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 2 

Abstract 25 

This study investigated the effect of generality and specificity of skill transfer processes in 26 

(re)organisation of perception and action. The task vehicle for this purpose was climbing 27 

(assessed by fluency or smoothness of the hip trajectory and climber orientation using 28 

normalized jerk coefficients) exhibited by participants adapting perception and action under 29 

varying environmental constraints in a climbing task. Twelve recreational climbers were 30 

divided in two groups: the first group completed a 10-m high route on an indoor climbing 31 

wall, while the second group completed a 10-m high route on an icefall in a top-rope 32 

condition. We maintained the same level of difficulty between these two performance 33 

environments. An inertial measurement unit was attached to the hips of each climber to 34 

collect 3D acceleration and 3D orientation data in order to compute jerk coefficient values. 35 

Results showed higher normalized jerk coefficient values for performance on the icefall route, 36 

perhaps due to greater functional complexity in perception and action when climbing ice falls, 37 

which requires use of specific tools for anchorage. Results emphasized that individuals 38 

solving different motor problems exhibited positive general transfer processes, but design of 39 

specific task constraints enabled participants to pick up specifying information for affordances 40 

of tool use in performing on an ice fall. 41 

 42 

Key words: ecological dynamics, perception and action, embodied perception, affordance, 43 

tool use, transfer. 44 

 45 

  46 



 3 

Introduction 47 

Adapting perception and action couplings when regulating multi-articular movement patterns 48 

is a hallmark property of expertise, facilitating consistent performance achievements under 49 

different task and environmental constraints (Stone, North, Maynard, Panchuk & Davids, 50 

2014; Panchuk, Davids, McMahon, Sakadjian & Parrington, 2013; Warren, 2006). Previous 51 

studies have provided insights on the adaptability of skilled performers, defined by their 52 

capacity to exploit functional variability in coordinating actions with dynamic performance 53 

environments. The data have illustrated how expert behaviours remain flexible, and are not 54 

stereotyped and rigid (Seifert, Button, et al., 2013; Warren, 2006). Traditional views on 55 

expertise acquisition, exemplified by the deliberate practice approach, have proposed that 56 

athletes need to accumulate 10,000 hours of intensely dedicated and specific practice 57 

(Ericsson, Krampe, & Tesch-Römer, 1993). This idea fails to account for how transfer 58 

processes may shorten the period of specialised practice needed for gaining expert status (for 59 

pertinent criticisms see Davids, 2000; Tucker & Collins, 2012). For example, in a study of 60 

chess masters, an astonishing range of 3,016–23,608 hours has been reported for the 61 

achievement of expertise (e.g., Grandmaster level) (Hambrick et al., 2014). These data on 62 

individual differences raise pertinent questions on how transfer processes can influence the 63 

timescales for expertise acquisition in different performance environments (Davids, 2015). 64 

In an ecological dynamics theoretical framework, the capacity to transfer perceptions, 65 

cognitions and actions between performance environments is a critical feature of expertise 66 

that has been somewhat neglected in past research (Seifert et al., 2013). Skill transfer emerges 67 

from the influence of prior experiences under a specific set of interacting constraints on 68 

performance under a different set of conditions compared to those where the skills were 69 

originally acquired (Newell, 1996; Issurin, 2013; Rosalie & Muller, 2012). We have argued 70 

that specificity of transfer can emerge when the existing intrinsic dynamics (i.e. performance 71 
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disposition or tendencies) of an individual cooperate with the dynamics of a new task to be 72 

learned, facilitating successful performance behaviours (e.g., Davids et al., 2015). In contrast, 73 

general transfer can occur when intrinsic and task dynamics do not cooperate closely. 74 

Specificity and generality of transfer can be influenced by the intrinsic dynamics of each 75 

individual learner, which are shaped by learning and previous experiences under specific task 76 

constraints (Davids et al., 2015).  77 

These theoretical ideas have implications for implementing transfer processes that could 78 

constrain the degree and rate of performance improvement, as suggested by some important 79 

data from laboratory studies of coordination in finger movements (Zanone & Kelso, 1997). 80 

Despite these ideas, there have been few empirical studies of transfer processes during 81 

coordination of multi-articular actions in different performance environments (Rienhoff et al., 82 

