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ANALYSING FINGER INTERDEPENDENCIES DURING 

THE PURDUE PEGBOARD TEST AND 

COMPARATIVE ACTIVITIES OF DAILY LIVING 

ABSTRACT 
Study Design: Bench, Cross-sectional 

Introduction: Information obtained from dexterity tests is an important component of a 

comprehensive examination of the hand. 

Purpose of the Study: To analyse and compare finger interdependencies during the 

performance of the Purdue Pegboard Test and comparative daily tasks.  

Methods: A method based on the optoelectronic kinematic analysis of the precision grip 

style and on the calculation of cross-correlation coefficients between relevant joint 

angles, which provided measures of the degree of finger coordination, was conducted on 

10 healthy participants performing the Purdue Pegboard Test and two comparative daily 

living tasks.  

Results: Daily tasks showed identifiable interdependencies patterns between the 

metacarpophalangeal joints of the fingers involved in the grip. Tasks related to activities 

of daily living resulted in significantly higher cross-correlation coefficients across subjects 

and across movements during the formation and manipulation phases of the tasks (0.7-

0.9), while the release stage produced significantly lower movement correlation values 

(0.3-0.7). Contrarily, the formation and manipulation stages of the Purdue Pegboard Test 

showed low finger correlation across most subjects (0.2-0.6), while the release stage 

resulted in the highest values for all relevant movements (0.65-0.9). 

Discussion: Interdependencies patterns were consistent for the activities of daily living, 

but differ from the patterns observed from the Purdue Pegboard Test. 

Conclusions: The Purdue Pegboard Test does not compare well with the whole range 

of finger movements that account for hand performance during daily tasks. 

Keywords: Dexterity, Finger coordination, Hand function, Functional outcome 

Level of evidence: N/A 

1. INTRODUCTION 

1.1 HAND FUNCTION TESTS 
Two of the biggest challenges in the health care environment are the effectiveness and 

time-efficiency of treatment. Both factors can be greatly improved by coupling clinical 

judgment with appropriate and accurate measurement tools. A robust evaluation of 

patients with hand impairment conditions must include looking at the patient’s 

performance areas within the context of his or her daily living. In a clinic environment, 



therapists often evaluate common hand function parameters, such as strength, 

sensibility, and range of motion, along with the administration of dexterity tests, but may 

forgo to relate assessment procedures with daily living tasks1. 

Hand assessment methods can also be used for the identification and standardisation of 

grasping patterns. The identification and assessment of particular hand functional 

postures are vital to the evaluation of treatment of rehabilitation. Although there is little 

conformity to specific classifications of grasping patterns, they are consistently 

characterised as: tripod, precision, lateral precision, power, spherical, and extension grip 

styles 2–4.  

Dexterity tests are often based upon ordinal scales and are still widely used in 

rehabilitation and therapy5–8. The main limitations of these assessments are low 

reliability and sensitivity and, more importantly, these tests are not robust enough to 

correlate well with the patient’s wide range of hand movement patterns 9. 

Although many hand assessment methods have been designed and implemented, there 

is little or no uniformity among them, leading to a lack of conformity to a standard test of 

hand function. Traditionally, measurement of hand function has been time-based and 

subjective to the assessor’s opinion, with tests such as the Purdue Pegboard Test, 

Minnesota Manual Dexterity Test, Functional Dexterity Test, and Southampton Hand 

Assessment Procedure6,7,9–11 being widely used for rehabilitation and therapy purposes, 

however, although time is an easy parameter to measure and manipulate statistically, it 

is not the most accurate and robust measure of hand function. Furthermore, the role of 

synergistic movements and interdependencies in the proficient performance of tasks has 

not been explored and it is not part of most traditional assessments.  

Previous works have shown that finger movements during daily tasks rarely involve 

motion or rotation at a single joint. Anatomical factors, such as interdigit webbings, 

connections between various tendons, insertions of extrinsic finger muscles, and 

neuronal connections result in mechanical and neural couplings between various joints. 

