
Automated completeness check in KAOS

NWOKEJI, Joshua C., CLARK, Tony <http://orcid.org/0000-0003-3167-0739>,
BARN, Balbir and KULKARNI, Vinay

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/12073/

This document is the Accepted Version [AM]

Citation:

NWOKEJI, Joshua C., CLARK, Tony, BARN, Balbir and KULKARNI, Vinay (2014). 
Automated completeness check in KAOS. In: INDULSKA, Marta and PURAO, 
Sandeep, (eds.) Advances in conceptual modeling : ER 2014 Workshops, ENMO, 
MoBiD, MReBA, QMMQ, SeCoGIS, WISM, and ER Demos, Atlanta, GA, USA, 
October 27-29, 2014. Proceedings. Lecture Notes in Computer Science (8823). 
Springer International Publishing, 133-138. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Automated Completeness Check in KAOS
Joshua C. Nwokeji

School of Science and Technology
Middlesex University London

England, United Kingdom
Email: J.Nwokeji@mdx.ac.uk

Tony Clark
School Science and Technology
Middlesex University, London

England, United Kingdom
Email: T.N.Clark@mdx.ac.uk

Balbir S. Barn
School of Science and Technology

Middlesex University, London
England, United Kingdom
Email: B.Barn@mdx.ac.uk

Abstract—KAOS is a popular and useful goal oriented re-
quirements engineering (GORE) language, which can be used
in business requirements modelling, specification, and analysis.
Currently, KAOS is being used in areas such as business
process modelling, and enterprise architecture (EA). But, an
incomplete or malformed KAOS model can result to incomplete
and erroneous requirements analysis, which in turn can lead to
overall systems failure . Therefore, it is necessary to check that
a requirements specification in KAOS language are complete
and well formed. The contribution at hand is to provide an
automated technique for checking the completeness and well-
formed-ness of a requirements specification in KAOS language.
This is accomplished by adding a plug-in on the KTool developed
in our previous research.

I. INTRODUCTION

Goal oriented requirement engineering (GORE) is a re-
quirements engineering method, which uses goals and other
intentional concepts to analyse and specify the requirements
of a system [29]. The essence of GORE is to provide an
alternative to the traditional systems development paradigm,
where systems requirements are analysed based on the in-
tentions/why/motivations rather than the behaviour of the
system. Among varieties of competing GORE languages such
as i* [28], GBRAM [2], and BMM [21], KAOS [23] [20]
[6] [10] [17] [26] is one of the most popular and widely
used languages [10]. It can be used in both early, and
late requirement phases, but it mainly focuses on analysing
system goals [18]. Since KAOS has been widely used and
is representative of other GORE languages, we use it as the
basis of our study. Currently KAOS is receiving attention
both in research, and practice [19] [20]. For instance, it has
been applied in requirements acquisition, specification and
analysis [19] [1]; enterprise architecture alignment [22] [8]
[5]; solving service mediation problems [3]; model driven
development [20]; and business process modeling [16].

The term requirements can be defined as a high-level
statement that describes what a system does, the services
it provides, and the the conditions on the systems, while
requirements analysis involves the acquisition, understanding,
specification, and elaboration of systems requirements [11],
[24]. Requirements analysis/modelling is a core imperatives
in systems development, this is because it has the ability to
cripple the entire system if incomplete or erroneous [7]. In
fact, over 80% of systems failure are attributed to incomplete
or erroneous requirements specification and analysis [4], [27]

Figure 1: Card Payment System for Bank XYZ Plc.

