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Abstract: 

The effects of metal chlorides such as LiCl, NaCl, CdCl2 and CuCl2 on optical transmittance, 

electrical conductivity as well as morphology of PEDOT:PSS films have been investigated. 

Transmittance spectra of spun PEDOT:PSS layers were improved by more than 6% to a 

maximum of 94% in LiCl doped PEDOT:PSS film. The surface of the PEDOT:PSS films has 

exhibited higher roughness associated with an increase in the electrical conductivity after doping 

with metal salts. The improvement in the physical properties of PEDOT:PSS as the hole 

transport layer  proved to be key factors towards enhancing the P3HT:PCBM bulk heterojunction 

(BHJ) solar cells. These improvements include significantly improved power conversion 

effeciency with values as high as 6.82% associated with high fill factor (61%) and larger short 

circuit current density (~18 mA.cm
-2

). 

  

                                                           
*
Corresponding author 



 

 

1. Introduction: 

Organic solar cells (OSCs) have received significant attention during the last few decades due to 

their low cost processing which is compatible with flexible substrates, high throughput and thus 

requires less capital investment [1]. OSCs are mainly based on bulk heterojunctions (BHJ) of 

conjugated polymers such as poly (3-hexylthiophene) (P3HT) and fullerenes such as (6,6)-

phenyl-C61 butyric acid methyl ester (PCBM). Power conversion efficiencies (PCE) in the 

region of 5% have been achieved [2] and PCE of 10% or larger [3] is projected for the 

foreseeable future, which makes OSCs a viable replacement of the well-established silicon SCs. 

OSCs are diverse and versatile, and can offer wide range of properties including tailored band 

gap and thus varied range of light harvesting efficiency covering a broad range of the solar 

spectrum. It could be argued that OSCs based on BHJ comprising P3HT and PCBM are 

considered as the most investigated devices [4]. The nature of contacts on both sides of the active 

layer is considered as an essential feature to determine the device performance, and therefore 

their PCE. Poly (3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate), abbreviated as 

PEDOT:PSS has been widely known as one of the most promising conductive polymers 

employed as a hole transporting layer, due to its simple processing, high transparency and high 

stability. It is considered as a favorable material to replace inorganic materials to deposit on 

flexible substrates for plastic electronics applications such as memories, sensors, OLEDs and 

flexible PV devices [5]. PEDOT:PSS dispersed in water can easily form a transparent film with 

high conductivity by spin coating, thus producing a low sheet resistance  film[6]. The optimised 

combination of conductivity and surface morphology is essential for numerous applications of 

PEDOT:PSS thin films; these could be influenced by a variety of factors during the drying 

process including the fraction of solid content, particle size, proportion of PSS and the solution 

viscosity which could lead to different morphological and electrical properties [7]. The 

photovoltaic (PV) device performance is mainly defined by the PCE which depends on several 

parameters such as light harvesting properties of the active layer, generation of excitons, exciton 

diffusion and separation, transportation and collection by the cell electrodes [8]. However, the 

modification of both contacts has been demonstrated to play significant role in the enhancement 

of charge collection (electrons and holes), which could largely improve the device PCE [9]. To 

date, several treatments were carried out to modify the properties of the PEDOT:PSS layer, 

which included the use of different organic solvents. Among those solvents are ethanol, 

dimethylsulfoxide, acetonitrile, and tetra-hydrofuran which have resulted in a considerable 



 

 

improvement of PEDOT:PSS layer conductivity [10]. Through an alternative approach, Ouyang 

has studied the effect of various salts on PEDOT:PSS conductivity and it was shown that the 

conductivity enhanced by employing metal salts as dopants within the aqueous PEDOT:PSS 

solution. This was ascribed to the binding of the metal ions to the PSS anions of PEDOT:PSS 

layer [11]. Furthermore, PEDOT:PSS treatment with hexafluoroacetone (HFA) were shown to 

reduce the sheet resistance from 7 MΩ/□ to 40 kΩ/□ [12]. For the work presented here, the effect 

of metal salts, both in powder form and as aqueous solutions on the PEDOT:PSS films’ 

properties such as conductivity, transmittance and morphology were investigated. The modified 

PEDOT:PSS layers were adopted as anode buffer layer to study their effects on P3HT:PCBM 

OSCs performance and thus on device PCE. To the best of the authors' knowledge this is the first 

attempt to apply salt-modified PEDOT:PSS layers to P3HT:PCBM-based OSCs. 