2013; Rosalie & Muller, 2012). Here, we sought to examine this relevant issue for expertise 83 

acquisition in performance environments requiring multi-articular actions by investigating 84 

whether the intrinsic dynamics of climbers who practise regularly on an indoor climbing wall 85 

might cooperate or compete with the task dynamics of climbing an ice fall. On an indoor 86 

climbing wall, routes consist of holds composed of similar smooth synthetic materials, which 87 

afford gripping with the fingers in an unchanging internal environment (e.g. ambient 88 

temperature remains the same during a climb). In ice climbing, properties of an icefall require 89 

use of tools on the feet (crampons) and in the hands (ice tools) and performance conditions 90 

can change markedly within and between climbs (Batoux & Seifert, 2007; Blanc-Gras & 91 

Ibarra, 2012). Ecological dynamics suggests that functional adaptation of existing perception-92 

action couplings might be constrained by specificity and generality of transfer processes 93 

induced by such performance environments (Davids et al., 2015). General transfer is 94 

exemplified when processes of perception and action are generalised to a new set of 95 

performance constraints that, although different, maintain couplings among key system 96 
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components. For example, this sub-system maintenance might include the coupling of visual 97 

and motor systems or the use of similar limb coordination patterns, but invoking different 98 

types of action patterns with the hand and feet when climbing (Seifert et al., 2014)). Other 99 

examples of general transfer between indoor and ice fall climbing might include the use of 100 

cognitions, perception and action to seek ascent routes, to manage weight with respect to the 101 

environmental constraint of gravity and the discovery of surface properties with exploratory 102 

actions. Specific transfer processes enhance the stability of certain perception-action 103 

couplings, which are refined through practice under highly particular task constraints to 104 

enhance performance, exemplified in ice fall climbing by the way that particular tools are 105 

used to ascend the surface. In indoor climbing such tools play no part in ascending a surface. 106 

An important research challenge is to effectively characterise different performance ecologies 107 

along each axis of transfer (specific and general), in order to predict how processes of skill 108 

transfer might support performance (through adaptation of an individual's intrinsic dynamics), 109 

shortening the timescales of learning. This is because the relationship between two 110 

performance environments is captured by numerous, dynamic and interacting constraints: 111 

environmental, task and personal (both structural e.g., strength, flexibility, height, and 112 

functional e.g., decision making, attunement and calibration to specifying information for 113 

action) (Davids, Button, & Bennett, 2008; Newell, 1986). Transferability of behaviours such 114 

as cognition, perception and action, between two performance domains hinges on the 115 

functionality of existing perception-action couplings and how much they may need to be 116 

specifically adapted for use in a different performance environment.  117 

The issue of generality or specificity of transfer particularly relates to the capability of an 118 

individual to pick up information and utilise specific affordances under different performance 119 

conditions (Davids et al, 2015). The richness of the landscape of affordances raises important 120 

questions over the nature of learning designs that can help an individual to utilise relevant 121 
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affordances in a given performance environment, i.e., through attunement and calibration to 122 

specifying information to regulate adaptive behaviours (Fajen, Riley, & Turvey, 2009).  123 

The question we address here, using the task vehicle of climbing, concerns how affordances 124 

might be designed into practice landscapes which facilitate their utilisation, and the transfer of 125 

behaviours such as cognitions, perceptions and actions. It is possible that some practice task 126 

constraints might be too general for a particular individual, thereby lacking functionality and 127 

delaying the learning process. Indeed, the implemented learning design could, either exhibit a 128 

less rich landscape of available affordances, or could be too far from the intrinsic dynamics of 129 

an individual learner for them to be adapted to support performance (i.e. practice task designs 130 

might contain too much non-specifying information). Conversely, learning designs that 131 

specifically enhance transfer processes are likely to contain specifying information sources 132 

that favour the adaption of information-movement couplings, thus inviting further functional 133 

actions, accelerating the learning process (Withagen, de Poel, Araújo, & Pepping, 2012). The 134 

key point to note in this theoretical rationale is that learning designs which only support 135 

general transfer might lead to poorer quality (less efficient and effective) learning focused on 136 

