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INTRODUCTION

Evidence from developmental as well as neuroscientific studies suggest that finger
counting activity plays an important role in the acquisition of numerical skills in children.
It has been claimed that this skill helps in building motorbased representations of
number that continue to influence number processing well into adulthood, facilitating
the emergence of number concepts from sensorimotor experience through a bottom-up
process. The act of counting also involves the acquisition and use of a verbal number
system of which number words are the basic building blocks. Using a Cognitive
Developmental Robotics paradigm we present results of a modeling experiment on
whether finger counting and the association of number words (or tags) to fingers,
could serve to bootstrap the representation of number in a cognitive robot, enabling
it to perform basic numerical operations such as addition. The cognitive architecture of
the robot is based on artificial neural networks, which enable the robot to learn both
sensorimotor skills (finger counting) and linguistic skills (using number words). The results
obtained in our experiments show that learning the number words in sequence along
with finger configurations helps the fast building of the initial representation of number
in the robot. Number knowledge, is instead, not as efficiently developed when number
words are learned out of sequence without finger counting. Furthermore, the internal
representations of the finger configurations themselves, developed by the robot as a
result of the experiments, sustain the execution of basic arithmetic operations, something
consistent with evidence coming from developmental research with children. The model
and experiments demonstrate the importance of sensorimotor skill learning in robots for
the acquisition of abstract knowledge such as numbers.

Keywords: embodied cognition, developmental robotics, finger counting, number words, number cognition

to the development of children’s arithmetic abilities (e.g., Fuson

Whether finger counting is an essential stage in the develop-
ment of the cognition of number is still highly debated, though
strong evidence exists on the positive contribution of sensorimo-
tor skills and representation in numerical cognition. A growing
number of researchers, consider finger counting an important
tool children (as well as adults) use across a variety of cul-
tures in the development of numerical cognition (e.g., Andres
et al.,, 2008; Di Luca and Pesenti, 2011). Consideration of the
links between counting and the emergence of number concepts
is not new. Piaget (1952) for example, considered the linking
of numbers to objects as being an important characteristic of
the sensorimotor stage of cognitive development, possibly being
one of a series of prerequisites for the child’s construction of
the concept of number. Quite recently, however, the topic of fin-
ger based number knowledge has seen a surge of new interest,
especially from embodied cognition perspectives (for a recent
special issue on the topic see Fischer et al., 2012). Finger count-
ing has generally been assumed to be important to the acquisition
of a mature counting system (e.g., Gelman and Gallistel, 1978;
Fuson et al., 1982; Butterworth, 2005) as well as instrumental

and Kwon, 1992). It has been hypothesized that this capability
helps children to acquire a variety of principles proposed as being
fundamental to the development of a counting system (Gelman
and Gallistel, 1978) such as: the acquisition of the one-to-one
correspondence principle (i.e., when counting only one word is
assigned to each object) through the tagging or assignment of
one number word to each item, the assimilation of the stable
order principle (i.e., when counting, number words are always
assigned in the same order) and the cardinality principle (i.e.,
the last number word uttered when counting, is the total num-
ber of objects in a set). More recent studies have reported an
association between finger gnosis (the ability to mentally repre-
sent one’s fingers) and mathematical abilities (Noél, 2005; Costa
et al., 2011), and found finger training helpful in improving
the performance of children with weak numerical skills (Gracia-
Bafalluy and Noél, 2008). Evidence such as this supports the view
that finger representations play a special role in number cog-
nition, and might serve as a basic building block in the child’s
unfolding capacity to mentally manipulate abstract numerical
information.
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That a close link might exist between finger counting strategies
and patterns, and that they may influence the mental repre-
sentation and processing of number, has also been suggested
by evidence coming from neuroimaging studies. For example,
studies using fMRI on adult subjects to investigate aspects of
embodied theories of cognition have found intrinsic functional
links between finger counting and number processing. Cortical
motor activity is evoked by Arabic digits and number words,
which reflects particular individual finger counting habits (i.e.,
whether when counting small digits subjects started with their
right or left hand) (Tschentscher et al., 2012). These results have
been interpreted in several different ways by the authors of this
study, one interpretation invoking a shared neural network for
number processing and planning of finger movements, which
would include parietal cortical areas, the precentral gyrus and
the primary motor cortex, in which number perception might
very well elicit the sub-threshold tendency to move associated fin-
gers. Another interpretation used by these authors, to explain how
the association between numbers, number words and individual
finger counting movements might have come about in their sub-
jects, during their individual development of numerical skills in
childhood, would be predicted by a Hebbian learning approach
to semantic circuits (Pulvermiiller, 1999). The prediction is, that
due to the fact that children often use their fingers when counting
and solving simple counting problems, a correlation between the
neuronal activation for the processing of numbers and the move-
ment of fingers is established. A number of neuroimaging studies
done in the last decade, using both PET and fMRI, had already
found activation of part of the left precentral gyrus (where hand
movements are represented) when subjects were asked to engage
in numerical tasks such as addition (e.g., Pesenti et al., 2000), sub-
traction (Rueckert et al., 1996) and multiplication (Dehaene et al.,
1996), leading some authors to suggest that the activation of the
left precentral gyrus, along with the inferior parietal cortex, might
be evidence of a finger moving network that might, in turn, be
reflecting a trace of a finger counting strategy (Sato and Lalain,
2008).

