

Using 3D stereophotogrammetry to evaluate the stability, and positional accuracy of a breast immobilisation device

ROSBOTTOM, Keeley, PROBST, Heidi http://orcid.org/0000-0003-2111-7710, BRAGG, Christopher Mark http://orcid.org/rcid.org/0000-0003-4509-0524, COLLINS, Karen, CRANK, Helen http://orcid.org/0000-0003-2615-3315, STANTON, Andrew and LANGLEY, Joe http://orcid.org/0000-0002-9770-8720

Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/12641/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

ROSBOTTOM, Keeley, PROBST, Heidi, CHOPPIN, Simon, BRAGG, Christopher Mark, COLLINS, Karen, CRANK, Helen, REED, Heath, STANTON, Andrew and LANGLEY, Joe (2016). Using 3D stereophotogrammetry to evaluate the stability, and positional accuracy of a breast immobilisation device. In: UK Radiation Oncology Conference, Liverpool, 6-8 June 2016. (Unpublished)

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University

http://www.support4all.org.uk

k.rosbottom@shu.ac.uk

Using 3D stereophotogrammetry to evaluate the stability, and positional accuracy of a breast immobilisation device

Keeley Rosbottom, Prof. Heidi Probst, Dr. Simon Choppin, Dr. Chris Bragg, Prof. Karen Collins, Dr. Helen Crank, Heath Read, Andrew Stanton, Joe Langley, Sheffield Hallam University

Background

- Breast cancer is the most frequent cancer among women globally, with an estimated 1.7 million new cases diagnosed in 2012^{1} .
- Developments in radiotherapy treatment complexity require more accurate breast stabilisation. The rationale supports the evaluation of a novel bra (S4A bra) created by the SuPPORT 4 All study team.
- 3D (3dMD) is a non-invasive system participant wore no bra. breast positional accuracy within made. the S4A bra in relation to anatomical landmarks² ahead of a Presented are the results for a clinical feasibility study.

Image 1: Anatomical landmarks used to identify positional movements of breast tissue. In Wheat et al (2014) p734.

Aims & Objectives

- 1. To assess if 3dMD is a useful tool to establish the capabilities of the S4A bra outside of the clinical setting.
- 2. To investigate the capability of the S4A bra compared to no bra to accurately reproduce breast shape and position after repeated placement.

Image 2: 3dMD camera configuration to acquire images: Authors original image.

Methods

Four surface scanning images of a healthy volunteer were taken: 2 of repeated bra fittings when wearing stereophotogrammetry the S4A bra, and 2 when the with the potential to evaluate allowed direct comparisons to be

Results

single case as an example. Positional movements of breast tissue (measured in mm), and Further changes in breast shape were scanned until a total of twenty assessed. Table 1 shows the cases with repeated images are between differences placement over 2 repeated images without and with the S4A bra.

	Average Distance (AD) in mm	AD +	AD -
No bra	-0.8	3.6	4.1
S4A bra	1.8	5.7	3.7

Table 1: Comparison of deviation from 2 overlaid images

images show the +/-5mm deviation analysis of 2 repeated images overlaid: green colour wash deviation. Red 3mm indicates shows a +5mm error and blue a -5mm error.

Image 3 shows the change in breast tissue placement after repeated images when wearing no

Image 4 shows the change in breast tissue placement after repeated images when wearing the S4A bra.

participants breast available for analysis.

Conclusion

Indications 3dMD that are suitable maybe scanning a method for assessing set up accuracy of new immobilisation devices prior to introduction to clinical practice as part of the product development process.

References

ttp://globocan.iarc.fr/old/FactSheets/cancers/breastnew.asp last accessed 11/03/16

2. Wheat JS, Choppin S, Goyal A. Development and assessment of a Microsoft Kinect based system for imaging the breast in three dimensions. Medical Engineering & Physics 2014;36:732–7. 38

This work is funded by the National Institute for Health Research (NIHR) **Invention for Innovation Programme** (programme grant number: II-LA-0214-20001)

