Rietveld refinements of the crystal structures of Rb2XSi5O12 (X = Mn, Ni)

BELL, Anthony M. T. and HENDERSON, C. Michael B.

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/12757/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

BELL, Anthony M. T. and HENDERSON, C. Michael B. (2016). Rietveld refinements of the crystal structures of Rb2XSi5O12 (X = Mn, Ni). In: British Crystallographic Association Spring Meeting, University of Nottingham, 4-7 April 2016. (Unpublished)

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Rietveld refinements of the crystal structures of Rb$_2$XSi$_5$O$_{12}$ (X = Mn, Ni)

A.M.T. Bell1(Anthony.Bell@shu.ac.uk) and C.M.B. Henderson2.

1. MERI, Sheffield Hallam University, Sheffield, S1 1WB. 2. SEAES, University of Manchester, Manchester, M13 9PL.

Introduction

Synthetic anhydrous analogues of the silicate framework minerals leucite (KAI(Si$_3$O$_9$) and pollucite (CsAl(Si$_3$O$_9$) can be prepared with the general formulae A$_2$BSi$_5$O$_{12}$ and ACSi$_5$O$_{12}$, where A is a monovalent alkali metal cation, B is a divalent cation and C is a trivalent cation. These structures all have the same topology with B and C cations partially substituting into a tetrahedrally occupied Si site. Isostructural cloud balancing cations sitting in extra-framework channels. The A cations can be replaced by ion exchange and these materials are of potential technological interest as storage media for radioactive Cs from nuclear waste [1]. We have used X-ray and neutron powder diffraction to determine and Rietveld [2] refine the crystal structures of many different leucite analogues [3-10]. In this poster we report the Rietveld refinements of the crystal structures of two more leucite analogues, Rb$_2$XSi$_5$O$_{12}$ where X = Mn or Ni [11].

Synthesis

The samples were made from stoichiometric mixtures of Rb$_2$CO$_3$, SiO$_2$ and MnO (X = Mn) or NiO (X = Ni). These mixtures were ground together and heated overnight at 873 K to decompose the carbonates, then melted in platinum crucibles at 1673 K for 2 hours (X = Mn) or 1573 K for 1.5 hours (X = Ni) before quenching to form glasses. The glasses were dry crystalized at ambient pressure and 1193 K for 12 days.

Data collection and analysis

Ambient temperature X-ray powder diffraction data were collected on these samples with a PANalytical X'Pert Pro MPD using Cu Kα X-rays and an X'Celerator area detector. Analyses of the powder diffraction data showed that both samples were single-phase and isostructural with the Pbca structure of Cs$_2$CdSi$_5$O$_{12}$ [6]. Rietveld refinements were done using FULLPROF [12], the Pbca crystal structures of Cs$_2$MnSi$_5$O$_{12}$ [7] and Cs$_2$NiSi$_5$O$_{12}$ [7] were used as starting models with Rb replacing Cs as the extra-framework cations. Figures 1 and 2 show the Rietveld difference plots for these structures.

Discussion

Complete tetrahedral site (T-site) cation order was present in the refined crystal structures for X = Ni and Mn, X and Si were ordered onto separate T-sites with extra-framework Rb cations. However, for X = Ni (Figure 3), the Ni site isotropic temperature factor was larger than expected [B$_{iso}$ = 7.5(9)Å2]. The mean Ni-O bond length for the NiO$_4$ tetrahedron is 1.90(2)Å, shorter than that seen in tetrahedrally coordinated NiO$_4$ units [13-14]. The mean Si-O bond length for the SiO$_4$ tetrahedron is 1.643(18)Å, longer than seen in tetrahedrally coordinated silicate frameworks [15]. This would suggest that there may be some Si/Ni T-site disorder in the Rb$_2$MnSi$_5$O$_{12}$ structure. A higher resolution synchrotron/neutron study may be needed to determine if this structure really has T-site disorder. For X = Mn (Figure 4) the mean Mn-O bond length for the MnO$_4$ tetrahedron is 2.02(1)Å, this distance is in agreement with that seen in tetrahedrally coordinated MnO$_4$ units [7]. This would suggest that the refined crystal structure for Rb$_2$MnSi$_5$O$_{12}$ has complete T-site cation order.

Inclusion of the larger Mn cation in the silicate framework, compared to Ni, causes the central channel of the framework to be slightly more distorted for Rb$_2$MnSi$_5$O$_{12}$ (Figure 4) compared to Rb$_2$NiSi$_5$O$_{12}$ (Figure 3).

Crystal structures were plotted with VESTA [16].

Conclusions

Two new crystal structures for Mn have been refined for the synthetic leucite analogues Rb$_2$XSi$_5$O$_{12}$ where X = Mn or Ni. These refined structures have complete T-site cation ordering and are isostructural with the Pbca structure of Cs$_2$CdSi$_5$O$_{12}$.

References: