
Novel 3D compression methods for geometry, connectivity
and texture

SIDDEQ, Mohammed M and RODRIGUES, Marcos <http://orcid.org/0000-
0002-6083-1303>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/12099/

This document is the Accepted Version [AM]

Citation:

SIDDEQ, Mohammed M and RODRIGUES, Marcos (2016). Novel 3D compression
methods for geometry, connectivity and texture. 3D Research, 7 (13). [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

1	
	

Novel 3D Compression Methods for Geometry, Connectivity and Texture

M. M. Siddeq and M. A. Rodrigues
GMPR-Geometric Modelling and Pattern Recognition Research Group,

Sheffield Hallam University, Sheffield, UK
mamadmmx76@yahoo.com, M.Rodrigues@shu.ac.uk

	

Abstract
A large number of applications in medical visualization, games, engineering design, entertainment, heritage, e-
commerce and so on require the transmission of 3D models over the Internet or over local networks. 3D data
compression is an important requirement for fast data storage, access and transmission within bandwidth
limitations. The Wavefront OBJ (object) file format is commonly used to share models due to its clear simple
design. Normally each OBJ file contains a large amount of data (e.g. vertices and triangulated faces, normals,
texture coordinates and other parameters) describing the mesh surface. In this paper we introduce a new method
to compress geometry, connectivity and texture coordinates by a novel Geometry Minimization Algorithm
(GM-Algorithm) in connection with arithmetic coding. First, each vertex (x, y, z) coordinates are encoded to a
single value by the GM-Algorithm. Second, triangle faces are encoded by computing the differences between
two adjacent vertex locations, which are compressed by arithmetic coding together with texture coordinates. We
demonstrate the method on large data sets achieving compression ratios between 87%—99% without reduction
in the number of reconstructed vertices and triangle faces. The decompression step is based on a Parallel Fast
Matching Search Algorithm (Parallel-FMS) to recover the structure of the 3D mesh. A comparative analysis of
compression ratios is provided with a number of commonly used 3D file formats such as VRML,
OpenCTM and STL highlighting the performance and effectiveness of the proposed method.
	

1. Introduction

Algorithms for 3D data compression and reconstruction are enabling technologies where cheap storage and data
transmission over the network are required. Examples of applications can be found in security, engineering,
CAD/CAM collaborative design, medical visualisation, entertainment, e-commerce and geographical
information systems among others [1]. Concerning geometry and connectivity compression, Rodrigues and
Robinson[2] used PDE-Partial Differential Equations to lossycompression and reconstruction of mesh surfaces
with no loss of accuracy in the context of 3D face recognition. They proposed that surface patches can be
compressed as a 2D image together with 3D calibration parameters, transmitted over a network and remotely
reconstructed (geometry, connectivity and texture map) at the receiving end with the equivalent resolution as the
original data. Extending that research, Siddeq and Rodrigues [3]proposeda 2D image compression method based
on DWT and DCT which has been demonstrated in the context of structured light 3D reconstruction.The method
produces anested series of high-frequency matrices which are coded by a Minimize-Matrix-Size Algorithm
(MMS).At decompression stage, a Limited-Sequential Search Algorithm (LSS) is used torecover the original 2D
image which is then used for 3D reconstruction of the original mesh. The advantagesofthe method arethe
recovery of high resolution imageswith compression ratios up to 98%. Although superior to the PDE
compression for the same application, the method proved very complex resulting in execution time of the order
of minutes for a high resolution image.

The methods proposed in this paper are more general than the compression of structured light images for 3D
reconstruction, as they are applicable directly to 3D data geometry and connectivity and include texture
mapping. Peng et al. [4] reviewed technologies for 3D data compression with particular focus on triangular
meshes. In an earlier survey of 3D compression methods Alliez and Gotsman[5] focus on compression
techniques for single-rate and progressive mesh coding based on geometry and connectivity. Compression
methods are thus, focused on representing the geometry and connectivity of the vertices in the triangulated mesh.
Geometrical methods aim to reduce the size of the mesh by simplifying its geometry and approaches include
geometry coding [6], Generalized Triangle Mesh [7], triangulated model techniques, and quantization
techniques [4,8] where rates of over 80:1 have been achieved. Examples of coding connectivity include the
topological surgery algorithm [9], and the Edgebreaker algorithm [10,11]. Products also exist in the market that
claim a 95% lossless file reduction [12] for regular geometric shapes.3D data compression related
researchconcentrate either on fast rendering or on maximum compression and therefore the following discussion
is focused on these topics.

2	
	

1.1. Compression for Fast Rendering

In this section we discuss representations of triangle meshes that are used for transmission to graphics hardware.
3D-hardware support is primarily based on the rendering of triangles, specified by its three vertices, where each
vertex contains three coordinates, possibly the surface normal, material attributes and/or texture coordinates.
The coordinates and normals are specified with floating point values, such that a vertex may contain data of up
to 36 bytes. Thus the transmission of a vertex is expensive and the simple approach of specifying each triangle
by the data of its three vertices is wasteful as for an average triangle mesh each vertex must be transmitted six
times [13].

 The introduction of triangle strips helped to save unnecessary transmission of vertices. Two successive triangles
in a triangle strip are joined at an edge. Therefore, from the second triangle on, two vertices of the previous
triangle can be combined with only one new vertex to form the next triangle. As with each triangle at least one
vertex is transmitted and as an average triangle mesh has twice as many triangles as vertices, the maximal gain
is that each vertex has to be transmitted only about twice. Two kinds of triangle strips are commonly used – the
sequential and the generalized triangle strips. In generalized triangle strips an additional bit is sent with each
vertex to specify to which of the free edges of the previous triangle the new vertex is attached. Sequential strips
even drop this bit and impose that the triangles are attached alternating. OpenGL [15] evolved from the
commonly used standard for graphics libraries allowing generalized triangle strips in earlier versions, but the
current version is restricted to sequential strips.

1.2. Maximum Mesh Compression

The strategy for fast rendering described above can also be used for the compression of triangle mesh
connectivity. Instead of retransmitting a vertex, a reference is inserted into a compressed representation. If a
vertex from the buffer is referenced its index within the buffer enters the compressed representation. In the
triangle strips of Evans et al. [14] each vertex appears about 2.5 times. The vertices can be rearranged into the
order they appear the first time and only the indices of 1:5n vertices need to be inserted in the compressed
representation. One additional bit per triangle is needed to specify whether the next vertex is used the first time
or the index of an already used vertex follows. This sums up to about 1+0.75 (log2 n) bits per triangle. The
disadvantage of this approach is that the storage needs to grow with the size of the triangulated mesh. The
measurements of Deering in [16]show that the generalized mesh approach theoretically consumes between eight
and eleven bits per triangle if an optimal stripper is available.

Taubinet al. [17] propose a very advanced global compression technique for the connectivity of triangle meshes.
The method is based on a similar optimization problem as for sequential triangle strips and the authors suggest
that it is NP-complete. Their approximation allows compression to only two bits per triangle and there exist
triangle meshes which consume only one bit per triangle. The decompression splits into several processing steps
over the complete mesh, which makes the approach unsuitable to speed up hardware driven rendering.

Our compression technique introduces a new idea for geometry compression by geometry minimization
algorithm and the triangle faces (connectivity) encoded by computing the differences between two adjacent
vertices and then encodingeach group of connectivity by arithmetic coding. This approach compares favourably
with a number of3D data file formats techniques focusing on compression ratio as it is demonstrated in the
experimental section of this paper. This paper is organized as follows. Section 2 introduces the Geometry
Minimization algorithm (GM-algorithm) applied to vertices. Section 3 describes the texture compression by
using soft-quantization with arithmetic coding, also in this section the connectivity (triangle faces) are
compressed by computing the differences between two adjacent faces. Section 4 describes the Parallel Fast
Matching Search Algorithm (Parallel-FMS) used to reconstruct the vertex data. Section 5 describes
experimental results for 3D data compressionand the results are compared with other 3D file formats. Finally,
Section 6 provides a summary and a conclusion.

2. Vertex Compression

A 3D object is a mesh of polygons whose union defines a surface bounding a solid object. A 3D OBJ file
considered here consists of a list of vertices (geometry), a list of texture and a list of triangle faces (connectivity
- each represented by 3 or 4 vertex indices). Each vertex consists of X, Y and Z coordinates (the size for each
vertex no less than 96-bit floating point value). In the method proposed here, the (X, Y, Z) floating point is
shifted to an integer value to reduce the number of bits (i.e. this process meanslossyvertex data). The shift S can
be any integer value but for efficiency reasons we define	1 < 𝑆 ≤ 9000. The new vertex V is defined as:

3	
	

𝑉)*+ = 𝑟𝑜𝑢𝑛𝑑 𝑉)*+		.		𝑆 (1)

By above Eq.(1) yielding a newset of quantized vertices𝑉)*+ = [𝑋, 𝑌, 𝑍] where each vertex size is less than 32-
bit (i.e. 32-bit minimum size to represent (X, Y, Z) while in previous work each axes need at least 16-bit [5],
[13]). Additionally, we reduced the number of bits for each vertex to less than 16-bit by calculating the
differences between two adjacent coordinates as follows:

𝐷: = 𝐷: − 𝐷(:=>)	 (2)

Where i=1, 2, 3... m-1 and m is the size of the list of vertices. The differential process defined in Eq. (2)
increases data redundancy and it is applied to each axis independently [3].Thus, these two steps reduce the
storage cost of geometry and ensure a sufficient geometric accuracy for most applications.

Fig. 1: The proposed 3D data compression method.

Fig. 1 illustrates the main steps in the proposed method. After the differential process is applied to the vertices,
the resulting list is divided into k number of non-overlapping blocks such that each block can be worked
independently and in parallel by the GM-Algorithm. This significantly speeds up compression and
decompression. The GM-Algorithm is based on defining three weight values (W1, W2 and W3) which are
multiplied by the three vertex coordinates (X, Y, Z) in turn and then summed to a single integer value. Eq (3)
defines theEncoded Data by the GM-Algorithm [3] for each triplet of vertex values:
	

𝐸𝑛𝑐𝑜𝑑𝑒𝑑	𝐷𝑎𝑡𝑎(:) = 𝑊>𝑉) : + 	𝑊G𝑉* : + 	𝑊H𝑉+ : 	 (3)	

Where 𝑉), 𝑉*, 𝑉+ represent the list of vertices (X,Y,Z) within a block of size k. The weight values (W1, W2 and
W3) are generated by the following algorithm described in pseudo code from the maximum value in the list of
vertices:

𝑀 = max 𝑉), 𝑉*, 𝑉+ + MNO PQ,PR,PS
G

% Define M as a function of maximum
𝑊> = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1) % First weight≤1 defined by random between 0 and 1
𝑊G = 𝑊1 + 𝑀 + 𝐹 % F is an integer factor F=1,2,3,…
𝑊H = 𝑀 ∗𝑊> + 	𝑀 ∗ 𝑊G ∗ 𝐹

3D	object	file	
Vertices	

	
	

Block(1)	

Block(2)	

Block(p)	

	Encoded	Data	-	Block(1)	
	Encoded	Data	-	Block(2)	

	Encoded	Data	-	Block(p)	

DS.Block(1)	
DS.Block(2)	

DS.Block(p)	
…	

…	

GM-Algorithm	
Convert	each	[X	Y	Z]	to	
single	integer	data	

	

X1	Y1	Z1	
X2	Y2	Z2	

…	
XkYkZk	

	 Xk+1Yk+1	Zk+1	
Xk+2	Yk+2	Zk+2	

…	
Xk+kYk+kZk+k	

X2k+1	Y2k+1	Z2k+1	
X2k+2	Y2k+2	Z2k+2	

…	
XnYn	Zn	

	
3D	object	data		

V		X1	Y1	Z1	
V		X2	Y2	Z2	
V		X3	Y3	Z3	
V		X4	Y4	Z4	

	…	
	

V		XnYn	Zn	

Divide	list	of	vertices	to	
small	block	size:	k	vt	U1	V1	

vt	U2	V2	
vt	U3	V3	

...	
vt	UnVn	

		Weight	[W1,	W2,	W3]	

Each	column	(U	and	V)	compressed	by	
Arithmetic	Coding	individually				

Vertices	texture	matrix	 f	V1V2V3	
f	V4V5V6	
f	V7V8V9	

...	
f	Vn-1Vn-1vn	

Triangle	faces	Matrix		

faces:	converted	to	one-dimensional	
array,	then	Arithmetic	Coding	applied		

	

Compressed	
data	

Each	Domain	Search	(DS)	generated	for	
each	Encoded	Data	stream	

4	
	

The following Fig. 2 illustratesthe GM-Algorithm applied to a sample of vertices. After applying the GM-
Algorithm, the likelihood for each block of vertices is selected from which a Domain Search (DS) is generated
to be used in the decompression stage as illustrated in Fig. 3 with a numerical example.

Fig.2: Sample of vertices compressed by GM-Algorithm

Fig. 3: Domain Search (DS) generatedfrom a block of vertices

3. Texture Mapping Encoding (UV) and Mesh Connectivity Encoding

In order to allow polygons in a 3D structure to be painted from a 2D image a mapping is required. This map is
defined by the normalized horizontal and vertical components (u,v) of an image corresponding to each polygon
in 3D. A 3D object in model space [23]and corresponding (u,v) mapping is shown in Fig 4(a). In our proposed
compression algorithm, the (u,v) texture coordinates are compressed as lossy data in two steps.First, the (u,v)
map is quantized by shifting the floating point to integer, i.e. Eq(1). We adopted a shift value of 1000, meaning
that each value (u,v) is in the range {8-bit and 16-bit}. Second, the differences between two adjacent data are
computed by Eq(2)applied to each axis independently as shown in Fig. 4(b).Finally, arithmetic coding is applied
to each (u,v)independently to produce a stream of bits.

(a) (b)

Vertices:	after	differential	process	
																				X							Y								Z		

-4 0 0

-3 0 1

-2 0 1
. . .	

-2 0 2

	
	

	

	

GM-Algorithm	
With	Key2	

-4,	0,	-3,	1,	-2,	…,	2	

Encoded	Data	

Generate	Domain	
Search	(DS)	

Sample of vertices (before coding)
-101.284 48.426 45.478
 -100.916 48.399 45.468
-100.636 48.414 45.426
-100.396 48.449 45.341
-100.150 48.480 45.215
-99.900 48.510 45.053

-99.6262 48.529 44.863
-99.355 48.548 44.653

Quantized vertices
-1013 484 455
-1009 484 455
-1006 484 454
-1004 484 453
-1002 485 452
-999 485 451
-996 485 449
-994 485 447

Differential Eq. applied GM-Algorithm applied
-4 0 0

-0.4
-3 0 1 42.9
-2 0 1 43
-2 -1 1 35.9
-3 0 1 42.9
-3 0 2 86.1
-2 0 2 86.2

-994 485 447 -994 485 447

Subtract each column by Eq(2); then apply the GM-Algorithm, maximum value
M=|4|, F=1:- Key1=0.1, Key2=7.1, Key3=43.2

Differential	Process	Eq(2)	
applied	on	each	U	and	V	

	
Each of U and V
Shift to integer
	

U	 V	

Arithmetic	Coding	Vertices	texture	consist	
of;	U	and	V	axes	

Vt				0.23		0.23	
Vt			0.34			0.45	
Vt				0.91		0.47	

…	
Vt			0.76			0.76	

	
	

	

5	
	

Fig. 4: (a) Texture in UV space related to 3D object, (b) UV texture mapping compression

Triangle faces represent geometric connectivity. In a 3D OBJ file, each face contains the vertex indices in the
order they appear in the file, normally arranged in ascending order. Triangular faces and vertex indices are
illustrated in Fig. 5(a). The advantage of this representation is that each triangle can be compressed in just a few
bits. In our proposed method, triangle faces are compressed by applying the differential process defined in Eq.
(2). The faces are scanned row-by-row and representedas a one-dimensional array, and the final encoded array is
compressed by arithmetic coding. The texture of each triangular face is represented by their (u,v) map which
maps a pixel value in the image to a vertex in the 3D structure. Each value in the (u,v) map is normalised and
shifted to integer. Texture values are separated from vertex indices (triangle face),they are both compressed in
same way as illustrated in Fig. 5(b)

(a)

(b)

Fig. 5(a) 3D mesh represented as vertex indices in a 3D OBJ file; (b) In our method, differential vertex indices
are lossless compressed by arithmetic coding.

4. Decompression Algorithm by Parallel Threads on Blocks of Data

The GM-Algorithm described in Section 2 compresses each vertex data (X, Y, Z) to a single integer value by
three different weights (W1, W2, W3). Here we described how to recover the original data.To this purpose we
designed a parallel algorithm named Parallel Fast-Matching-Search Algorithm (Parallel-FMS). The header of
the compressed file contains information about the compressed data pertaining the weights and DS(the Domain
Searchfor each block of vertex as in Fig. 2) followed by streams of compressed encoded data (Encoded Data).
The Parallel-FMS algorithm picks up in turn each k-encoded data to reconstruct k blocks of vertices (X, Y, Z).
The Parallel-FMS is based on a binary search algorithm illustrated through the following steps (A) and (B):

Arithmetic	Coding		

Triangle	faces	in	3D	
object	file	

Scan	all	vertices	locations	to	
convert	matrix	to	1D-array		

f	1	2	3	
f	4	5	6	
f	7	8	9	
f	7	9	6	
f	7	6	4	
f	10	5	11	
f	10	2	5	
f	1	2	10	
f	10	5	11	
	…	etc	
	
	
	
	

Face = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 11,…etc]

Face= [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 5, -6,..etc].
	
	
	
	

Face	divided	into	sub-arrays	for	coding	

1								2										3	
4								5									6	
7									8									9	
10									5								11	
…	etc	
	
	
	
	

6	
	

A) Initially, the Domain Sarch (DS)is copied to three separate arrays to estimate X, Y and Z respectively.
The searching algorithm computes all possible combinations of X with W1, Y with W2and Z with W3
that yield a result R-Array. As a means of an example consider that DS(1)=[X1 X2 X3] , DS(2)=[Y1 Y2
Y3] and DS(3)=[Z1 Z2 Z3]. Then, according to Eq.(5) these represent VX, VY and VZ respectively. The
equation is executed 27 times to build the R-Array, as described in Fig. 6(a). The match indicates that
the unique combination of X, Y and Z represents the orginal vertex block.

B) Abinary search algorithm[22] is used to recover an item in the array. Here we designed a parallel
binary search algorithm consisting of k-binary search algorithms working in parallel to reconstruct
kblock of vertices in the list of vertices, as shown in Fig. 6(b). In each step in the k-binary search
algorithm compares k-encoded data (i.e. each binary search algorithm takes a single compressed data
item) with the middle of the element of the R-Array. If the values match, then a matching element has
been found and its R-Array's relevant (X,Y,Z) returned. Otherwise, if the search is less than the middle
element of the R-Array, then the algorithms repeats its action on the sub-array to the left of the middle
element or, if the value is greater, on the sub-array to the right. All k-binary search algorithms are
synchronised such that the correct vertices values are returned. To illustrate our decompression
algorithm, the compressed samples in Fig. 2 (by our GM-Algorithm) can be used by our decompression
algorithm to reconstruct X, Y and Z values as shown in Fig. 7.

(a) Compute all the probabilities for all possible k-encoded datafor each block of vertices size k

(b) All Binary Search algorithms work in parallel to find a group of decompressed data approximately at same
time.

Fig. 6: Parallel-FMS algorithm to reconstruct the reduced array. (a) Compute all the probabilities for all possible
k-Encoded Data (R-Array) by using Weight combinations with DS. (b) All Binary Search Algorithms run in

Parallel to recover the decompressed vertices data approximately at same time.

R-Array		

Binary	Search	Algorithm	Function	3	

Compressed	
data	in	file	

(Encoded	Data)	
	

Binary	Search	Algorithm	Function	2	

Binary	Search	Algorithm	Function1	

Binary	Search	Algorithm	Function	k	

		R1												R2										R3										R4													…																																										Rk	

X1					Y2						Z5	

Xn					Y1					Zn	

X2							Y2						Z2	

X3						Y5				Z1	

Each	Binary	Search	find	Location	of	the	"R-Array"	corresponding	to	the	compressed	
data,	output	is	relevant	[X,Y,Z],	which	represents	a	vertex	in	a	block	

	
	

…	
	

…	
	

…	
	

Block	of	vertex	
	

Apply	Eq.(3)	on	all	possibilities	(X,Y	and	Z)	to	
generate	R-Array	linked	with	the	relevant	

R-Array		

Sort	R-Array	ascending	order		
X1		X2		X3		X4		X5		X6	…	Xk	

Y1		Y2		Y3		Y4		Y5		Y6	…	Yk	

Z1		Z2		Z3		Z4		Z5		Z6	…	Zk	

DS1	
	

DS2	
	

DS3	
R1												R2										R3										R4																							…																																						Rk	

X1					Y2							Z5	

Xn						Y1						Zn	

X2					Y2				Z2	

X3							Y5								Z1	

7	
	

Fig. 7: All Binary Search Algorithm run in Parallel to recover the decompressed vertices data approximately at
same time.

Once vertices are recovered, we turn our attention to decoding triangle faces and vertex texture coordinates. The
differential process of Eq. (2) is reversed by addition such that the encoded values in each triangle face and
texture coordinates return to their original values. This process takes the last value at position m, and adds it to
the previous value, and then the total adds to the next previous value and so on. The following equation defines
the addition decoder [3].

𝐴(:X>) = 	𝐴(:X>) + 	𝐴(:) (4)

where i= m, (m-1), (m-2), (m-3),…,2.

5. Experimental Results

The experimental results described here were implemented in MATLAB R2013a and Visual C++ 2008 running
on an AMD Quad-Core microprocessor. We describe the results in two parts: first, we apply the compression
and decompression algorithms to 3D data object generated by the GMPR 3D surface scanner [2, 18, 19].The
principle of operation of GMPR 3D surface scanning is to project patterns of light onto the target surface whose
image is recorded by a camera. The shape of the captured pattern is combined with the spatial relationship
between the light source and the camera, to determine the 3D position of the surface along the pattern [20] as
shown in Fig, 8(a). Second, we apply the method to general 3D object data (i.e. 3D object generated by 3Dmax,
CAD/CAM, 3D camera or other devices/software) as shown in Fig. 8(b).

Table 1 show our compression algorithm applied on each 3D object file, and Fig. 9, 10, 11, 12, 13, 14, 15 shows
the visual properties of the decompressed 3D object data for 3D images respectively. Additionally, RMSE are
used to compare between 3D original object file content (geometric (X, Y, Z) and (u,v) texture coordinates) and
the recovered 3D object file content. Root Mean Square Error (RMSE) is used to refer to image quality

-4			0		-3			1			-2			-1			2			-4			0			-3.....	2			-4		2	
-4	0	-3	1	-2	-1	2	
-4	0	-3	1	-2	-1	2	
-4	0	-3	1	-2	-1	2	

DS1	
	

DS2	
	

DS3	

	-201.6				-173.2				-158.4			-130									-115.2		...		-0.4	...																									100.8	

Apply	Eq.(3)	on	all	possibilities	(X,Y	and	Z)	to	
generate	R-Array	linked	with	the	relevant	

-4		-4		-4		-4		-4			-4		-4				0				0				0.....	0			-3.....		2	
-4		-4		-4		-4		-4			-4		-4			-4		-4			-4.....-4		-4	2	

-201.6			-28.8			-158.4			14.4			-115.2			-72			57.6			-173.2			-0.4				-130	

Sort	R-Array	ascending	order		

R-Array	generated	

-0.4
42.9
43

35.9
42.9
86.1
86.2

Binary	Search	Algorithm	Function	3	

Binary	Search	Algorithm	Function	2	

Binary	Search	Algorithm	Function1	

Binary	Search	Algorithm	Function	7	

-4			0					0	

-3				0					1	

-2					0					1	

-2					0					2	

…	
	

…	
	

…	
	

Block	of	vertex	
	

Compressed	data	

8	
	

mathematically [24, 25]; it can be calculated by computing the differences between the decompressed 3D object
and the original 3D object.

	

(a) 3D objects created by 3D scanner and 3D software developed by GMPR

 Angel Face2 Face3 Car

(b) 3D objects created by other scanning methods and3Dmodel building software

Fig. 8: (a) and (b): 3D objects tested by our compression and decompression algorithm

Table 1. Compression and decompression results by the proposed method

3D image
Name

Original file
size (MB) Shift value Compressed

file size

No. of Vertices
(Compressed Size)

No. of Triangle
faces

(Compressed size)

3D RMSE
(X,Y and Z)

2D RMSE
(Texture UV)

Corner 2.91
1 19.1 KB 24168

(11 KB)
46878
(4 KB) 1.034 4-5.77 x 10

10 32.5 KB 24168
(24 KB)

46878
(4 KB) 1.035 4-5.77 x 10

Metal 5.34 10 36.7 KB 43932
)KB(23

86330
(6 KB) 1.0618 4-5.78 x 10

50 53.2 KB 43932 86330 1.061 4-5.78 x 10

2D images created by 3D Scanner
developed by GMPR

3D scanner based on
structured light patterns

3D objects created by 3D
surface software created by

GMPR

	

	
	

	
	

	

	
Corner

	
Metal

	
Face1

	

	

	

	

9	
	

)KB(39 (6 KB)

Face1 4.7
10 36.1 KB 38831

)KB(20
76098
(9 KB) 1.360 4-5.78 x 10

20 40.2 KB 38831
)KB(23.7

76098
(9 KB) 1.362 4-5.78 x 10

Angel 23
10 2.67 MB 307144

(905 KB)
614287

(1.79 MB) 2.022 NON

50 3.09 MB 307144
(1.29 KB)

614287
(1.79 MB) 2.023 NON

Car 14.1
1 917 KB 234435

(314 KB)
304197

(603 KB) 0.726 NON

10 1.34 MB 234435
(772 KB)

304197
(603 KB) 0.733 NON

Face2 13.3
2 290 KB 105819

(99.4 KB)
206376

(174 KB) 1.283 4-5.77 x 10

10 378 KB 105819
(186 KB)

206376
(174 KB) 1.285 4-5.77 x 10

Face3 55
1000 6.21 MB 323496

(833 KB)
163678

(5.18 MB) 0.993 4-4.715 x 10

5000 6.42 MB 323496
(1.02 MB)

163678
(5.18 MB) 0. 995 4-4.715 x 10

Table 2. Compression and Decompression execution time by the proposed method

3D image
Name

Original file
size (MB) Shift value

Estimated Compression
Time (sec.)

Estimated Decompression
Time (sec.)

Vertices
(X, Y, Z)

Triangle
faces

and texture

Vertices
(X, Y, Z)

Triangle faces
and texture

Corner 2.91 1 1.5 34.8 2.25 40.2
10 1.9 34.4 2.35 39.1

Metal 5.34 10 2.8 63.5 5.1 70
50 3 64.48 5.4 70

Face1 4.7 10 2.2 54.1 4.42 65
20 2.2 56.2 4.39 66

Angel 23 10 210.4 370.8 316.8 400
50 420.4 355.98 828.89 409

Car 14.1 1 40 176.6 71.48 210
10 180.2 169.9 338.2 200

Face2 13.3 2 25.5 160.4 47.89 200
10 10 162.46 18.5 200

Face3 55 1000 1.554e+03 1.4239e+03 2.954e+03 1.622e+03
5000 1.4412e+03 1.3905e+03 2.8824e+03 1.572e+03

10	
	

(a) (left) 3D Corner object with texture, (right) 3D mesh Corner shows the details of the object, at compresses size :
32.5 KB

(b) (left) 3D Corner’s vertices organized as structure lines at compression size: 32.5 KB, (right) shows vertices for 3D
corner at compression size:19.1 KB, the verticesmoved slightly from their original position.

(c) 3D mesh corner shows the details of the object, at compresses size: 19.1 KB, the image shows the trianglesslightly
more degraded than in previous result.

Fig. 9, (a), (b) and (c) shows the decompressed 3D Corner image at compression size: 32.5 KBand 19.1 KB

(a) (left) 3D Metal object with texture, (right) 3D mesh details at compresses size: 53.2 KB

11	
	

(b) (left) 3D Metal’s vertices organized as structure lines at compression size: 53.2 KB, (right) shows vertices for 3D
corner at compression size:36.7 KB, some vertices moved to up and down from their original position.

(c) 3D mesh details of the object, at compresses size: 36.7 KB, the image shows similar high quality 3D mesh surface
as in previous result.

Fig. 10: (a), (b) and (c) shows the decompressed 3D Metal image at compression size: 53.2 KBand 36.7 KB

(a) (left) 3D Face1 object with texture, (right) 3D mesh Face1 details at compresses size: 40.2 Kbytes

12	
	

(d) (left) 3D Face1 vertices organized as structure lines at compression size: 40.2 KB, (middle) shows vertices for 3D
Face1 at compression size: 36.1 KB, the vertices in both 3D images approximately at same original positions.

(right) 3D mesh Face1 shows the details of the object, at compresses size: 36.1 KB, the image shows same high
quality as 3D mesh in previous result.

Fig. 11: (a) and (b) shows the decompressed 3D Face1 image at compression size: 40.2 KBand 36.1 KB

(a) (left) 3D Angel object, (right) 3D mesh Angel shows the details of the object, at compresses size: 3.09 MB

(b) (left) 3D Angel object, (right) 3D mesh Angel shows the details of the object, at compresses size: 2.67 MB,
similar from the 3D mesh in previous result

Fig. 12: (a) and (b) shows the decompressed 3D Angel image at compression size: 3.09 MB and 2.67 MB

13	
	

	
	

(a) (left) 3D mesh Car object, (right) 3D mesh Inside the Car, shows the details of the object, at compresses size: 1.34
MB

	

	
	

(b) 3D mesh Car shows the details of the object, at compresses size: 917 KB, the image shows the vertices for some
objects move slightly away from their original positions.

Fig. 13: (a) and (b) shows the decompressed 3D Car image at compression size: 1.34 MB and 917 KB

	
	

	
(a) (left) 3D texture Face2 object, (right) 3D mesh Face2, shows the details of the object, at compressed size:

378 KB

	

14	
	

	
(b) 3D texture Face2 with 3D mesh shows the details of the 3D Face2, at compressed size: 290 KB, the image shows

the vertices slightly move away from their original positions.	
	
Fig. 14: (a) and (b) shows the decompressed 3D Face2 image at compression size: 378 KBand 290 KB

	
	

	
(a) Full 3D texture Face3 object, shows the details of the object, at compresses size: 6.42 MB

	

	
	

(b) (left) 3D mesh shows the details of the 3D Face3, at compresses size: 6.42 MB, (right) 3D mesh at compressed
size 6.21 MB, the vertices slightly move away from their original positions.

Fig. 15: (a) and (b) shows the decompressed 3D Face3 image at compression size: 6.42 MB and 6.21 MB

	
Table 3 shows the comparison between the 3D file formats VRML, OpenCTM and STL. The file format
referred to as MATLAB format contains geometric, texture and triangle facesas lossless data, and using
MATLAB language to read/write 3D data. We investigate this format obtaining compression ratios of over 50%
for most 3D OBJ files. Our approach used unique algorithms to compress 3D OBJ files leading to compression
rates of over 98% in the best case and 85% for the worst case; the ratio is dependent on the triangle face details.

	

15	
	

	
Table 3. Our approach compared with other encoding 3D data format

Method

3D Object file

Corner
(Original file

size 2.91
MB)

Metal
(Original file

size 5.34
MB)

Face1
(Original file
size 4.7 MB)

Angel
(Original file

size 23.5
MB)

Car
(Original file
size 14.1 MB)

Face2
(Original file
size 13.3 MB)

Face3
(Original file
size 55 MB)

Proposed
Method

Compressed
file size 32.5 KB 53.2 KB 40.2 KB 2.02 MB 1.34 MB 378 KB 6.42 MB

Compression
ratio 98.9% 99% 99.1% 91% 90.4% 97.2% 88.3%

MATALB
Format

Compressed
file size 850 KB 1.53 MB 1.32 MB 5.31 MB 4.4 MB 4.04 MB 11.9 MB

Compression
ratio 71.4 % 71.3% 71.9% 77.4% 68.7% 69.6% 78.3%

VRML
Format

Compressed
file size 2.39 MB 4.43 MB 3.9 MB 23.2 MB 13.7 MB 9.19 MB 17.5 MB

Compression
ratio 17.8% 17% 17% 1.27% 2.9% 30.9% 68%

STL
Format

Compressed
file size 2.23 MB 4.11 MB 3.62 MB 29.2 MB 14.5 MB 9.84 MB 15.4 MB

Compression
ratio 6.69% 23% 22.9% NON NON 26% 72%

OpenCTM
Format

Compressed
file size 145 KB 220 KB 176 KB 1.92 MB 1.36 MB 808 KB 789 KB

Compression
ratio 95% 95.9% 96.3% 91.6% 90.3% 94% 98.5%

	
	
	
	

6. Conclusion
This research has presented and demonstrated a new method for 3D data compression/reconstruction and compared
the quality of compression through 3D reconstruction, 3D RMSE and the perceived quality of the 3D visualisation.
The method is based on converting geometric values to a stream of encoded integer data by the GM-algorithm.
Connectivity data are partitioned into groups where each group is addressed by arithmetic coding for lossless
compression. The results demonstrate that our approach yields high quality 3D compression at higher compression
ratios compared with other 3D data formats. Although the lossy compression controlled by the shift parameter
introduces small reconstruction errors as observed by RMSE and detailed visualization,the methods provide high
compression ratios with high quality data and it is appropriate for most applications, including demanding
applications such as 3D face recognition. A disadvantage of the method is the large number of steps for
compression and decompression. The main bottleneck is related to theParallel-FMS algorithm leading to increased
execution time through a binary search method. Methods to speed up execution are being investigated and will be
reported in the near future.

References

[1] M. Rodrigues, A. Osman and A. Robinson(2011). Efficient 3D data compression through
parameterization of free-form surface patches. In: Signal Process and Multimedia Applications
(SIGMAP), Proceedings of the (2010) International Conference on. IEEE, 130-135.

[2] M. Rodrigues, A. Osman and A. Robinson, (2013a) Partial differential equations for 3D data compression
and reconstruction, Journal Advances in Dynamical Systems and Applications, Vol. 8 No. 2, 303-315.

[3] M. M. Siddeq, M. A. Rodrigues(2014) A Novel Image Compression Algorithm for high resolution 3D
Reconstruction, 3D Research. Springer Vol. 5 No.2.DOI 10.1007/s13319-014-0007-6

[4] Peng, J., C. S. Kim, C., C. Kuo (2005). Technologies for 3D mesh compression: A survey. Journal of
Visual Communication and Image Representation 16(6) (2005) 688–733.

[5] Jarek Rossignac (2003) 3D mesh compression. College of Computing and GVU Center Georgia
institute of Technology Report, june 2003 Chapter Five- Visualization HandBook.

[6] Alliez, P. and C. Gotsman (2003) Recent Advances in Compression of 3D Meshes. Inria Sophia
Antipolis Research Report 4966, Oct 2003 26pp.

16	
	

[7] Deering, M. (1995). Geometry Compression, SIGGRAPH 95 Proceedings of the 22nd Annual
Conference on Computer Graphics and Interactive Techniques.

[8] Taubin, G., Horn, W., Lazarus, F., Rossignac, J. (1998), Geometry coding and VRML, Proceedings of
The IEEE, 86(6).

[9] Hollinger, S.Q., A.B. Williams, and D. Manak (1998). 3D data compression of hyper spectral imagery
using vector quantization with NDVI-based multiple codebooks, IEEE International Geosciences and
Remote Sensing Symposium IGARSS’98, volume 5, 2680–2684.

[10] Shikhare, D., S.V. Babji, and S.P. Mudur (2002). Compression techniques for distributed use of 3D
data: an emerging media type on the internet, 15th International Conference on Computer
Communication, India, pp 676–696.

[11] Taubin, G. and J. Rossignac(1998), Geometric compression through topological surgery, ACM Trans.
Graph. 17 (2), pp. 84-115.

[12] Szymczak, A., D. King and J. Rossignac (2000). An Edgebreaker-Based Efficient Compression
Scheme for Regular Meshes, 12th Canadian Conference on Computational Geometry, pp 257–265.

[13] Topraj Gurung, Mark Luffel, Peter Lindstrom, Jarek Rossignac (2013), Zipper: A compact connectivity
data structure for triangle meshes. Journal of Computer –Aided Design Vol 45. No.2, pp. 262-269

[14] 3DCT (2012). 3D Compression Technologies (3DCT), www.3dcompress.com/web/default.asp,
accessed Oct 2012.

[15] Francine Evans, Steven S. Skiena, and Amitabh Varshney (1996). Optimizing triangle strips for fast
rendering. In IEEE Visualization. IEEE, October 1996. ISBN 0-89791-864-9.

[16] Jackie Neider, Tom Davis, and Mason Woo (1997). OpenGL Programming Guide —The Official
Guide to Learning OpenGL, Version 1.1. Addison-Wesley, Reading, MA, USA.

[17] M. Deering (1995). Geometry compression. In Computer Graphics (SIGGRAPH ’95 Proceedings), pp.
13–20.

[18] Gabriel Taubin and JarekRossignac (1996). Geometric compression through topological surgery.
Technical report, Yorktown Heights, NY 10598, January 1996. IBM Research Report RC 20340.

[19] M. Rodrigues, M. Kormann, C. Schuhler and P. Tomek (2013b) Robot trajectory planning using OLP
and structured light 3D machine vision. Lecture notes in Computer Science Part II. LCNS Springer,
Heidelberg, Vol. 8034, pp 244-253.

[20] M. Rodrigues, M. Kormann, C. Schuhler and P. Tomek (2013c). Structured light techniques for 3D
surface reconstruction in robotic tasks. Proceedings of the 8th International Conference on Computer
Recognition Systems CORES 2013, Springer, pp. 805-814.

[21] M. Rodrigues, M. Kormann, C. Schuhler and P. Tomek (2013d). An intelligent real time 3D vision
system for robotic welding tasks. In: Mechatronics and its applications. IEEE Xplore, pp. 1-6.

[22] Knuth, Donald (1997). Sorting and Searching: Section 6.2.1: Searching an Ordered Table, The Art of
Computer Programming 3 (3rd Ed.), Addison-Wesley. pp. 409–426. ISBN 0-201-89685-0

[23] Murdock, K.L. (2008). 3DS Max 2008 Bible. 1st ed. Indianapolis, Indiana: Wiley Publishing,
Inc. ISBN 9780470417584.

[24] I.E. G.Richardson(2002) VideoCodecDesign, JohnWiley&Sons.
[25] K.Sayood, (2000) Introduction to Data Compression, 2nd edition, Academic Press, Morgan Kaufman

Publishers.