The ’state of the art’ in KAOS is its use as a basis for
integrating GORE with Model Driven Engineering (MDE) via
Mechanical Language Processing (MLP). KAOS can provide
a basis for mechanical language processing in MDE such
as model transformation. For instance Monteiro et al pro-
posed and implemented an automatic transformation between
KAOS and i* models, and suggests that such transformation
can support a migration from i* model to KAOS model
and vice versa, and offers flexibility for choice of GORE
language to be used in a software development project [19]
[20]. MDE Mechanical language processing such as model
transformation depends on inter mapping and manipulations
of model elements in the different models concerned [20],
thus an incomplete model can lead to incomplete mapping and
erroneous MLP in MDE, thereby compromising the benefits
offered by integrating GORE with MDE. Few manual tech-
niques for completeness checks in GORE model are available
in literature, for instance the use of Temporal Logic to check
completeness is proposed in [25], while Goal-Question-Metric
(GQM) techniques has been proposed in [9]. The problem with
these manual techniques is that they are rigorous, error prone,



time consuming, difficult to use, and costly. Our contribution
towards addressing these problems is to design and implement
a tool supported technique for automatically checking the
completeness of KAOS goal model to ensure its suitability
for MDE mechanical language processing. Our contribution
can be divided into two phases, first we construct a complete
KAOS Meta-Model by consolidation on six existing Meta-
Models found in literature, this is necessary since we couldn’t
find an existing Meta-Model that contains all KAOS model
elements needed to define completeness check, see Table I.
In the Second phase of our contribution we use this Meta-
Model to implement a Graphical Editor-KTool for construct-
ing KAOS models. Finally we develop an integration plugin
that automatically check the completeness of KAOS model
constructed with KTool. We apply KTool to design a KAOS
model for the case study we describe in Section II, and use
our automated Completeness Check technique to check its
completeness automatically. The result suggests that our tool
can make it easier, cost and time effective to check complex
KAOS models, thus realising the benefits of integrating GORE
with MDE.

The rest of this paper is structured as follows: In Section
II we briefly describe MDE, and hen use a case study to give
an overview of the basic elements of the KAOS language. We
discuss existing proposal on KAOS completeness, and con-
solidate them into three Completeness Checks in Section III.
Section IV provides a description of our tooling processing,
starting with the construction of a comprehensive Meta-Model.
The demonstration of our tool is presented in Sections V, this
is followed by conclusion.

II. MDE AND KAOS

A. Model Driven Engineering

Model Driven Engineering (MDE) is traditionally used to
generate executable systems from models and relies on tooling
that builds, maintains and manipulates the models, [12]. The
most popular language for MBSE is UML that offers sub-
languages for specifying what a system must do and, at lower
levels of abstraction, how it must achieve the behaviour. MDE
technologies support a range of activities including model
construction, model extension, model integration, model main-
tenance, model analysis and model transformation. The defi-
nition of these activities relies on a precise definition of the
modelling language being used. The definition of a modelling
language consists of a collection of elements. The abstract
syntax of a language defines its underlying concepts and their
relationships, the concrete syntax defines how it is represented
on the screen or the page, and the semantics places constraints
on its static structure, dynamic behaviour or both.

B. KAOS

KAOS is a requirement engineering framework whose pri-
mary focus is to explicitly represent all system goals, the
conflicts, and obstacles between these goals, the objects that
are responsible for satisfying these goals, and the operations
that are triggered as a result of the interaction between the

goals, and objects [10] [15]. As seen in Figure 2, KAOS
is a composite Meta-Model consisting of a Goal, Object,
Operation and Responsibility sub Meta-Models [10] [23]. To
describe these sub Meta-Models, and the core elements of
KAOS we use the case study described as follows: Consider
the requirement analysis of a Card Payment System for Bank
XYZ shown in Figure 1, Bank XYZ provides Point of Sale-
POS services via an encrypted but slow or unencrypted but
fast wireless Routers(E1 and E2 respectively) to Vendors-who
sell products to Customers, and upload daily transactions to
the Bank; the Bank should also protect all transactions from
Hackers-who steal Smart Card information from Customers.
In Sections II-C, II-D, II-E, and II-F we use this case study
to describe the elements of the Goal, Object, Operation, and
Responsibility models respectively.