The sum of mechanical and neural coupling generates coordinated movements between 

various joints 12–15. Thus the proficient grasping of an object entails simultaneous motion 

at multiple joints, with correlated rotations 13. Simultaneous correlated motion at multiple 

joints has been studied during more dexterous uses of the hand, such as typing 16, 

playing the piano 17, and haptic interactions 18, but a standard procedure to assess such 

movement synergies has not been developed. Moreover, previous studies involved sets 

of tasks and hand postures or force patterns that were not specific enough to be 

immediately translated into assessment practice 19–21. 

The Purdue Pegboard (PBT) is one of the most widely used tests of hand function for 

therapy, rehabilitation, and treatment assessment purposes. It was developed by Dr. 

Joseph Tiffin, an Industrial Psychologist at Purdue University, in 1948 7, and originally 

intended for assessing the dexterity of assembly line workers. 

The PBT tests the quality and the speed of performance of the hand as the person 



accomplishes a task. More precisely, it assesses proficiency of one particular grasping 

pattern, the precision grip16. It has been shown, however, that there are several factors 

that account for hand manipulative task performance 5,22–25, and the degree with which 

the Purdue Pegboard Test assesses individual factors has yet to be investigated. 

1.2 KINEMATIC ANALYSIS OF THE HAND 
Computerised three-dimensional kinematic analysis is being increasingly used in clinical 

practice as a standard tool for the evaluation of interventions in patients with motor or 

postural dysfunction, especially in the case of gait and spinal posture 26–28. 

In the case of the hand, different techniques have been used in the past to analyse 

motor function, such as goniometers, instrumented gloves or motion tracking from digital 

images29–31. Many of these techniques do not allow for the simultaneous measurement 

of all degrees of freedom and the size of the implemented sensors may interfere with the 

normal execution of hand activities. The motion tracking of small passive markers 

(motion capture), however, introduces lower movement restriction, and the three-

dimensional instantaneous position of anatomical landmarks allows the calculation of a 

wider range of degrees of freedom32–37.  

Recent advances in motion capture systems that allow larger capture volumes and 

higher resolution acquisitions have made possible the measurement of representative 

activities reducing the patient’s inconvenience and the invasiveness of the tests 38–41.  

In order to effectively compare kinematic parameters in different patients, the use of 

cyclical actions in the study of upper limbs movements has been implemented, reducing 

the complexity represented by non-cyclical tasks42–44. 

The presence of movement synergies and its role in proficient performance of 

manipulative tasks have been investigated since the 1980s as a simplification of the 

hands’ redundant number of degrees of freedom into a more manageable dimensional 

space 18. 

Muscle activation synergies have been investigated and analysed through Principal 

Component Analysis and cross-correlation13,45–47, however, an in-depth cross-correlation 

analysis of movement synergies during activities of daily living and a traditional dexterity 

test has yet to be made. 

2. PURPOSE OF THE STUDY 
The purpose of this study was to quantitatively examine finger interdependencies from 

joint angle correlations, obtained from motion capture, within and across digits 1–3 

(thumb to middle finger) during the performance of the Purdue Pegboard Test and two 

tasks related to activities of daily living. The study focused on the precision grip style, 

holding an object on the radial aspect of the distal interphalangeal joint of the middle 

finger, the pulp of the index finger, and the pulp of the thumb. 



The precision grip style allows humans to perform most precision handling tasks, such 

as writing, buttoning, tying, and picking up small objects, it involves continual adaptation 

and is a crucial component of normal hand function 2. There are several factors that 

account for proficient performance of manipulative daily living tasks5,25,48–50, and, while 

the Purdue Pegboard Test has been proved to be a valid and reliable overall precision 

grip assessment procedure, the degree with which it reflects individual factors 

accounting for proficient manipulation is still unknown. This study was designed to test 

whether a relatively small set of movement patterns can be identified from precision grip 

in a selection of activities of daily living. Moreover, this study aims to identify and analyse 

the relationship between finger correlation patterns during both the Purdue Pegboard 

Test and activities of daily living, looking to investigate the degree with which the PBT 

reflects these patterns as underlying features of manipulative tasks. 