The act of counting often involves the acquisition and use
of a verbal number system, of which, number words are the
basic building blocks. Number words are highly frequent in child
directed speech, but their meanings are acquired slowly, with
effort and in stages. Wynn (1992) has argued, in fact, that the
developing knowledge of the meanings of counting words is a
central part of the process of understanding the counting system.
Though children as young as 6 months can discriminate between
set sizes (Xu et al., 2005), and children 1 and 2 years of age show
to be good at reciting the count sequence (Fuson, 1988), as well as
capable of recognizing number words as designators of quantity
(Bloom and Wynn, 1997), their difficulty seems to lie in under-
standing how specific words match to specific quantities. One
proposal is that the syntax of number words as well as the con-
texts, in which they appear, might be serving as cues that help
children bootstrap this process early (e.g., Gleitman, 1990; Wynn,
1992; Bloom and Wynn, 1997), but finger counting may also very
well be serving as an early entry point to this understanding.

Other evidence coming from developmental as well as neu-
rocognitive studies, in keeping with what has been found in

neuroimaging studies, suggest that finger counting activity, helps
build motor-based representations of number that continue to
influence number processing well into adulthood, suggesting that
abstract cognition may be rooted in bodily experience (Domahs
et al.,, 2010). In fact, these motor-based representations have
been argued to facilitate the emergence of number concepts from
sensorimotor experience through a bottom-up process (Andres
et al., 2008). In our view, finger counting, can also be seen as
a means by which direct sensory experience with the body can
serve the purpose of grounding number as well as number words
initially as low level labels, that later serve as the basis for the
acquisition of new higher level symbols from the combination of
already grounded ones, something known as grounding transfer
(e.g., Harnad, 1990; Cangelosi and Riga, 2006). The grounding
approach has also been useful for the modeling of the acquisition
of words for objects (Morse et al., 2010; Tikhanoff et al., 2011)
and for actions (Marocco et al., 2010; Stramandoli et al., 2012) as
well as for numbers (Rucinski et al., 2011, 2012).

In sum, while finger counting may not be strictly necessary for
children to get on their way to the cognition of number, there is
evidence that it does seem to help the learning process, serving as
a bridge between possibly innate abilities to perceive and respond
to numerosity (e.g., Butterworth, 2005) and the development of
the capacity to mentally represent and process number as well as
linguistic number related concepts (Lafay et al., 2013). Not much
work using robotics has attempted to build on this.

A number of connectionist models have simulated different
aspects of number learning. Ma and Hirai (1989) for exam-
ple, studied how children learn to count using an associative
memory network model, which mimicked three phenomena pro-
posed by Fuson et al. (1982), to be present in the acquisition
of counting by children [i.e., number word sequence produced
by children dividable into three distinct portions: conventional,
stable nonconventional, and unstable; irregular number words
(e.g., “fifteen”) omitted more often than regular ones (“fourteen,”
“sixteen”; initially number word sequence is in recitation form)].

Other models yet, have focused on the identification of the
number of objects in a visual scene as a result of learning.
Dehaene and Changeux (1993), for example, using a system
consisting of three modules (an input retina, an intermediate
topological map of object locations, and a map of detectors)
created a numerosity detector. The system was able to simulate
the distance effect in counting, by which performance increases
with increasing numerical distance between two discriminated
quantities. More recently, Ahmad et al. (2002), explored quan-
tification abilities and how they might arise in development,
using a multi neural net approach, that combined supervised and
un-supervised nets and learning techniques in order to simulate
subitization (phenomenon by which subjects appear to produce
immediate quantification judgments, usually involving up to 4
objects, without the need to count them) and counting. They
used a combined and modular approach, providing a simulation
of different cognitive abilities that might be involved in the
cognition of number, (each of which would have their own evo-
lutionary history in the brain), and is in keeping with Dehaene’s
triple code model (2000). Rajapakse et al. (2005), targeted aspects
of language related to number such as linguistic quantifiers.
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Using a hybrid artificial vision connectionist architecture, they
ground linguistic quantifiers such as few, several, many, in percep-
tion, taking into consideration contextual factors. Their model,
after being trained and tested with experimental data using a
dual-route neural network; is able to count objects (fish) in visual
scenes and select the quantifier that best describes the scene. Even
more recently, Rucinski et al. (2011) using a cognitive robotics
paradigm, have explored embodied aspects of mathematical
cognition such as the interactions between numbers and space,
reproducing three psychological phenomena connected with
number processing, namely size and distance effects, the SNARC
effect and the Posner-SNARC effect. The same group in another
work using the same paradigm (Rucinski et al., 2012), instead
focused on counting, and in particular, on the contribution of
counting gestures such as pointing. These models, however, did
not consider the role of finger counting in numerical abilities.

In this paper, using a Cognitive Developmental Robotics
paradigm (Asada et al., 2009; Cangelosi and Schlesinger, 2014) we
present results of an exploration on whether finger counting and
the association of number words (or tags) to the fingers, could
serve to bootstrap the representation of number in a cognitive
robot enabling it to perform basic numerical operations, such as
addition.

MATERIALS AND METHODS

The robotic model used for the experiments is a computer simu-
lation model of the iCub humanoid robot (Tikhanoff et al., 2008,
2011). The iCub is an open-source humanoid robot platform
designed to facilitate cognitive developmental robotics research as
detailed in (Metta et al., 2010). At the current state the iCub plat-
form is a child-like humanoid robot 1,05m tall, with 53 degrees
of freedom (DoF) distributed in the head, arms, hands and legs.
The simulated iCub has been designed to reproduce, as accurately
as possible, the physics and the dynamics of the physical iCub.
The simulator allows the creation of realistic physical scenarios in
which the robot can interact with a virtual environment. Physical
constraints and interactions that occur between the environment
and the robot are simulated using a software library that provides
an accurate simulation of rigid body dynamics and collisions. One
of the most advanced parts of the iCub is the hand, that com-
prises 9 DoF, for a total of 18 DoF, and it is the result of a design
that optimized the level of integration of the hand in the over-
all robot to meet the child-like project specifications in terms of
dimensions, dexterity and sensorization. Details on the iCub hand
can be found in (Schmitz et al., 2010).

In this work we focus on the fingers, that means we use 7 DoF
for each hand, distributed as follows: 2 DoF for thumb, index and
middle fingers, but only one for controlling the ring and pinky
fingers, that are “glued” together. Because of the limitation with
the last two fingers the finger representation of numbers with the
right hand is as in Figure 1. Numbers from six to ten are repre-
sented by adding left hand fingers with all the right hand fingers
open (e.g., six is five right hand plus one left hand). In this work,
we suppose that the robot is right handed.

The iCub is not provided with ears, so the auditory input (i.e.,
the number words) was recorded from a child’s voice using a
standard microphone and stored as a WAVEform audio file for-
mat at 22 KHz with lossless compression. From the waveform,
we extracted the mel-frequency cepstral coefficients (MFCC) to
represent each number word from one to ten, using the Slaney’s
auditory toolbox 2.0 for MATLAB (1998). MFCC technique com-
bines an auditory filter-bank with a cosine transform to give a rate
representation roughly similar to the auditory system (Davis and
Mermelstein, 1980).

Figure 2 presents the architecture of the robot’s cognitive
system, in which the different units and their connections are pre-
sented in a schematic form. The lower part of the implemented
neural system is directly connected with the robotic platform,
and can be summarized in: (i) the motor controller/memory
(Motor System and Right/Left Layers), that is able to plan finger
movements by setting the finger joints’ angles and to memorize
the finger number sequence; (ii) an auditory memory (audi-
tory system and auditory layer), that is able to memorize the
number words sequence. Upper part of Figure2 presents the
inner units that are responsible for abstract functions (i.e., not
directly connected with the robot), they are the switch/associative
layer, that allows the two lower systems to cooperate in order to
perform other functions, and the competitive layer classifier we
implemented to test the quality of the number learning. After
supervised training, it is able to represent the correspondence
between numbers from 1 to 10 and the internal representations
(i.e., hidden layer activations and/or cepstral coefficients). The
role of the competitive layer classifier is to simulate the final pro-
cessing of the numbers, after a number is correctly classified into
its class, the appropriate action can be started, e.g., the produc-
tion of the corresponding word, of a symbol, the manipulation of
an object and so on.

The motor controller/memory was designed using two dif-
ferent RNNs in order to model lateralization when processing
numbers, as shown by (Tschentscher et al., 2012). In this way,

FIGURE 1 | Number representation with the right hand fingers of the iCub. From left to right: one, two, three, four and five.
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FIGURE 2 | Schematic of the Robot’s Cognitive System. In the lower
part are the units of the motor controller/memory and of the auditory
sub-systems, they are directly connected with the robotic platform. In the
upper part there are the units with abstract functions that are the
switch/associative network and the competitive layer classifier. Bold links
indicate a full (one-to-all) connection between each layer, while dotted links
are direct (one-to-one) connections. Note that the system’s external inputs
coincide with the outputs, indeed proprioceptive information from motor
and auditory systems is an input for the system during the training phase,
while it is the control output when the system is operating.

the network that controls the left hand will be switched off when
low numbers (1-5) are processed. The two RNNs that compose
the motor controller/memory were trained separately, i.e., with
different random weight initialization. Note that the motor con-
troller is implemented by two different RNNGs, trained separately,
but that we refer to as a single unit. The use of RNNss to learn to
count was investigated by Rodriguez et al. (1999), they explored
the capabilities of recurrent networks in the task of learning to
predict the next character in a simple deterministic context-free
language, in order to provide a more detailed understanding of
how dynamics can be harnessed to solve language problems.

The artificial neural networks were implemented using the
Matlab Neural Network Toolbox 8.0, the supervised training
algorithm for all networks was Levenberg-Marquardt algorithm
(LMA), one of the fastest and widely used optimization algo-
rithms that can be applied to artificial neural networks (Hagan
and Menhaj, 1994). The LMA interpolates between the Gauss—
Newton algorithm (GNA) and the method of gradient descent.
The LMA is more robust than the GNA, which means that in
many cases it finds a solution even if it starts far from the
final minimum. Like the quasi-Newton methods, the LMA was
designed to approach second-order training speed without having
to compute the Hessian matrix. When the performance function
has the form of a sum of squares (as is typical in training feed-
forward networks), then the Hessian matrix can be approximated
as H = JTJ and the gradient can be computed as g =] Te where J
is the Jacobian matrix that contains first derivatives of the network
errors with respect to the weights and biases, and e is a vector of

network errors. In our implementation, the error e is calculated as
the average of the squared errors of outputs. The Jacobian matrix
can be computed through a standard backpropagation technique
(see Hagan and Menhaj, 1994), that is much less complex than
computing the Hessian matrix. The LMA uses this approxima-
tion to the Hessian matrix in the following Newton-like update:

-1
Ax= I + 1] I e

when the scalar [ is zero, this is just Newton’s method, using the
approximate Hessian matrix. When p is large, this becomes gra-
dient descent with a small step size. Newton’s method is faster
and more accurate near an error minimum, so the aim is to
shift toward Newton’s method as quickly as possible. Thus, p is
decreased after each successful step (reduction in performance
function) and is increased only when a tentative step would
increase the performance function. In this way, the performance
function is always reduced at each iteration of the algorithm. In
our experiments the initial value of u was 0.001, increase factor
was 10 while decrease factor was 0.1, maximum L was 10'?. The
number of iterations (or epochs) of the algorithm was variable
because we adopted as stop criterion a minimum performance
gradient of 107 or a maximum of 1000 epochs.

The derivative function of the RNN networks was the back-
propagation through time (Rumelhart et al., 1986), that is a
gradient based technique that begins by unfolding the recurrent
neural network through time into feed-forward neural networks,
so that the training then proceeds in a manner similar to train-
ing a feed-forward neural network with classic back-propagation,
except that each epoch must run through the observations in
sequential order.

The competitive layer classifier is implemented using the
softmax transfer function that gives as output the probabil-
ity/likelihood of each classification. Naturally, it ensures all of the
output values are between 0 and 1, and that their sum is 1. The
softmax function used is a follows:

eqi
2;1:1 el

where the vector q is the net input to a soffmax node, and » is the
number of nodes in the softmax layer.

The architecture of the hidden layers of RNNs was chosen after
a performance test, in which after 100 runs with varying num-
ber of hidden neurons, the best trade-off solutions were selected
in terms of minimization of the error and number of iterations
needed to converge. We found that 10 neurons was not sur-
prisingly the ideal solution, this because 10 is also the number
of different states to represent. Furthermore, in our preliminary
experiments we also found that the pure linear transfer functions
for the hidden layers were more effective than the usual sigmoid.
We chose not to use a bias or set them to zero for the RNN. Due
to these choices, when the networks are not active, i.e., all acti-
vations are zero, they can be activated by incepting the activation
values to the respective neurons in order to start counting from a
specific number.

In addition to the main blocks, an associative network is
included in the system to initiate the computation of the system

softmax(q, i) =
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and to implement the number manipulation. Indeed, after the
RNNs have learned the number sequence, the switch is needed
to stop the counting and to redirect the signals to the competitive
classifier for the processing of the result.

Figure 3 shows the details of the switch/associative layer that,
once the two systems have learned to count, allows them to oper-
ate and communicate with each other. In particular, the unit is
responsible for starting the counting by initializing all the hidden
units to 1, and redirecting the hidden unit activation to the com-
petitive classifier when the counting is finished. Furthermore, this
unit is crucial in the development for the acquisition of the abil-
ity to add numbers, because it can reset one of the two networks
to make it count the new operand, and it lets the other continue
as a buffer memory. Finally, thanks to the associative connections
between the two layers (with weights w; and w in Figure 3) there
are other two states that allow inputting a specific number repre-
sentation starting from another: from fingers to words and vice
versa. These states will be studied in more detail in the number
manipulation experiments. All states are reported in the table on
the left of Figure 3.

As can be seen from the switch/state table in Figure 3 we set to
1 the initial state of all the hidden layers’ neurons in order to start
the sequence. Vice versa if the initial state is set to 0, there is no
activation because RNNs do not have bias in the hidden layer.

Table 1 presents the actual finger joint positions for the ten
number representations plus the rest (zero) position. A high value
of the joint position represents the finger when it is closed, while
low values indicate the finger is open. Note that because of ele-
ment collision and tendon limitations the actual values are not
the ideal ones (i.e., 90, 180, 220 when finger is closed, 0 when
open).

Table 2 reports the MFCCs for the number words extracted
from a child voice.

In our experiments, all values in the input/output datasets
used in training were pre-processed by dividing them by the max-
imum absolute value of the series, in order to have them in the
range [—1, 1]. This is beneficial for the learning of weights and
biases of the artificial neural networks.