using processes of perception, action and cognition at a general level, which might maintain 137 

skill levels at best. In contrast, inclusion of specifying information sources in designing 138 

learning environments is proposed to induce high quality learning leading to the establishment 139 

or enhancement of perception-movement couplings, which regulate functional performance 140 

behaviours. These ideas might explain the longer time periods needed by some individuals to 141 

acquire expertise, providing an ecological dynamics rationale for  significant differences 142 

observed in time taken to attain expert status (Hambrick et al., 2014). 143 

The multi-articular action of climbing offers rich landscapes of available affordances for 144 

studying effects of generality and specificity of skill transfer. This performance context is 145 

characterised by varying performance environments (variations in surfaces, e.g. smooth 146 
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synthetics, rock or ice; surrounding conditions, e.g. variations in ambient temperatures, wind, 147 

available light, dryness/wetness; textures, e.g., smooth, rough, rocky, and slippery; and tool 148 

use, e.g., use of hands, feet, gloves, boots, ice tools, crampons, chalk). These environmental 149 

and task constraints interact to shape the emergence of perception-action couplings that have 150 

varying degrees of specificity with respect to the affordances available in different climbing 151 

environments. To exemplify, rock and ice climbing environments involve interspersed periods 152 

of behaviours dedicated to quadruped limb displacements on a vertical surface, alternated 153 

with periods in more or less static positions dedicated to exploring and grasping surface holds 154 

or ice tool anchorages (Fuss & Niegl, 2008; Pijpers, Oudejans, Bakker, & Beek, 2006; Seifert, 155 

Wattebled, et al., 2014; Sibella, Frosio, Schena, & Borghese, 2007), posture regulation 156 

(Bourdin, Teasdale, & Nougier, 1998; Bourdin, Teasdale, Nougier, Bard, & Fleury, 1999; 157 

Testa, Martin, & Debû, 1999, 2003), upper limb release and resting (Sanchez, Lambert, Jones, 158 

& Llewellyn, 2012), and “route finding” (Cordier, Mendès-France, Bolon, & Pailhous, 1993; 159 

Cordier, Mendès-France, Pailhous, & Bolon, 1994). In particular, three main properties might 160 

support general transfer of climbing experience between the task constraints of rock and ice 161 

climbing (Seifert, Wattebled, et al., 2013): (i) the unpredictability of performance 162 

environments requiring the continuous coupling of processes of perception and action, (ii) 163 

alternation between maintaining body equilibrium (stability) and climbing quickly up a 164 

vertical surface (transitioning), and (iii), the use of quadruped locomotion patterns 165 

subsequently involving the extremities of each limb to negotiate an ascent. The task 166 

constraints of ice climbing reveal at least three particularities in comparison to rock climbing 167 

which might induce specificity of transfer between each discipline (Seifert, Wattebled, et al., 168 

2013): (i) Tools, such as ice tools for the hands and crampons for the feet, form parts of the 169 

landscape of available affordances used by an ice climber to interact with surfaces properties 170 

of an icefall, (ii) The icefall properties tend to be stochastically distributed throughout a 171 
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particular frozen waterfall surface (for instance, the icefall texture can vary greatly, presenting 172 

more or fewer holes, thus inviting  climbers to hook available holes or create their own holes 173 

by swinging their ice tools ), and (iii), climbers can discover their own climbing path since 174 

they can create their own (more or less stable anchorages) with their tools and secure their 175 

ascent by inserting ice screws into specific locations on an icefall.  176 

Previous results have revealed that experienced rock climbers, who had previously acquired 177 

multiple movement and coordination patterns, were able to transfer this large range of skills, 178 

and climbing fluency, to the novel task constraints of ice climbing (Seifert, Wattebled, et al., 179 

2013). However, Seifert et al. (2013) did not examine whether the specificities of ice climbing 180 

(i.e. tool use; variability and temporary distribution of icefall properties; freely chosen 181 

climbing path) might induce specific transfer effects from climbing an indoor wall to an ice 182 

fall. For example, route finding is an important climbing skill that could provide information 183 

on the ability of climbers to utilise affordances from a surface to enhance their performance 184 

fluency. The influences of surface affordances could be revealed by analysing the ratio 185 

between different types of actions observed. In rock climbing, Pijpers et al. (2006) 186 

distinguished exploratory and performatory movements according to whether a potential hold 187 

on a climbing wall was touched, with or without it being used as support. Clearly, an 188 

excessive duration spent immobile during route finding and hold exploration may 189 

compromise climbing fluency, leading to enhanced physical and mental fatigue. Climbing 190 

fluency has been assessed previously by: (i) measuring the geometric index of entropy 191 

(Cordier et al., 1993, 1994; Sibella et al., 2007), (ii) the time spent in different states 192 

(movement/immobility) (Billat, Palleja, Charlaix, Rizzardo, & Janel, 1995; Seifert, 193 

Wattebled, et al., 2013; Seifert et al., 2014), and more recently (iii), by calculating the jerk 194 

coefficient (i.e., third time derivative of position or the rate of change of acceleration; Flash & 195 

Hogan, 1985; Hogan, 1984), previously used as an index of smoothness of 3D translations 196 
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and 3D rotations of the hips (Seifert, Orth, et al., 2014). 197 

The main aim of this study was to examine the constraints on specific transfer of cognitions, 198 

perception and action in indoor climbing relative to climbing on an ice fall. We sought to 199 

achieve this aim by assessing participants' route finding and climbing behaviours (i.e. by 200 

examining performance fluency evidenced through the jerk coefficient) within each context 201 

on a novel route. We anticipated that ice climbing would represent a rich performance 202 

landscape that allows the perception and utilisation of affordances to support vertical ascent. 203 

We expected that our analysis would reveal functions specific to the perception-action 204 

couplings required for satisfying constraints of performance on an ice fall. In particular, it was 205 

hypothesized that in ice climbing, only the specific transfer of fluent climbing behaviours 206 

would facilitate the emergence of a circular coupling between the individual, ice tool and 207 

icefall properties. We theorised that the specificity of transfer would be supported by the 208 

emergence of an individual - ice tool – icefall system. This specificity of transfer would be 209 

distinguished by data revealing the actualisation of ice tool affordances. It was also expected 210 

that the generality of transfer between previous experience on an indoor climbing wall and 211 

performance on an ice fall would be apparent, leading to some elementary benefits on 212 

performance revealed by the emergence of coupling of perception and action, management of 213 

body weight on the vertical surface and exploratory behaviours and exploratory activities. 214 

 215 

Methods 216 

Participants 217 

Twelve recreational climbers who trained together at a local climbing facility, voluntarily 218 

participated in this study (mean age: 22.5 ± 2.7 yr; mean height: 171.3 ± 7.5 cm; mean 219 

weight: 69.6 ± 3.4 kg). These climbers had climbing experience of 3.8 ± 1.3 yr on an artificial 220 

climbing wall, trained for 3.7 ± 1.6 hours per week and had a rock climbing ability of 6a on 221 
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the French Rating Scale of Difficulty (F-RSD) (Delignières, Famose, Thépeaut-Mathieu, & 222 

Fleurance, 1993), which corresponds to an intermediate level of performance (Draper et al., 223 

2011). Climbing ability was defined as the most difficult ascent by top rope (Delignières et 224 

al., 1993). However, these climbers had no previous experience of ice climbing environments. 225 

 226 

Protocol 227 

The sample of twelve climbers was split in two groups of six climbers. The first group 228 

completed a 10-m high route on an artificial climbing wall in a top-roped condition, 229 

composed of 20 hand-holds, at a grade rated 5b on the F-RSD, which goes from 1 to 9. The 230 

second group completed 10-m high route on an icefall in a top-roped condition, in an air 231 

temperature of -8°C, at a grade rated 4 on the French rating scale, which goes from 1 to 7 232 

(Batoux & Seifert, 2007). Grade 4 is a common grade assigned to recreational performers and 233 

involves an average slope of 75 to 80°, with steep or vertical sections (Batoux & Seifert, 234 

2007). For this protocol, the icefall selected for the climbers was 10-m at around 80° slope. 235 

Each route was set by a professional mountain guide certified by the International Federation 236 

of Mountain Guides Association (IFMGA), who ensured that the grade of each route 237 

represented an equivalent level of climbing difficulty in terms of environmental performance 238 

constraints (according to Newell, 1986), and matched intermediate climbing levels. 239 

Participants were given general instructions to self-pace their ascent, climb fluently and climb 240 

without falling. Each ascent was preceded by 3 minutes of route preview, as a pre-ascent 241 

visual inspection is a key climbing performance parameter (Sanchez et al., 2012). The 242 

protocol was approved by the local University ethics committee and followed the declaration 243 

of Helsinki. Procedures were explained to the climbers, who then gave their written informed 244 

consent to participate. 245 

 246 
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Data collection 247 

As with recent research on an indoor climbing wall (Seifert, Orth, et al., 2014), the originality 248 

in this study was the collect of tri-axial acceleration and tri-axial orientation data from an 249 

IMU located at the hip, in order to compute jerk as an indicator of climbing fluency. The IMU 250 

was integrated by combining a tri-axial accelerometer (±8G), tri-axial gyroscope (1600°.s
-1

) 251 

and a tri-axial magnetometer (MotionPod, Movea©, Grenoble, France). Data collected from 252 

the IMU (with MotionDevTool, Movea©, Grenoble, France) were recorded with a North 253 

magnetic reference and at 100 Hz sampling frequency.  254 

An operator also used a digital HD video camera to track the climber’s movements through 255 

the indoor climbing route and on the ice climbing route. 256 

 257 

Data analysis 258 

Data analysis consisted of measuring: (i) climbing fluency by plotting the hip trajectory 259 

during performance and orientation using a jerk-based measure, and (ii), route finding 260 

behaviours from analysing the ratio between exploratory and performatory movements. 261 

As stated previously, hip displacements of climbers not only correspond to 3D translations, 262 

but also to 3D orientations (Cordier, Dietrich, & Pailhous, 1996; Sibella et al., 2007; 263 

Zampagni, Brigadoi, Schena, Tosi, & Ivanenko, 2011). Therefore, in this study, climbing 264 

fluency was measured by computing hip trajectory and orientation smoothness via calculating 265 

the jerk coefficient. To determine either trajectory jerk or orientation jerk, the orientation of 266 

the sensor is required, first by removing the component due to gravity, since acceleration is 267 

measured in the sensor referential, and second, by determining the angular acceleration. By 268 

combining the accelerometer, gyroscope and magnetometer raw data, it was possible to 269 

compute orientation of the IMU with respect to the fixed frame of Earth reference (magnetic 270 

North, East and gravity directions) (Madgwick, Harrison, & Vaidyanathan, 2011). From this 271 
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point, it is straightforward to calculate the acceleration of the hips in the fixed Earth reference 272 

frame, and then determine the jerk coefficient (for more details about the method and 273 

equations, see Seifert, Orth, et al., 2014). For a trajectory 𝑥𝐺𝐹 ∈ 𝒞3([𝑂, 𝑇]), the jerk 𝐽𝑥𝐺𝐹was 274 

defined as: 275 

𝐽𝑥𝐺𝐹(𝑇) = 𝐶 ∫ ‖𝑥𝑠
𝐺𝐹⃛ ‖

2𝑇

0
𝑑𝑠   (equation 1) 276 

where 𝐶 was a normalization constant to make the quantity dimensionless (Hogan & Sternad, 277 

2009), depending on the height and the total climbing time T. In practice, instead of 278 

computing 𝑥𝑡
𝐺𝐹  (position on the wall) from 𝑎𝑡

𝐺𝐹  with successive integrations, the term 𝑥𝑠
𝐺𝐹⃛  279 

was replaced by 𝑎𝑡
𝐺𝐹̇ . By derivation of 𝑎𝑡

𝐺𝐹, the constant gravity acceleration was removed, 280 

leaving only the hip acceleration component. To compute the jerk coefficient 𝐽𝑧(𝑇) , 281 

measuring the hip 3D orientation smoothness, a definition similar to Equation (1) was used, 282 

replacing the position acceleration by the angular acceleration (see Seifert, Orth, et al., 2014). 283 