C. The Goal Model

KAOS Goal Model is a graph of nodes and links that
describes the goals of a system, the conflict between these
goals, the obstacles to the satisfaction of the goals [23]. The
nodes in a KAOS goal model represents model elements such
as Goals, and Obstacles, while the links are used to define the
relationships between the nodes. The core and basic elements
of KAOS goal model are described below using examples from
the case study, however a more detailed description KAOS
goal model and all its elements can be found in [23].

Goal is a statement that describes what a system tends to
achieve e.g., successful transactions, or the intentions of a
given actor in a system, e.g., steal credit card information [8].
A parent goal may be decomposed, or refined, into child sub-
goals [20]; a leaf goal has no children. A KAOS goal model
is said to be complete when all leaf goals are assigned to
agents [23]. A Conflict is a trade off between goals, a situation
where the satisfaction of one goal prevents the satisfaction of
another [23]. For instance the goal process customer request
on time is in conflict with another goal secure transaction.
Requirement is a type of goal that has a clear criteria for its
satisfaction and are usually assigned to Software Agents, while
Expectation has no clear criteria for its satisfaction and are
assigned to Environment Agents, for instance the goal happy
customer is an expectation [23]. An Obstacle is an undesirable
conditions to the satisfaction of a given goal in a system [23]
[25], for example, the goal card readable can be obstructed
by a faulty POS terminal. Domain Property is a condition
which most hold for a goal to be satisfied, from our case study
it is expected that the POS infrastructure should be available
before the goal Successful transaction can be met, thus POS
infrastructure available is an example of a domain property.
Domain Invariant is a type of domain property that must
be true in all states of the system for a goal to be achieved
[17]. Domain hypothesis is a type of domain property that is
expected to be true in order to satisfy a goal [23].

KAOS goal model also consist of links for instance, the
RefinementLink is used to show a refinement relationship
between a parent goal, and expectation and requirement. There
are two different types of refinement: Or (optional)-refinement



Figure 2: MM3-KAOS Meta-Model in [23]

links a parent to children where the satisfaction of any child
leads to the satisfaction of the parent; And (mandatory)-
refinement links a parent to children where the satisfaction
of the parent requires the satisfaction of all the children [10].
ObstructionLink shows an obstruction relationship between
a goal and an obstacle, while ConflictLink shows a conflict
relationship between two goals. ResolutionLink shows that
a requirement has been used to resolve an obstacle. Oper-
ationalisationLink shows an operationalisation relationship
between an object and a requirement; Responsibility Link
is used to assign a requirement to a software agent, while
Assignment Link is used to relate expectation with a software
agent, other types of links and model elements can be found
in KAOS tutorial available in [23].

D. The Object Model

The KAOS object model (shown in the lower left of figure
2) defines the relationship between the objects and the goals
that concerns these objects. It consists of passive, and active
objects that meets the requirements of a system [23]. Other
elements of the object model are listed below. Entity is a
passive objects that satisfies a given goal of a system [23],
for instance credit card is an entity that will satisfy the goal
Successful transaction Agents are active physical objects such
as human e.g., Vendor; or logical object such as machine e.g.,
Router capable of performing operations in a system, [23].
SoftwareAgent is a type of agent that has logical manifesta-
tion in a system e.g. Router; while an EnvironmentAgent is
a type of agent that performs physical operation in a system
e.g. [23]. Association is a special type of link used to show
the relationship between system objects [23].

E. The Operation Model

The KAOS operation model (shown in lower right of figure
2 describes all the operations that agents performs in order
to satisfy a given goal [23], for instance the goal successful
transaction can be satisfied when the agent Customer performs
the operation insert card. The KOAS operation model contains

the following model elements: Operation is used to describe
the behaviours or actions of an agent [23], for instance a
Customer can insert card or input pin Events are significant
change of state of produced by operations [23]. Input Link
shows an input relationship between an object (entity) and
the operation it performs [23]. Output Link shows an output
relationship between an object (entity) and its operation [23].