EXPERIMENTS AND RESULTS

Using the material and methods presented above, first we studied
the part of the cognitive system that learns to count. The results of
the training are presented in the subsection “Numbers learning.”
As second step, we build on this by developing the capacity of the
associative network to control basic operations like the addition
of two operands and to derive the number representation of one
of the networks from the other (i.e., from fingers to words and
vice versa).

NUMBERS LEARNING
For this first experiment, the main goal was to test the ability
of the proposed cognitive system to learn numbers by compar-
ing the performance of different ways of training the number
knowledge of the robot with: (1) the internal representation (hid-
den units activation) of a given finger sequence, (2) the MFCC
coefficients of number words out of sequence, (3) the internal
representation of the number words sequence, (4) the internal
representation of finger sequences plus the MFCC of number
words out of sequence (i.e., learning words while counting); (5)
internal representations of the sequences of both fingers and
number words together (i.e., learning to count with fingers and
words).

To this end, we setup the experiment with the following steps:
(i) the motor controller learns the opening of the fingers in a
given sequence, in order to later establish a finger counting rou-
tine, and creates an internal representation for each step in the
sequence by means of the hidden units activations; (i) MFCCs are
extracted from number words; (iii) the auditory memory learns
the verbal number words in order from 1 to 10 and creates an
internal representation for each word in the sequence. From each
learning step, relevant data are collected and stored as datasets
for the experimentation, these sequences can be summarized as
follows:

(1) Internal representations of the finger sequence: 10 values cor-
responding to the activation values of the hidden units of
motor controller/memory network.

o o s=| i(t) i-(t) 0. (t+1) 0:(t+1) | 0s(t+1)| 04(t+1)
3 4
5 idle 0 0 0 0 NaN | NaN
Mqtor AUdltOry_ start 1 1 Zi1(t)xh1 Ziz(t)xhz NaN | NaN
Rig%tayfgﬂ Layer count| O:(t) | 0x(t) | Zil(t)xh: | Zio(t)xh. | NaN | NaN
‘ done 0 0 0 0 o:(t) | 02(t)
0 i B 04 sum 0:(t) 1 Z|1(t)xh1 Ziz(t)xhz NaN | NaN
Switch f2aw NaN [o1(t)xw NaN Ziz(t)xhz NaN | NaN
> Associative «@— | w2f [0:(t)xw.] NaN | Zis(t)xh NaN | NaN | NaN
L x = gcalar product; f2w = fingers to words; w2f=words to fingers; NaN preserves the activation at
ayer time t (or doesn’t activate the units); w and h are weight vectors, of associative layer and
motor/auditory layer respectively.
FIGURE 3 | Details of the Switch/Associative Layer. The table on the activations of one layer from the ones of the other. Bold lines indicate
right summarizes the outputs according to the different states. In a full weighted connection, while normal lines are single connections.
practice the layer operates as a recursive feedback with the possibility For simplicity hidden units of the two RNNs of the motor system are
to start and reset the motor/auditory layers and to derive the represented with one block.
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Table 1| Actual finger joint positions according to number representation.

Fingers Rest/zero One Two Three Four Five Six Seven Eight Nine Ten
Thumb right 90.0 90.0 90.0 10.9 88.9 mAa A mA 1.1 1.1 M1
180.0 180.0 180.0 2.1 88.8 1.2 1.2 1.2 1.2 1.2 1.2
Index right 90.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
180.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Middle right 90.0 90.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
180.0 180.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Ring and pinky right 220.0 220.0 220.0 220.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
Thumb left 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 1.0 89.0 1.0
180.0 180.0 180.0 180.0 180.0 180.0 180.0 180.0 2.2 88.9 1.2
Index left 90.0 90.0 90.0 90.0 90.0 90.0 1.0 0.0 0.0 0.0 0.0
180.0 180.0 180.0 180.0 180.0 180.0 2.1 0.0 0.0 0.0 0.0
Middle left 90.0 90.0 90.0 90.0 90.0 90.0 90.0 1.0 0.0 0.0 0.0
180.0 180.0 180.0 180.0 180.0 180.0 180.0 2.1 0.0 0.0 0.0
Ring and pinky left 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 220.0 2.7 0.0
Table 2 | Mel Frequency Cepstral Coefficients for number words.
MFCC One Two Three Four Five Six Seven Eight Nine Ten
1 —35.5929 —32.9669 —32.4777 —31.2712 —29.7136 —35.4331 —35.442 —32.0295 —31.2157 —31.9479
2 —1.0919 —1.3581 —1.6224 —1.8495 —1.4493 —1.2686 —1.0689 —1.9539 —1.1709 —2.0959
3 0.4216 1.1045 0.6798 0.0099 —0.6858 0.7221 0.6448 0.6668 0.1402 0.5683
4 —0.1042 0.2708 —0.0635 —0.3179 —0.4566 0.184 0.1756 0.2295 0.7539 —0.2115
5 0.3303 0.0268 0.2202 0.0331 0.507 —0.08 —-0.2727 —0.0303 —0.4317 —0.2456
6 —0.1156 0.3903 —0.0071 —0.3468 0.3923 0.0328 0.0277 —0.2201 —0.189 0.1962
7 0.0052 0.1658 —0.0939 0.3523 —0.3028 0.1184 0.7074 0.0011 0.9789 0.2468
8 —0.1069 0.0182 0.0204 0.3312 —0.1998 —0.4751 0.036 —0.0101 0.3488 0.4278
9 —0.1343 —0.1744 0.0419 0.1559 —0.1472 0.0975 0.2879 0.1467 —0.2435 0.5773
10 0.1164 —0.1774 0.0226 —0.0661 —0.1642 0.5202 0.1546 0.1802 0.4552 —0.1427
n —0.5587 0.3471 —0.0303 —0.0531 0.3098 —0.1306 0.155 0.0578 —0.1662 —0.0612
12 —0.1981 —0.0564 0.1463 0.0979 0.2068 —0.0164 —0.2105 0.2783 —0.2708 —0.0456
13 0.223 —0.0566 —0.0506 0.033 —0.0655 0.0037 —0.1311 —0.0695 —0.176 0.0915
(2) MFCCs from number words: 13 values, not as part of a after the optimal leaf order (Bar-Joseph et al., 2001), that shows

sequence.

Internal representations of the words sequence: 10 values
from hidden units’ activations of auditory memory network.
Internal motor representations of the finger sequence and
MFCCs: a total of 23 values obtained by merging 1 and 2.
Internal motor and auditory representations: a total of 20
inputs obtained by merging 1 and 3.

(3)
4)
)

Datasets 4 and 5 are built to model the learning when both fin-
gers and number words are presented together as training input
to the cognitive system.

Figure 4 shows the activation values of hidden layers of RNNs:
finger sequences on the left and word sequences on the right. Note
that we present together the activations of the two RNNs that
compose the motor controller/memory network. Motor activa-
tions show a lateralization because the network that controls the
left hand (neurons 6-10) is switched off, furthermore the units
from 1 to 5 remains fixed from the number five on because we
suppose that the right hand is open (we reason as if the robot is
right handed). Moreover, in Figure 5 we present the dendrogram

how the internal finger representation is more similar to the
number sequence, indeed, numbers that are close in the actual
sequence are linked together. Meanwhile, the grouping of num-
ber words (learned in or out of sequence) is more random, and
affects the learning as shown in the classification experiment.

All datasets were used to train the competitive layer classi-
fier to be classified in the ten classes that represent the numbers
from 1 to 10. Classification results after 10 epochs of training are
presented for each class/number in Table 3. The low number of
epochs s, in this case, is imposed in order to study the robot’s
number learning in the early stages. However, results show that
10 epochs are enough for the LMA to converge.

Table 3 reports the medians and standard deviations of class
calculated after 100 runs for each classification training dataset. If
we consider “good” classification only, the cases in which the like-
lihood is greater than 0.5, we can consider the plain words dataset
as not adequate to train the network because it fails for all num-
bers. However, if we consider as successful classification the cases
when the class has the greatest likelihood, the only misclassifica-
tion observed is for the number three. All the other datasets are
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FIGURE 4 | Hidden units’ activation with the number sequence from 1 to 10. (A) RNN trained with finger sequence. (B) RNN trained with word sequence.
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FIGURE 5 | Optimal leaf-order of hidden units’ activations.

Table 3 | Likelihood of number classes with different training datasets.

Fingers sequence Number words out Words sequence Finger sequence and Fingers and words
only of sequence only number words sequences
Median Std dev Median Std dev Median Std dev Median Std dev Median Std dev
1 0.779 0.0743 0.3526 0.0218 0.7638 0.0093 0.7355 0.0782 0.9585 0.0108
2 0.662 0.1341 0.2303 0.0083 0.7358 0.0094 0.6584 0.048 0.9621 0.0085
3 0.7015 0.1192 0.0752 0.0043 0.679 0.0145 0.6255 0.0587 0.9459 0.021
4 0.9027 0.1376 0.1777 0.003 0.6414 0.0195 0.7789 0.0677 0.9763 0.1921
5 0.7156 0.0485 0.4448 0.0057 0.6871 0.0116 0.7798 0.0292 0.9148 0.0114
6 0.7574 0.05 0.241 0.0322 0.6452 0.0161 0.8072 0.0533 0.9202 0.01631
7 0.8226 0.0387 0.2798 0.031 0.6082 0.0308 0.875 0.0229 0.9333 0.01391
8 0.6799 0.0653 0.1499 0.0045 0.6476 0.0198 0.7133 0.0543 0.9125 0.0138
9 0.7854 0.0433 0.3667 0.0058 0.7284 0.0102 0.84 0.0333 0.9443 0.0152
10 0.9069 0.0278 0.2404 0.0058 0.7436 0.0098 0.93 0.0221 0.9708 0.0085
avg 0.7653 0.0738 0.2558 0.0122 0.688 0.0151 0.7743 0.0468 0.9438 0.031
good and as expected, when finger and word sequences are used The “finger sequence and number words” (i.e., dataset 4),
together, the cognitive system learns numbers quickly and with a  shows that associating the number words with the fingers
very good likelihood, greater than 90% for all numbers. sequence helps to drastically improve the classification perfor-

