0.065 (8)</td>
</tr>
<tr>
<td>Cl1</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.070 (6)</td>
</tr>
</tbody>
</table>

Geometric parameters (Å, °)

Ba1—O1\(\text{vi} \) 2.67 (5) Ba2—O3\(\text{vi} \) 2.62 (4)
Ba1—O1\(\text{ii} \) 2.67 (5) Ba2—O3\(\text{vii} \) 3.05 (4)
Ba1—O1\(\text{iii} \) 2.67 (5) Ba2—O3\(\text{viii} \) 3.05 (4)
Ba1—O2\(\text{iii} \) 2.81 (4) Ba2—O1\(\text{ii} \) 3.14 (4)
Ba1—O2\(\text{iv} \) 2.81 (4) Ba2—Cl1\(\text{vii} \) 3.281 (5)
Ba1—O2\(\text{v} \) 2.81 (4) Ba2—Cl1\(\text{ix} \) 3.281 (5)
Ba1—O2\(\text{v} \) 3.12 (3) As1—O3 1.64 (2)
Ba1—O3\(\text{v} \) 3.12 (3) As1—O3\(\text{x} \) 1.64 (2)
Ba1—O3\(\text{v} \) 3.12 (3) As1—O1 1.70 (8)
Ba2—O2\(\text{i} \) 2.59 (4) As1—O2 1.70 (4)
Ba2—O3\(\text{iv} \) 2.62 (4)

O3—As1—O3\(\text{x} \) 118 (2) O3—As1—O2 108 (2)
O3—As1—O1 108 (1) O3\(\text{x} \)—As1—O2 108 (2)
O3\(\text{x} \)—As1—O1 108 (1) O1—As1—O2 106 (2)

Symmetry codes: (i) −y+1, x−y+1, z; (ii) −x+y, −x+1, z; (iii) x−y, x, z; (iv) y, −x+y+1, −z; (v) −x+1, −y+1, −z; (vi) y, −x+y+1, z+1/2; (vii) x, y+1, −z+1/2; (viii) x, y+1, z; (ix) −x, −y+1, z+1/2; (x) x, y, −z+1/2.

sup-4
Fig. 1
supplementary materials

Fig. 2