3. METHODS 

3.1 EXPERIMENTAL PROTOCOL 
This study examined 10 healthy participants (6 male, 4 female, all right-handed, age 22-

38 years, 26 ± 6.2 years) performing the Purdue Pegboard Test and two tasks related to 

activities of daily living: picking up a coin and opening a plastic bottle. The activities of 

daily living were selected as representative of tasks requiring the performance of the 

precision grip style. 

All movements began in a consistent seated posture on a 43 cm high, strait- back chair 

in front of a 72 cm high table with the torso upright, the right upper arm approximately 

vertical and forearm horizontal, the fingers in natural full extension (abduction/adduction 

not specified), and the palm resting on a specified area on the table. Subjects were 

given written and verbal instructions before being allowed to perform a training trial of 

each task. 

The standardized experimental protocol was developed by testing range of motion, 

motion capture protocols and subjects’ positions.  

Participants were evaluated by a single tester, trained to use both standardized 

procedures and motion capture systems, and all experiments were supervised by an 

occupational therapist. 

Test-retest consistency of the protocol was assessed through a paired t-test with alpha 

level at 0.05 and with hypothesis testing based on confidence intervals of the test-retest 

data. The differences did not vary in any systematic way over the range of measurement 

and all measurements were within the 95% limits of agreement.  

The subjects carried out three repetitions of each task with a 10-second pause between 

each trial. 

In the first task, subjects performed the Purdue Pegboard Test, reaching forward over a 



distance of approximately 35 cm to grasp a metal peg (2 mm in diameter), placing it into 

a hole on the Purdue Pegboard, and returning the hand to the initial posture. 

In the second task, subjects maintained the same initial posture as in the first task and 

reached forward over a distance of approximately 35 cm to grasp a British one-pound 

coin  (22.5 mm in diameter, 3.15 mm in thickness), placed it on a specified mark on the 

table, and returned the hand to the initial posture. 

For the third task the subjects reached forward from the starting position, gasped a 500 

ml plastic bottle and unscrew the lid with the dominant hand, using a precision grip style. 

The plastic lid was then placed on a specific area on the table (Figure 1). 

The University of Sheffield’s Department of Mechanical Engineering Ethics Committee 

approved the experimental protocol. 

3.2 DATA ACQUISITION 
The acquisition technique consisted of the placement of 25 reflective markers (diameter 

4mm) on different anatomical hand landmarks.  

From the index to little fingers, five markers were placed as follows: first marker on the 

metacarpophalangeal base, second marker on the knuckle, third on the proximal 

interphalangeal (PIP) joint, fourth on the distal interphalangeal (DIP) joint and, finally, the 

fifth marker on the nail (Figure 2).  

For the thumb, first marker was placed on the metacarpophalangeal base, second 

marker on the MCP joint, fourth on the IP joint and the fifth marker on the nail. One 

marker was placed on the wrist, aligned with the middle finger, on the wrist dorsum 

(Figure 2). 

A ten-camera Vicon T-160 motion capture system (Oxford Metrics Ltd., UK) recorded the 

reflective marker movements at a sampling frequency of 120 Hz, and then output the 

time-varying marker coordinates in a three-dimensional laboratory coordinate system 

(X–Y–Z) established through calibration. The data was then processed through a second 

order Butterworth low-pass filter with a cut-off frequency of 5 Hz.  

A local coordinate system X0–Y0–Z0 was established to facilitate kinematic descriptions 

and definitions (Figure 2). The origin of this local coordinate system was the marker 

adhered to the dorsal landmark of wrist. The coordinates of the markers measured in the 

global (laboratory) coordinate system (X –Y –Z) were transformed and expressed in the 

local coordinate system (X0–Y0–Z0). From the local coordinates, the time-varying angles 

for all the involved flexion–extension and thumb abduction-adduction joints were derived 

through a computational procedure.  