We performed a pairwise ¢-test to evaluate the statistical signif- mance without needing to learn number words in a sequence.
icance of the results reported in Table 3. The #-test results confirm  However, to learn number words in sequence helps to addition-
that all the differences are statistically significant except for the ally improve the classification performance to highest likelihood,
number three, when finger sequences are compared with word if internal representations are associated with motor ones.
sequences, and the two when finger sequences only are compared In order to study in more detail the development of learning,
with finger sequences and number words. we measured the classification performance over the 10 epochs
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FIGURE 7 | Median number misclassifications with varying epochs of learning.

for the competitive layer trained with the different datasets. In
this case, performance is evaluated by means of the average
likelihood of classification (Figure 6) and median number of
misclassifications (Figure 7).

Looking at the developmental results, we once again see that
number words learned out of a sequence are the less efficient
to learn as there are no misclassifications only after 10 epochs,
and the average likelihood is still low (0.256) after ten epochs.
Conversely, if number words are learned in sequence and internal
representations are used as inputs, the learning is faster in terms
of precision of classification (i.e., no errors after just 2 epochs) but
the maximum average likelihood, that converges at 0.688, is not
as strong as when the learning involves also fingers. Indeed, the
finger sequence reaches a higher average likelihood (0.765), but
best results are obtained when internal representation of words
and fingers are used together as input, in fact the average median
likelihood is 0.94 just after 8 epochs.

NUMBERS MANIPULATION

Once the number sequences are learned, an interesting feature of
the proposed cognitive system is the possibility to easily build up
the ability to manipulate numbers with the development of the
switch-associative network.

Indeed, this ability can be modeled by extending the capabili-
ties of the associative network from the simple start and stop, to
its transferring and mapping to the basic operation of addition.

By transferring, we mean the new mapping of the network’s
representation derived from the number counted by the other
network, when the robot hears the number word “three,” to the
correlated finger representation. This can be considered, in a
sense, an associative mapping between internal representations.
This is implemented by activating a weighted connection between
the two networks, which can be learned by applying the LMA to
the two-layer network that comprises the hidden units of both
networks. This training is quite fast and effective both ways, as
an average of 4 iterations (over 100 trials) are needed to reach an
average estimation error lower than 1071, which practically does
not affect the performance of the classifier, that shows differences
in the statistical indicators (mean, median, and standard devia-
tion over 100 trials) lower than 10~'2 when its inputs are derived
by the associative network.

The operation of addition can be seen as a direct development
of the concurrent learning of the two recurrent units (motor and
auditory). Indeed, if one of the two does the actual counting of
the operands, the other can be used as a buffer memory to add
the result, when it is done, the final number can be transferred
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from the buffer to the other unit and then inputted to the final
processor (the classifier in our system).

As an example let us consider 2 + 2, the following steps will be
taken:

(1) The first operand is heard by the auditory system and both
networks will count until the corresponding activation of
number 2 is reached. This step corresponds to the states of
the associative network.

(2) The sum operator is recognized so the auditory network is
reset, while the first operand remains stored in the motor
memory.

(3) The second operand is heard, both networks restart to count
as in step 1, until the auditory network reaches the activation
corresponding to the number 2. In the meantime, the motor
network reaches the activation of the number 4.

(4) After the auditory network stops, the associative network rec-
ognizes that the work is done so the total (4) is incepted from
the fingers network to the auditory network thanks to the
associative connection.

(5) Finally the output of the resulting number (4) is produced for
final processing (in our case the classifier).

The steps are depicted in Figure 8.

DISCUSSION

The results obtained in our experiments with the iCub child-
like robotic platform, show that learning the number words in
sequence along with finger configurations helps the fast build-
ing of the initial representation of number in the robot. Number
knowledge, is instead, not as efficiently developed when num-
ber words are learned out of sequence without finger counting.
Furthermore, the internal representations of the finger config-
urations themselves, developed by the robot as a result of the
experiments, sustain the execution of basic arithmetic operations,
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FIGURE 8 | The picture presents the steps done by the Robot’s
Cognitive System to perform the addition of two numbers, that in this
example are both two.

something consistent with evidence coming from developmental
research with children.

This does not mean that just learning the counting sequence
from one to ten, is enough for children (or our robot), to under-
stand number concepts, but it is the repeated experience using
the number word sequence when counting sets of things that
is important in the development of numerical understanding
(Sarnecka and Carey, 2008; Donlan, 2009). While the use of
fingers does not necessarily precede the use of language in the
acquisition of a symbolic numerical system (e.g., Nicoladis et al.,
2010), what many children seem to be doing initially, in fact, is
learning small number word sequences by rote, and later, associa-
tions between these small number words and objects in the world
(first among which, their readily available fingers). Later on down
the developmental path, with the child’s early schooling experi-
ence, this mapping will also include written representations (or
numerals). These written representations, eventually take on the
meaning of the spoken number word (Fuson and Kwon, 1992). It
is this kind of associative multi-modal learning that we are in a
sense reproducing in our model.