2. Experimental methods 

2.1.Preparation of PEDOT:PSS solution with metal salts 

PEDOT:PSS (conductive grade-483095 Aldrich) were mixed with different metal salts (Sigma 

Aldrich); these are CuCl2 (99.99%), CdCl2 (99.99%), NaCl (99.99%) and LiCl (99.99%) used as 

powders and as aqueous solutions. 1 mg of the metal salts was added separately as powders to 

1ml of PEDOT:PSS solution; the final solutions were sonicated for 30 min to ensure good 

dispersion and complete solubility of the salts. In a separate method, aqueous solutions of each 

metal salt with the concentration of 1 mg.ml
-1

 were prepared in deionised (DI) water. The 

solutions were sonicated for 30 min before mixing with PEDOT:PSS solution with a volume 

ratio of 0.1:1ml. Further sonication for 30 min was carried out for efficient dispersion after 

mixing the PEDOT:PSS with the aqueous salts solutions. Additional samples of LiCl and CdCl2 

in DI water were used in the concentrations of 5 mg.ml
-1

 and 10 mg.ml
-1

 in order to examine the 

role of dopant concentration on the electrical and optical properties of PEDOT:PSS. 

2.2.Organic solar cells preparations  

ITO-coated glass slides (sigma Aldrich; sheet resistance 8-10 Ω /□) were cleaned using DI water, 

acetone and 2-propanol for 10 min each in ultrasonic bath, respectively, and then blown dry in 

N2 gas. PEDOT:PSS (pure and doped) were spin coated on ITO slides at a spin speed of 2000 

rpm for 30 sec and annealed on a hot plate at 150
o
C for 10 min in ambient air. P3HT:PCBM (in 

1:1 ratio) active layer (14 mg.ml
-1

) were dissolved in co-solvents of chloroform and 



 

 

chlorobenzene (CB:CF) with the ratio 1:1. The active layers were spin coated inside a nitrogen-

filled glove box followed by annealing inside the glove box at 120 
o
C for 10 min. Film thickness 

of 95 nm was obtained as determined by spectroscopic ellipsometery. A top contact of aluminum 

(Al) was evaporated with a thickness of about 100 nm, at the deposition rate of 0.1-0.2 nm/sec as 

was monitored by a quartz crystal thickness monitor. All the devices were subjected to further 

heat treatment inside the glove box at 120
o
C for 10 min and left to cool down for 30 min before 

measurements were carried out. 

2.3. Measurements 

A UV-visible spectrophotometer (Varian 50-scan UV-visible) in the range of 190-1100 nm was 

used to study the transmittance spectra of PEDOT:PSS layers which were spin coated onto 

cleaned glass substrates. The active layer and PEDOT:PSS layer thicknesses were determined 

using M2000 (J.A. Woollam Co., Inc.) spectroscopic ellipsometry operating in the wavelength 

range 370-1000 nm. Morphology of PEDOT:PSS layers were examined using a Nanoscope IIIa 

multimode atomic force microscope (AFM). DC electrical characteristics in the form of current 

density-voltage (J-V) dependence and electrical conductivity of PEDOT:PSS layers as well as 

completed OSC devices were studied using a 4200 Keithley semiconductor characterisation 

system and the photo current was generated under AM 1.5 solar simulator source of 100mW.cm
-

2
. The fill factor (FF) and the overall light to-electrical energy conversion efficiency (PCE) of the 

solar cell were calculated according to the following equations [13]: 

PCE (%) =
JmaxVmax

Pin
                                 (1) 

 

 FF =
JmaxVmax

Jsc   Voc
                                                                                       (2) 

where Jsc is the short-circuit current density (mA.cm
-2

), Voc is the open-circuit voltage (V), Pin is 

the incident light power and Jmax (mA.cm
-2

) and Vmax (V) are the current density and voltage at 

the point of maximum output power in the J-V curves, respectively. Furthermore, the electrical 

conductivity was determined using interdigitated platinum electrodes (IDEs) purchased from 

DropSens (Spain). The IDE can be used to measure the surface conductivity (σ) of the samples 

from the following relationship [14] 

                             σ = [ I / V ] [ n / W t L]                                                                                    (3) 



 

 

where, t is the thickness of the film, W is the distance between the fingers (6.67mm), n is the 

number of fingers (500), and (L) is the distance between electrodes (5μm). 

2. Results 

 

2.1. Transmittance spectra 

Fig. 1 shows transmittance spectra of metal salts treated PEDOT:PSS films as well as those of 

films prepared from as purchased PEDOT:PSS. Modified PEDOT:PSS films doped with metal 

salts have exhibited higher transmittance as compared to pure PEDOT:PSS films. Conversely, 

aqueous solution-treated PEDOT:PSS films showed a higher transmittance than those treated 

with metal salt powders. In both cases, metal chloride treated PEDOT:PSS layers are found to be 

useful for solar cells specifically for materials employed as a windows layer. The maximum 

transmittance of pure PEDOT:PSS film was in the range 88 -91% within the wavelength range 

(400–650 nm), while transmittance of powder salts treated-PEDOT:PSS films has increased up 

to 93%. Aqueous solution (1mg.ml
-1

) of metal salts treated PEDOT:PSS films have however 

exhibited further increase in transmittance, reaching 94%. The PEDOT;PSS films treated with 

LiCl and CdCl2 were shown to demonstrate maximum transmittance in both cases of treatment, 

in powder and in aqueous solutions. Moreover, an increase in the aqueouse solution concetration 

of LiCl and CdCl2 has led to further improvement in trasmittance. 

 

2.2. Surface morphology 

Fig.2 shows AFM images obtained for treated and untreated PEDOT:PSS films. The pure film 

has exhibited smooth surface with rms=1.25nm while rougher morphologies were markedly clear 

in the metal salts-treated films; LiCl (10mg.ml
-1

 aqueous solution) doped PEDOT:PSS has 

exhibited more rough surface with rms=3.38nm. Generally speaking the brighter regions 

observed in the AFM images could be associated with the PEDOT whereas the darker regions 

are related to the less conductive PSS regions [15]. This increase in the surface roughness may 

be ascribed to the increase in grain size after metal chloride treatment. It has recently been shown 

that surface roughness and grain size of inorganic CdS layer has increased as a result of CdCl2 

treatment [16]. At the same time, the group VII element (Cl) has also acted as a p-type dopant 

when it produces complexes with un-known native defects within the inorganic layer [16]. It can 

be assumed here that Cl
-
 ions play a similar role when organic layers of PEDOT:PSS are treated 

with metal chlorides. The PSS could be removed by the metal ions (cations) leaving the Cl 



 

 

(anion) to act as a dopant impurity to improve the PEDOT conductivity and enhance its surface 

roughness as shown in Fig.3 (a) and (b). It therefore appears that this treatment improves the 

light harvesting by the active layer as well as decreasing the contact resistance of the interfacial 

layer, hence increasing the short circuit current density (Jsc).  

 

2.3. Electrical conductivity 

Fig.4 illustrates the variation in electrical conductivity of the PEDOT:PSS layer as a result of 

treatment with different metal chlorides (Fig. 4a), as well as the effect of concentration of the 

chloride  aqueous solutions (Fig. 4b). A maximum conductivity of 0.41 S.cm
-1 

was obtained for 

the LiCl treated film when the metal salt was added in powder form while a conductivity of 0.43 

S.cm
-1

 was obtained using aqueous solution. Further treatment was carried out to examine the 

effect of CdCl2 and LiCl concentrations on PEDOT:PSS conductivity, using concentrations of 

5mg.ml
-1

 and 10mg.ml
-1

 metal salt solutions. Fig.4(b) shows the increase in films’ conductivity 

with increased concentration of the aqueous solution added to the PEDOT:PSS. The LiCl treated 

film (10mg.ml
-1

)
 
shows higher conductivity of 0.485 S.cm

-1
 while the CdCl2 treated (10mg.ml

-1
) 

films exhibited slightly lower conductivity of 0.48 S.cm
-1

. Once again, this could be ascribed to 

the removal of PSS chains from the PEDPT:PSS films by the cations, as illustrated in Fig.3(b). 

This could be further understood as the result of dissociation of the metal salts where the higher 

dissociation contributes higher ions concentration which significantly reduces the coulombic 

attraction between the PEDOT and PSS chains, thus more loss of PSS chains from the 

PEDOT:PSS film via the salt treatment [17]. It has been established that conduction in 

PEDPOT:PSS films is due to charge transport across the PEDOT chains via hopping, and that it 

remains unchanged after impurities addition [11].  