3.3 DATA ANALYSIS 
The analysis consisted of the computation of the cross-correlation coefficient matrix for 

all joint angles of interest. A matrix X, whose rows are observations (instantaneous joint 



angles) and whose columns are variables (degree of freedom), was defined from data 

from the last trial of each task for each subject in order to reduce error due to learning 

effect and provide stability to the data.  

The matrix R of correlation coefficients was calculated from the matrix X. The matrix R is 

related to the covariance matrix C by:  

𝑅(𝑖, 𝑗) =
𝐶(𝑖, 𝑗)

√(𝐶(𝑖, 𝑖)𝐶(𝑗, 𝑗))

 

Where R, is the zeroth lag of the normalized covariance function. 

Significance of the correlation values was examined for p < 0.5, and for all correlation 
coefficients n = 10, df = 8. 

The matrix R was calculated for each trial every 20 frames (0.2 second), increasing the 

precision of the analysis and allowing for the splitting of the tasks into 3 stages: 

formation of the grip style, manipulation, and release, each one of them with an average 

of 3 20-frame sections. 

The formation stage was defined as the portion of the task between the start of the 

movement and the first contact with the object. The manipulation stage was defined as 

the period of the task between the first contact of the dominant hand with the object and 

the moment no contact between the hand and the object is detected. Finally, the release 

stage starts when the hand stops making contact with the object and ends with the hand 

in the starting posture (Figure 3). 

Particular attention was placed on the correlation coefficients of the MCP flexion of the 

thumb, index, and middle fingers as well as thumb abduction, as these fingers have an 

active role in the precision grip style. 

 

 

4. RESULTS 

4.1 PURDUE PEGBOARD TEST 
Formation stage:  In the Purdue Pegboard Test experiment the metacarpophalangeal 

joints of the index and middle fingers showed high correlation coefficients between them 

(0.8 - 0.95) during the formation stage of the task. The metacarpophalangeal of the 

thumb, however, had low correlation coefficients with respect to the 

metacarpophalangeal of index and middle fingers (0.1 – 0.5). Correlation coefficients 

between all the joints analysed fell during the final segment of the formation stage, when 



the hand approached the object and prepared to make contact with the board, this was 

particularly noticeable in the correlation coefficients between the metacarpophalangeal 

joint of the thumb and the same joint of the index and middle fingers (Table 1). 

Manipulation stage: During the manipulation stage, the metacarpophalangeal joint of the 

thumb had low correlation values with respect to the metacarpophalangeal joints of both 

the index and middle fingers (0.2 - 0.5). The metacarpophalangeal joints of index and 

middle fingers showed higher correlation values between them during the first part of the 

manipulation stage. The last part of the manipulation stage, which includes the insertion 

of the peg into the hole, produced low correlation values for all the joints under analysis 

(0.3 - 0.5) (Table 1, 2). 

Release stage:  During the release stage of the test correlation values between the 

metacarpophalangeal joints of index and middle fingers raised to levels above 0.8 for 

most subjects, while correlation coefficients from movements involving the thumb 

increased when compared with previous stages, showing a smooth and coordinated 

extension of this fingers during the dissolution of the grasping pattern (Table 1). 

4.2COIN PICK UP 
Formation stage: During the coin experiment, the metacarpophalangeal joints of the 

thumb, index and middle fingers had high correlation values between them for the first 

half of the formation stage (0.8 - 0.95). The metacarpophalangeal joint of the thumb 

showed lower correlation values with respect to index and middle MCP joints for the last 

part of the formation stage (0.2 - 0.4) for 90% of the subjects (Table 3, 4). 

Manipulation stage: The manipulation stage of the coin task showed high correlation 

values between the metacarpophalangeal joints of the thumb, index and middle fingers 

(0.8 -0.95), indicating a smooth and coordinated grasp and manipulation of the coin 

across all subjects (Table 4). 