As stated previously, in rock climbing, Pijpers et al. (2006) distinguished exploratory and 284 

performatory touching movements of potential holds on a rock surface, with or without it 285 

being used as support during ascent. Assuming that affordances correspond to opportunities 286 

or invitations for action in a performance environment (Gibson, 1979; Rob Withagen et al., 287 

2012), an analysis of the relations between exploratory and performatory movements could 288 

explain how climbers utilise affordances of rock surface features, i.e., to perceive 'climb-289 

ability' of a surface and exploit environmental properties to act (Boschker, Bakker, & 290 

Michaels, 2002; Boschker & Bakker, 2002; Pijpers et al., 2006). Therefore, the capacity to 291 

utilise affordances in climbing performance could be approached by observing the ratio 292 

between touched holds and grasped holds, according to the ‘three-holds-rule’: skilled climbers 293 

negotiate a surface by touching fewer than three surface holds before grasping a functional 294 

one. Thus, data on exploratory and performatory movements were collected from video 295 
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footage of performance, and the touched/grasped holds ratio was computed on the indoor 296 

climbing route.  297 

A similar ratio has been adapted for performance analysis on an ice climbing route by plotting 298 

the ratio between repetitive swings of ice tools and the number of definitive anchorages (see 299 

Seifert, Wattebled, et al., 2013; Seifert, Wattebled, et al., 2014). The swinging/anchoring ratio 300 

of ice tool behaviours could reveal the attunement of each climber to icefall properties for 301 

exploitation, leading to greater levels of climbing fluency (i.e. low jerk values of hip 302 

trajectory and orientation). Indeed, when the ice is soft or ventilated, climbers can anchor 303 

their ice tools in one shot, whereas when the ice is dense and thick, climbers often need to 304 

repeat numerous swings of the ice tools to acquire a deep anchorage. Skilled climbers can 305 

typically detect variations in the thickness of an icefall (through perception of haptic 306 

information from the ice tool) in order to reduce the frequency of actions needed to acquire 307 

definitive anchorages (Blanc-Gras & Ibarra, 2012).  308 

 309 

Statistical analysis 310 

Normality of distribution and homogeneity of variance was checked before using parametric 311 

tests. Comparisons between indoor wall climbing and ice climbing conditions for jerk of hip 312 

trajectory 𝐽𝑥(𝑇) , jerk of hip orientation 𝐽𝑧(𝑇) , exploratory movements, performatory 313 

movements, total number of actions, the exploratory/performatory ratio, and time of ascent 314 

duration, were undertaken by Student t-tests with a level of statistical significance set at 315 

P<.05. Then, effect size for a Student t-test (i.e. Cohen's d; Cohen, 1988) was calculated, 316 

given the mean ( mX ) and standard deviation (s X
) for two independent samples of equal size: 317 

d =
m1 - m2

s1

2 -s 2

2( ) / 2
 318 
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For Cohen's d an effect size of 0.2 to 0.3 might be a "small" effect, around 0.5 a "medium" 319 

effect and 0.8 to infinity, a "large" effect (Cohen, 1988). 320 

 321 

Results 322 

Table 1 indicates a significantly higher jerk of hip trajectory 𝐽𝑥(𝑇) and jerk of hip orientation 323 

𝐽𝑧(𝑇) in the ice climbing condition, supporting the view of lower levels of fluency when 324 

climbing frozen waterfalls, than on an indoor climbing wall. Moreover, climbers exhibited 325 

three times more actions and longer ascent duration to cover the same vertical distance in ice 326 

climbing than under the constraints of the indoor climbing wall (Table 1). These findings 327 

were explained by the fact that climbers realised significantly more exploratory movements in 328 

ice climbing than on the indoor climbing wall (Table 1); in particular, we observed one 329 

exploratory movement (i.e. one ice tool swing) for one ice tool anchorage during ice 330 

climbing, whereas there was one exploratory movement observed (i.e. one touched hold) 331 

during the whole ascent on the indoor climbing wall (i.e. 20 holds set by the setter). 332 