 

2.4. Series resistance determination 

The series resistance (Rs) is an effective parameter which influences the solar cell behavior. Fig.5 

shows the dark J-V curves for the pure PEDOT:PSS based device and devices with CdCl2 and 

LiCl treated PEDOT:PSS based devices with different concentrations. Shen and co-authors have 

argued that dark I-V characteristics is an efficient method to determine the Rs using the following 

equation [18]: 

I = IL − Io[eq(v−IRs) nkT⁄ − 1] −
V−IRs

Rsh
                                       (4) 



 

 

where IL is the light current, Io is the saturation current, n is the ideality factor, kT/q is the 

thermal energy, Rs is the series resistance, and Rsh is the shunt resistance. Typically, under dark 

conditions the photocurrent is zero and therefore it could be presumed that Rsh is large enough to 

ignor the last term in Eq.4. Therfore, the dark I-V characterisitics can be described as follows: 

I = Io[eq(V−IRs) nkT⁄ − 1]                                                                   (5) 

Re-arranging Eq. 5 the following relation is obtained: 

V =
nkT

q
ln (

I

Io
+ 1) + IRs                                                                 (6) 

Therefore, at higher applied voltage when I>>Io, Eq. 6 becomes: 

I
dV

dI
= IRs +

nkT

q
                                                                                 (7) 

 

Using Eq. 7, Rs could be extracted from the slope at the high current region of I(dV dI)⁄  vs. I plot 

as shown in Fig. 6 for the pure PEDO:PSS based device as an example. The lowest Rs was 

exhibited by OSC devices with LiCl treated PEDOT:PSS with the value of Rs=52.3Ω compared 

to devices employing pure PEDOT:PSS layer which revealed Rs=111.2Ω (results are 

summarised in table 3). This improvement in Rs could be a key factor among others towards 

achieving efficient electrode properties and therefore better device performance. 

 

2.5. Photovoltaic measurements 

Using measured J(V) characteristics under illumination, the PV properties of 

PEDOT:PSS/P3HT:PCBM/Al OSCs were determined with PEDOT:PSS layers treated with 

different metal chlorides. Fig.7 shows J-V curves of the investigated OSCs with different salts 

treated-PEDOT:PSS. Devices with untreated PEDOT:PSS layer have exhibited lower PV 

performance with Voc=0.62V, Jsc=11.9 mA.cm
-1

, FF=53% and PCE of 3.92%. These are in line 

with values frequently reported in the literature [19]. However, devices with powder metal salt 

treated PEDOT:PSS layers have demonstrated significant improvement in all PV parameters as 

revealed in Fig. 7(a), and the results are summarised in Table 1. The highest PCE of 5.6% and 

short circuit current density Jsc=16.1 mA.cm
-1

 were achieved when LiCl2 powder was added to 

PEDOT:PSS; FF and Voc however, remained unchanged for all metal salts. When the same metal 

salt was added to PEDOT:PSS in aqueous form as in Fig. 7(b), the device PCE and short circuit 



 

 

current density have reached values of about 6% and 17.4 mA.cm
-1

, respectively, in the case of 

LiCl added with the concentration of 1mg.ml
-1

. Once again, Voc and FF remained more or less 

unchanged for all metal salts studied in this work. Table 2 provides a summary of the electrical 

properties of ITO/PEDOT:PSS/P3HT:PCBM/Al OSCs when metal chlorides were used in 

aqueous form. The substantial increase in Jsc could be ascribed to the improved electrical 

conductivity of PEDOT:PSS layers as a result of metal salt treatment while enhanced PCE could 

be associated with the increased films’ transmittance and surface roughness. Values of Voc 

remained unchanged since its value is mainly determined by the difference between the donor’s 

higher occupied molecular orbital (HOMOd) and the lower unoccupied molecular orbital of the 

acceptor (LUMOa) [20]. Furthermore, the metal salt treatment of PEDOT:PSS layers seems to 

solve the wetting problem between the active layer, which is hydrophobic and the hydrophilic 

PEDOT:PSS [21]. Such film processing method would be more favored for the fabrication of 

inverted OSC structure. Electrical properties of the OSCs were further improved when the 

concentration of CdCl2 and LiCl in aqueous solution increased to 5 and 10mg.ml
-1 

as 

demonstrated in Fig. 7(c). Moreover, the estimation of Jmax and Vmax values is illustrated in Fig 

7(c). Fig. 7(d) shows the variation of output power as a function of applied voltage. 