Release stage: In the release stage of the task, the metacarpophalangeal joint of the 

thumb had the lowest correlation coefficients with respect to the index and middle 

fingers’ metacarpophalangeal joint, fluctuating between 0.2 and 0.9. Additionally, the 

correlation coefficients between index and middle fingers decreased with respect to 

previous stages of the task, indicating the dissolution of the grasping pattern presented 

low coordination between the fingers involved, particularly between the thumb and the 

index and middle fingers (Table 4). 

4.3 BOTTLE OPENING 
Formation stage: In the bottle experiment, the metacarpophalangeal joints of the index, 

middle and thumb had high correlation coefficients between them throughout the 

formation stage of the task (0.8 - 0.95) (Table 5). 

Manipulation stage: Throughout the manipulation stage, the metacarpophalangeal joints 

of index and middle fingers presented high correlation values (0.8 - 0.95). The 

metacarpophalangeal joint of the thumb, however, presented moderate to low correlation 



values with respect to the index and middle fingers (0.5 - 0.7) for most subjects (Table 

5). 

Release Stage: The release stage resulted in low correlation coefficients between the 

metacarpophalangeal joints of the thumb and the index and middle fingers’, indicating 

the dissolution of the grip style was completed with a low degree of interdependencies 

between the fingers involved in the activity, this behaviour could be generally observed 

from 80% of the subjects (Table 5). 

5. DISCUSSION 
Previous studies have employed various data acquisition techniques and analysis 

methods to examine finger movement coordination. However, there are just a few 

comprehensive quantitative descriptions of the movement patterns from a kinematic 

perspective under multi-finger, multi-joint tasks 20,47,15. The current study was an attempt 

to contribute to these studies by utilising the latest measurement technology to obtain 

kinematic data and investigate the robustness of a traditional dexterity test, the Purdue 

Pegboard Test, by comparing finger movement correlation patterns during the 

performance of the test with those measured during tasks related to activities of daily 

living. 

Although the complex correlated movements of the hand have been investigated in 

previous studies, most paradigms have included a wide set of tasks and grasping 

patterns, and were not specific enough to be compared with individual grip styles and 

existing assessment methods 20,21,51,52. Moreover, although synergistic movement has 

been studied during sophisticated uses of the hand, investigations into how movement 

patterns are assessed by traditional dexterity tests and how it translates into daily living 

tasks were still lacking.  

This study presents evidence of identifiable finger correlation patterns during daily living 

tasks and, particularly, it shows that activities of daily living requiring a precision grip 

style have identifiable movement patterns between the metacarpophalangeal joints of 

the fingers involved in the activity. Moreover, the current study discovered that such 

movement patterns are consistent for the selected activities of daily living, but differ from 

the patterns observed from the Purdue Pegboard Test. 

Furthermore, it has been shown that the Purdue Pegboard Test does not accurately 

assess the true correlated movement occurring during precision grip. 

The tasks selected for this study require the performance of the precision grip style and 

were sub-divided into approach, formation of the grip style, manipulation, and release 

stages.  

During the formation stage of activities of daily living correlation coefficients between the 

metacarpophalangeal joints of the thumb, index and middle fingers were consistently 

high across most subjects, indicating interdependent movement due to the fine 



controlled nature of the task, requiring manipulation of small objects in a reduced space 

between the thumb, index and middle fingers. During the same stage from the Purdue 

Pegboard Test, the correlation coefficients were lower between the thumb and the index 

and middle fingers when compared to those from activities of daily living across 

participants, indicating the formation of the grasping pattern during completion of the test 

involved considerably lower levels of finger coordination, with participants distinctly 

struggling to co-ordinately perform the required grasping movement.  