Studies focusing on how children acquire abstract words
and concepts, have proposed that multiple representational sys-
tems involving both sensorimotor as well as linguistic informa-
tion might be playing a role in conceptual representation (e.g.,
Louwerse and Jeuniaux, 2010). While the case of the acquisition of
number words might be considered as a particular type of abstract
word learning, theories such as the LASS theory (Barsalou et al.,
2008), according to which both the linguistic system as well as
the sensorimotor system (through simulation) are activated in the
processing of word meaning to different degrees under different
task conditions, and the WAT (Words as Tools) proposal put forth
by Borghi and Cimatti (2009) (but also see Borghi et al., 2011, and
the special issue of Borghi and Pecher, 2011), have argued and
furnished evidence on the synergetic role both language and sen-
sorimotor experience play in the acquisition of abstract concepts,
and on how important the modality by which words are learned
is. In our model, number words or tags heard repeatedly, when
coupled to the experience of moving the fingers, do serve as tools,
used in the subsequent manipulation of the quantities they come
to represent.

In fact, the internal representations of the finger configura-
tions themselves, found as a result of the experiments, can be
considered to be a basis for the building of an embodied num-
ber representation in the robot, something in line with embodied
and grounded cognition approaches to the study of mathematical
cognitive processes. Just as has been found with young chil-
dren, through the use of finger counting and verbal counting
strategies, our model develops finger and word representations
that subsequently sustain the robot’s learning the basic arith-
metic operation of addition. While the experiments done with
the model in this work have targeted simple addition, the same
model can be easily adapted to implement other operations such
as subtraction by training the motor controller/memory with the
backward number sequence (from 10 to 1) and then selecting
this sequence at the beginning (e.g., by setting all hidden acti-
vations to —1), this way the subsequent manipulation will give
the result of the subtraction. Future work with the model will
implement this.
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Another thing we would like to highlight is that, since the hid-
den layer without any external input does the actual counting,
our system is also able to count “mentally” without necessar-
ily producing actions or words. Future work with the model,
will explore offline simulation aspects of the motor programs
involved in finger based representations of number, or the “men-
tal motor imagery” activated whenever a number and/or number
word is encountered, after the robot has learned finger counting
and finger calculation early in its training. This direction is stim-
ulated by recent research on the simulation of mental imagery
in cognitive systems and robots (see Di Nuovo et al., 2013b), in
particular by the successful application of motor imagery mod-
els for mental practice in the execution of verbal commands
(Di Nuovo et al.,, 2012) and for performance improvement (Di
Nuovo et al., 2013a). The interested reader can find more details
about this line of research in a recent special issue (see Di
Nuovo et al., 2013b). In recent theoretical accounts of embod-
ied numerosity (e.g., Moeller et al., 2012), something akin to the
offline simulation of the motor programs involved in finger based
representations of number, has been suggested to take place in
children as well as adults. This line of investigation with the model
will also compare the representation of embodied numerosity
or “manunumeral” representations (Fischer and Brugger, 2011),
using different culturally transmitted counting habits or strate-
gies, in order to explore how they might influence the number
processing in the robot (e.g., Bender and Beller, 2011; Previtali
etal., 2011).

The utility of children’s learning finger counting strategies
early in their mathematical education continues to be debated
in mathematics education research, despite the evidence com-
ing from neurocognitive and psychological studies indicating
that it does (for review of debate see Moeller et al., 2011). Our
experiments show that in fact, learning to count with the fin-
gers, using verbal tags, can be helpful in the numerical training
of a robot as well. While being inspired by the evidence from
the studies we have cited in previous sections, our implemen-
tation is nonetheless, an abstraction of complex and as of yet
not totally understood processes that may underlie the devel-
opment of numerical cognition. Our results, however, are in
line with what has been theoretically claimed in the develop-
mental literature (e.g., Gelman and Gallistel, 1978), that is: that
finger counting may be playing a functional role in the acquisi-
tion of a variety of principles considered necessary for children
to have “under their belts” in order to reach an understanding
of number. Examples of these principles and the role of fin-
ger counting that are relevant to our present study, and that we
think we have simulated at least in part are: finger counting as
an aid in the keeping track of the number words while recit-
ing the counting sequence; as it contributing to the induction
of the one-to-one correspondence principle by which children
are helped by their fingers to coordinate the processes of tag-
ging, or the attribution of a number word to each item; and as
facilitating the assimilation of the stable-order principle where
numerical labels have to be enumerated in the same order across
counting sequences (see also Andres et al., 2008; and Lafay et al.,
2013).

The study of mathematical cognitive processes, tradition-
ally considered to be quintessential examples of abstract and
symbolic processing, have been assumed to primarily involve
the mind rather than the body. Our embodied robot experi-
ments indicate, that aspects of the development of this knowl-
edge can be accounted for not only by way of bodily repre-
sentations, but also with an artificial network in the place of
a mind.
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