 

A summary of the electrical parameters of the ITO/PEDOT:PSS/P3HT:PCBM/Al OSCs treated 

with these solutions is given in Table 3. PCE as high as 6.82% associated with FF=61%, Jsc≈18 

mA.cm
-2

 and Voc=0.62 V have been recorded for LiCl treated devices using a higher 

concentration of 10mg.ml
-1

. Treatment of PEDOT:PSS with metal salts of concentrations higher 

than 10mg.ml
-1

 has not shown any further improvement in device performance. The above 

reported efficiency of 6.82% is found to be repeatable and on comparing this value with PCE 

values obtained for other metal salts treatment (see Table 3 and data summarised in Fig. 7) it can 

be confirmed that these results are very reliable. The optimization of electrode treatment [22-25] 

as well as active layer thickness [26,27], are found to be key processing conditions to achieve 

good device performance. In a recent review [11] conductivity enhancement of PEDOT:PSS thin 

films for use in polymer light-emitting diodes and polymer solar cells has been discussed and 

conductivity increase of up to 1000 S.cm
-1

 was reported depending on the type of additives. 

Recently modification of electron transport layer in P3HT:PCBM-based OSC has revealed 3 

times improvement in the cells' PCE as compared to untreated electrodes [28]. In the present 

work improvement of the hole transport layer via doping of PEDOT:PSS with metal salts, 



 

 

preferably in solution form, has been shown to play crucial role in improving OSCs performance 

as well as device stability. 

 

3. Conclusion 

 

PEDOT:PSS layers doped with different metal salts (LiCl, NaCl, CdCl2 and CuCl2) were 

employed as hole transport layers in P3HT:PCBM based OSCs. The effects of metal salts added 

as powders or as solutions on the electrical, optical as well as morphological properties of 

PEDOT:PSS layers were investegated. PEDOT:PSS films doped with LiCl salt in solution form 

with the concentration 10mg.ml
-1

 have exhibited the highest electrical conductivity as well as 

highest transmittance intensities. The metal salt doping has resulted in a more rough surface 

morphology of PEDOT:PSS layers compared to prisitine PEDOT:PSS films. Furthermore, in 

doped films the series resistance has exhibited much lower values of about 52.3Ω. These 

improvements in PEDOT:PSS layer structural, optical and electrical properties are thought to be 

the main reasons for the enhancement of P3HT:PCBM based solar cells performance, with PCE 

as high as 6.82% , FF=61% and Jsc~18 mA.cm
-2

 in the case of PEDOT:PSS doped with LiCl 

(10mg.ml
-1

 aqueous solution) device.  
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Figure captions 

 

Fig. 1 The transmittance spectra of PEDOT:PSS films: (a) on treatment with powder salts of 

NaCl, CuCl2, CdCl2 and LiCl; (b) on treatment with aqueous solution of NaCl, CuCl2, CdCl2 and 

LiCl in DI water with the concentration 1 mg.ml
-1

; (c) on treatment with aqueous solutions of 

LiCl and CdCl2 with the concentrations 5 mg.ml
-1

 and 10 mg.ml
-1

 

 

Fig. 2 AFM images for pure (a) and LiCl aqueous solution treated PEDOT:PSS layers (b,c and d) 

of concentrations 1 mg.ml
-1

, 5 mg.ml
-1

 and 10 mg.ml
-1

 respectively   

 

Fig. 3 (a) The cross-section of the P3HT:PCBM solar cell after modifying PEDOT:PSS layer and 

the scattering of the incident light within the active layer due to PEDOT:PSS surface roughness. 