Therefore, a significantly higher exploratory/performatory movement ratio was observed in 333 

the ice climbing condition (Table 1). 334 

     Insert table 1 about here 335 

Discussion 336 

The results of this study confirmed the positive transfer of performance between climbing on 337 

an indoor climbing wall and ice climbing because all the participants were able to reach the 338 

top of the route without falling and resting. On the one hand, these results revealed the 339 

existence of general transfer processes between these two distinct task and environmental 340 

constraints supported by affordances for: (i) controlling their body weight on a vertical 341 

surface and counteracting the force of gravity, (ii) using different limb extremities to achieve 342 

a vertical displacement trajectory, and (iii), continuously coupling perception and action 343 
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subsystems to negotiate the performance environments (e.g. exhibited by exploratory actions 344 

which led to successful ascents in the rock and ice climbing tasks). These findings on the 345 

effects of general transfer concur with data reported by Seifert et al. (2013) who showed that 346 

climbers with previous experience of an indoor climbing wall were able to transfer their stable 347 

perception-action couplings to an ice climbing task. Positive transfer at a general level was 348 

revealed when their participants exhibited higher levels of climbing fluency, fewer 349 

exploratory movements and a larger range of movement and coordination patterns than a 350 

group of novices (Wagman & Van Norman, 2011; Withagen & Michaels, 2002). For 351 

example, in the climbing task, transfer was observed to occur between performance on the 352 

indoor climbing wall and icefall environments when the ice tool was readily adapted to 353 

support the control of body weight and the use of extremities for ascent.  354 

 However, the more extensive exploration behaviours observed on the ice route, 355 

suggested the need for more specific perception-action couplings in the icefall environment to 356 

support the anchoring of the ice tool in existing hook-able structures, requiring further 357 

attunement to properties of surface holes in the participants. With practice in rock climbing, 358 

climbers seem able to calibrate hand-grasping patterns afforded by the shape of holds (Seifert, 359 

Orth, Hérault, & Davids, 2013). Similarly, ice climbers seem able to calibrate the ice tool 360 

actions (i.e. swinging vs. hooking) according to the density, thickness and temperature of the 361 

icefall. These examples emphasized that, in both the rock and ice climbing tasks, climbers 362 

were able to scale their perceptions and actions to environmental properties by exploiting 363 

exploratory behaviours, supporting the notion of general processes of transfer between the 364 

tasks. In other words, it seems that skill transfer from an indoor climbing wall to performance 365 

on an icefall only provides opportunities for general transfer because in the ice climbing task, 366 

skilled performance is predicated on the utilisation of specific affordances, i.e., a relationship 367 

that emerged from matching the perceived physical features of the ice tool (i.e. weight, 368 
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location of centre of mass, camber of stick, blade resonance), of the icefall (e.g., density, 369 

temperature, thickness of the ice) and of the individual (i.e. performance goals, capacity for 370 

haptic perception, skill level, past experience). 371 

 372 

These results confirmed that specificities of the ice climbing task (e.g. ice tool use) and icefall 373 

environment properties (e.g. shape, temperature, thickness and ice density) require the 374 

formation of specific perception-action couplings which can only emerge from climbing 375 

performance on an ice fall. We postulated that in an ice climbing task, the acquisition of a 376 

functional information-movement coupling would be facilitated through a circular coupling 377 

between the individual, ice tool and icefall properties, supporting the idea that the individual - 378 

ice tool – icefall system is supported  by perception of ice tool affordances. This interpretation 379 

signifies that the climber needs to perceive the icefall properties through the use of the ice 380 

tools, and inversely, to use the ice tools, the climber must be able to pick up properties from 381 

the ice fall performance environment. Seifert et al. (2014) showed that, depending on the 382 

thickness and density of the icefall, the climbers could either hook existing holes with the 383 

blade of the ice tool or swing the ice tool when the icefall was very dense. Inversely, the blade 384 

of the ice tools could be used to perceive whether a hole was deep and “hook-able” or small 385 

and fragile, requiring participants to swing their ice tools. Gibson (1979) foreshadowed these 386 

observations in arguing that “when in use, a tool is a sort of extension of the hand, almost an 387 

attachment to it or a part of the user’s own body, and thus is no longer a part of the 388 

environment of the user. But when not in use, the tool is simply a detached object of the 389 

environment, graspable and portable, to be sure, but nevertheless external to the observer” 390 