Differences during the manipulation stage of the tasks were more significant, as high 

correlation coefficients were observed from the activities of daily living throughout this 

stage across all subjects, with higher levels of coordination between the active fingers, 

while the correlation values from the Purdue Pegboard Test during this stage were 

mostly low, particularly between the metacarpophalangeal of the thumb and the middle 

and index fingers (Table 1 and 2). The coin and bottle tasks involved high levels of 

interdependencies as seen by the resulting correlation coefficients between the relevant 

joint angles (Tables 3-5), while participants struggled more with the pegs of the test, 

producing lower levels of interdependence and a less coordinated movement across the 

fingers under analysis. Maintaining the fingers’ posture to transport the peg resulted in 

the lowest correlation coefficients during the manipulation stage, indicating participants 

struggled to maintain the grip style. 

In addition, the release stage of the Purdue Pegboard Test produced the highest 

correlation coefficients for the joints under analysis, while for the activities of daily living it 

was during this stage that the lowest correlation values were observed (Tables 1-5). 

Generally, finger interdependencies patterns observed from participants performing the 

Purdue Pegboard Test differ greatly from patterns observed during performance of tasks 

related to activities of daily living. Subjects proficiency to perform coordinated 

movements with the fingers to complete activities of daily living was, generally, greater 

than that to perform the Purdue Pegboard Test, this could be due to the nature of the 

test as an assessment tool and the lack of familiarity with such procedures compared to 

daily living tasks. 

The use of motion capture technology to collect movement data proved to be flexible, 

accurate and time-efficient. The system used for the data acquisition was capable of 

recording 16 megapixel video with a precision of 0.5mm of translation and 0.5 degrees 

of rotation, along with capture speeds of 160 fps, thus, making possible the collection of 

a wide range of quick, precise movements. Furthermore, motion capture systems allow 

for data collection in a wide variety of conditions and lab environments, giving patients 

and researchers the flexibility of naturalistic environments and setups. Although the cost 

of the software, equipment and personnel required for most motion capture systems can 

still be potentially prohibitive for a generalised clinical practice, recent technological 

developments are increasing the affordability of this type of technology, particularly when 

comparing cost-effectiveness against traditionally used methods and techniques. 



CONCLUSIONS 
In conclusion, although finger manipulative tasks can be carried out in seemingly an 

infinite number of ways, standard motion patterns can be identified and assessed by 

analysing finger joint movement correlation. Direct measurement and in-depth analysis 

allowed the identification of some of these movement patterns and showed some of the 

limitations of the Purdue Pegboard Test when used as a measure of the patient’s ability 

to perform daily tasks. 

A comparative look at the connection between the same stage of two tasks and the 

differences between particular stages of dexterity tests and daily tasks led to new 

insights and rendered evidence of the limitations of traditional hand function assessment 

methods. 

Results from this study suggest that there are significant differences in finger movement 

patters when comparing sets of precision manipulative tasks. Such differences were 

particularly evident when splitting the tasks into three phases: formation, manipulation, 

and release. Tasks related to activities of daily living resulted in significantly higher 

correlation coefficients across subjects and across movements during the first two 

stages of the tasks (0.7-0.9), while the release stage produced significantly lower 

movement correlation values (0.3-0.7). Contrarily, the formation and manipulation stages 

of the Purdue Pegboard Test showed low finger correlation across most subjects (0.2-

0.6), while the release stage resulted in the highest values for all relevant movements 

(0.65-0.9). 

Furthermore, the study provided additional evidence to support the conjecture that 

traditional hand function assessment methods based on time cannot cover the wide 

range of factors that account for hand performance during activities of daily living. 

Particularly, finger movement correlations during performance of the Purdue Pegboard 

Test were shown to translate poorly into movement correlations during daily tasks that 

require a precision grip style. 

Future work must be focused on increasing the method’s degree of standardization in 

order to obtain repeatable and reliable results across patients. The evaluation of a 

variety of functional tests and their relation to finger movement correlations  across a 

range of frequently used grasping patterns must also be explored in future studies. In 

general, further development of objective and reliable evaluation methods for upper 

extremity tasks is required, particularly for standard and goal-oriented tasks. 
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