(b) The PEDOT:PSS after chlorine salts treatment and the dissociation of the metal ions and the 

Cl¯ within the PEDOT:PSS 

  

Fig. 4 (a) The conductivity of PEDOT:PSS variation with salts treatment. (b) Dependence of 

conductivity on LiCl and CdCl2 solution concentration 

 

Fig. 5 Dark J-V characteristics for P3HT:PCBM solar cell based on PEDOT:PSS treatment with 

LiCl and CdCl2 aqueous solutions of different concentrations (1, 5, 10 mg.ml
-1

) 

 

Fig.6 I(dV/dI) vs. I characteristics of P3HT:PCBM solar cell based on pure PEDOT:PSS  

 

 

Fig. 7 J-V characteristics for P3HT:PCBM solar cell based on PEDOT:PSS treatment with 

several salts as powder (a), as aqueous solution (b), subjected to further treatment with different 

CdCl2 and LiCl concentrations (c) and output power plotted as a function of voltage for pure 

PEDOT:PSS and LiCl (10mg.ml
-1

) aqueous solution-treated PEDOT:PSS based devices (d) 

 

 

  



 

 

 

Table (1):   OSC parameters of devices having PEDOT:PSS layer treated with powder salts 

(NaCl, CuCl2, CdCl2 and LiCl) 

POWDER pure CuCl2 NaCl CdCl2 LiCl 

Voc  (V) 0.62 0.62 0.6 0.62 0.59 

Jsc (mA.cm
-2

) 11.9 13.37 12.92 14.8 16.1 

FF % 53 59 59 59 59 

PCE % 3.92 5 4.6 5.4 5.6 

 

 

 

Table (2):   Photovoltaic parameters of devices with PEDOT:PSS layer treated with aqueous 

solutions of  NaCl, CuCl2, CdCl2 and LiCl  with the concentration of 1mg/ml 

SOLUTION pure CuCl2 Nacl CdCl2 LiCl 

Voc  (V) 0.62 0.63 0.61 0.62 0.6 

Jsc (mA.cm
-2

) 11.9 15.4 13 16.77 17.37 

FF % 53 57 59 59 58 

PCE % 3.92 5.52 4.7 6.1 6 

 

 

 

Table (3)   Photovoltaic parameters of devices with PEDOT:PSS layer treated with different 

concentrations of aqueous solution of CdCl2 and LiC 

SOLUTION Pure 
CdCl2 

(1mg/ml) 

CdCl2 

(5mg/ml) 

CdCl2 

(10mg/ml) 

LiCl 

(1mg/ml) 

LiCl 

(5mg/ml) 

LiCl 

(10mg/ml) 

Voc  (V) 0.62 0.62 0.62 0.62 0.6 0.62 0.62 

Jsc (mA.cm
-2

) 11.9 16.77 17.23 17.8 17.37 17.3 17.97 

FF % 53 59 62 61 58 63 61 

PCE % 3.92 6.07 6.65 6.72 6 6.77 6.82 

Rs (Ω) 111.2 86.86 62.5 53.2 59.5 56.2 52.3 
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Fig. 2 AFM images for pure (a) and LiCl aqueous solution treated PEDOT:PSS layers (b,c and d) 

of concentrations 1 mg.ml
-1

, 5 mg.ml
-1

 and 10 mg.ml
-1

 respectively 

 

 

  



 

 

 

 

 

 

 
 

Fig. 3 (a) The cross-section of the P3HT:PCBM solar cell after modifying PEDOT:PSS layer and 

the scattering of the incident light within the active layer due to PEDOT:PSS surface roughness. 

(b) The PEDOT:PSS after chlorine salts treatment and the dissociation of the metal ions and the 

Cl¯ within the PEDOT:PSS 

 

 

  



 

 

 

 

 

 

 

 

 

 

  
 

Fig. 4 (a) The conductivity of PEDOT:PSS variation with salts treatment. (b) Dependence of 

conductivity on LiCl and CdCl2 solution concentration 
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Fig. 5 Dark J-V characteristics for P3HT:PCBM solar cell based on PEDOT:PSS treatment with 

LiCl and CdCl2 aqueous solutions of different concentrations (1, 5, 10 mg.ml
-1

) 
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Fig.6 I(dV/dI) vs. I characteristics of P3HT:PCBM solar cell based on pure PEDOT:PSS 
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Fig. 7 J-V characteristics for P3HT:PCBM solar cell based on PEDOT:PSS treatment with 

several salts as powder (a), as aqueous solution (b), subjected to further treatment with different 

CdCl2 and LiCl concentrations (c) and output power plotted as a function of voltage for pure 

PEDOT:PSS and LiCl (10mg.ml
-1

) aqueous solution-treated PEDOT:PSS based devices (d) 
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