(p. 41). Previous experiments have already explored the ability of individual to detect tool 391 

affordance by dynamic touch, showing that the tool mass distribution in terms of the inertia 392 

tensor provided basis to distinguish tool properties for actions (Wagman & Carello, 2001, 393 
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2003). Our study provided data on how each individual interacted with ice tool properties, 394 

according to the icefall properties, and the task goal of anchoring the blade of the ice tool. 395 

Skill-based differences have already been reported in previous work revealing how beginners 396 

tended to swing the ice tool into the icefall to create their own anchorage because they were 397 

unable to perceive affordances for anchorage from existing holes in the ice fall (Seifert, 398 

Wattebled, et al., 2014). Conversely, expert climbers showed much more adaptive flexibility 399 

in using their ice tools in many different manners: as a broom to clean the stalactites that 400 

mask a dense zone of ice, as a hammer that they can swing into the icefall to create deep holes 401 

when needed, and as a hook to use exploit holes or steps (Seifert et al., 2014). Skilled 402 

individuals tended to adopt tool use behaviours that minimized biomechanical costs of 403 

performance (Jacquet et al., 2012). Our results showed both greater frequency of exploratory 404 

(i.e. ice tool swinging) and performatory movements (i.e. ice tool anchoring) on the icefall 405 

rather than on an indoor wall climbing. These results indicated higher biomechanical costs 406 

(exemplified by higher jerk coefficient of hip trajectory and orientation), lower tool 407 

affordance detection and icefall affordances detection in ice climbing. In other words, 408 

climbers practising on an indoor climbing wall are not able to fully exploit the specific 409 

richness of the landscape of affordances offered when performing on an ice fall (i.e. including 410 

both environmental and ice tool functional features that contribute to the landscape of 411 

available affordances; Bruineberg & Rietveld, 2014). Therefore, climbers need to be able to 412 

gain specific experience by exploring both environmental constraints and functional features 413 

of tools to achieve their task goals in different climbing environments. Through analysis of 414 

skill transfer processes from an indoor wall climbing to an ice climbing environment, our 415 

study emphasized the ability of climbers to exhibit positive general transfer (i.e. ability to 416 

reach the top of the route without falls and rests), but with lower levels of climbing fluency 417 

due to the specificity of ice tool and icefall affordances. In particular, ice tool anchorage is 418 
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often viewed as a challenging action by beginners for whom a confident anchorage means a 419 

deep anchorage where the blade does not move (Seifert et al., 2014). A deep and stable blade 420 

anchorage is often achieved through repetitive ice tool swinging. The action of anchorage and 421 

de-anchorage is specific to ice tool use and might explain the higher values of jerk 422 

coefficients in ice climbing. In conclusion, our results demonstrated that an ice climbing task 423 

provided specifying information for the performance of specific functional behaviours. 424 

Notably, ice climbers need to be attuned and calibrated to key functional and dynamical 425 

features of an icefall and ice tools. This study suggested that tasks, which involve specific 426 

transfer processes would enable learner to perceive relevant functional affordances by 427 

specifying adaptive movement patterns to satisfy interacting performance constraints.  428 
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Table caption 588 

 589 

Table 1. Comparison between indoor wall climbing and ice climbing conditions for jerk of 590 

hip trajectory 𝐽𝑥(𝑇) , jerk of hip orientation 𝐽𝑧(𝑇) , exploratory movements, performatory 591 

movements, total number of actions, exploratory/performatory ratio and ascent duration.  592 

 593 

t-value was only presented when the Student t-test was significant with a level of significance 594 

at P<.05. 595 

  596 
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Figure captions 597 

 598 

Figure 1. 10-m height indoor climbing route with 20 numbered holds (left panel) and 10-m 599 

height icefall route with two horizontal lines delimiting the 10-m section (right panel). 600 

 601 

Figure 2. Example of tri-dimensional acceleration (in Earth reference) used for jerk 602 

computation of hips trajectory (top left panel for one ice climber, lower left panel for one 603 

climber in indoor climbing wall) and of tri-dimensional orientation used for jerk computation 604 

of hips orientation (top right panel for one ice climber, lower right panel for one climber in 605 

indoor climbing wall) showing higher activity and leading to higher jerk coefficient for ice 606 

climber. 607 

  608 
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