F. The Responsibility Model

KAOS responsibility model (figure 2, upper right) defines
the relationship between goals and object, by showing which
agent is responsible for what requirement and expectation,
using a responsibility link. Its constructs are derived from both
the goal model and the object model [23]. It has the following
elements: Responsibility Link is used to assign a leaf goal to
an agent, it is represented by either red circle (showing that
the leaf goal is a requirement) or a pink circle (showing that
the leaf is an expectation) [23].

III. RELATED WORK

In their research Lamsweerde and Letier propose a stepwise
approach for checking the completeness of KAOS model
which is based on Temporal Logic, and using pre, post, and
trigger conditions to specify a set of KAOS Elaboration
Criteria [25]. Their approach involves four Elaboration Cri-
teria for checking well formedness of KAOS model, these
include: Goal Elaboration, Object/Operation Capture, Goal
Operationalisation, and Responsibility Assignment. In Goal
Elaboration criteria, all Goals are refined using the AND/OR
Refinement links until they become Leaf Goals (Expectation,
Requirement or Domain Property); Object/Operation Capture
criteria ensures that Goals are conceptually linked to Ob-
jects(Agents), and Operations are identified; while Goal Oper-
ationalisation criteria checks that each Object performs Oper-
ations to satisfy a given Goal. In Responsibility Assignment all
Operations must be assigned to Agents [25]. These Elaboration
Criteria corresponds to the Completeness Criteria defined in
KAOS tutorial [23], which are expressed textually without any
formalisation or automation. A Goal-Question-Metric-GQM
has been proposed in [9] as a technique for measuring the
completeness and complexity of KAOS model. The GQM
approach uses three layers of abstraction which includes the
Conceptual, Operational, and Quantitative Layers. The parent
Goal are identified at the Conceptual Layer, in Operational
Layer the Goals are refined into questions/criteria similar to
KAOS elaboration and completeness criteria described above,
while the Quantitative Layer defines a set of metrics used to
check that the criteria in the operational layer are met [9],
once these questions have been answered the KAOS model is
presumed complete. A common setback with these approaches
is that there is no form of automation in them, and they can
be difficult, rigorous, error prone, and costly.

Our aim is to implement a tool that will automate Com-
pleteness Checks in KAOS, thus reducing the rigours, cost,
and errors involved in manual techniques such as the use of



Temporal Logic, and GQM, and improving the use of mechan-
ical language processing to integrate GORE with MDE. To
achieve this, we consolidate the KAOS Elaboration Criteria
proposed in [25], the Completeness Criteria proposed in [23],
and the GQM in [9] into three Completeness Checks itemized
below, and implement a tool that automate them:
• Completeness Check 1-All Goals must be refined until

they become either Leaf Goals (Expectation or Require-
ment) or Domain Property (DomainHypthesis or Do-
mainInvariant.

• Completeness Check 2-All Leaf Goals must be assigned
to Agents (SoftwareAgent or EnvironmentAgent.

• Completeness Check 3-All SoftwareAgents must be as-
signed to Operations.

In the following Sections we explain the processes involved in
automating these checks.

IV. THE TOOLING PROCESS

In this Section we describe the processes involved in im-
plementing the tool that automates the three Completeness
Checks defined in Section III. We use Eclipse Modelling
Framework-EMF as the development platform for our project.
EMF is an open source tool, ubiquitous, and provide basis
for Model Driven Development. The processes involved in the
development of our tool is summarised in Figure 4, as follows:
First we develop a complete KAOS Meta-Model, then using
this Meta-Model we implement a Graphical Editor (KTool)
for constructing KAOS models, and then design an integration
plugin that automate the Completeness Checks in KTool.
Each of these steps is described below.

A. Our KAOS Meta-Model

Our intention is to implement KTool in an MDE tooling
environment that supports tool generation from a completely
defined, and java annotated KAOS Meta-Model. We found and
analysed six existing KAOS Meta-Models in literature and
labelled them as MM1 to MM6 as shown in Table I. Our
analysis suggests that none of the existing KAOS Meta-Models
is complete relative to KAOS model elements needed for
the Completeness Checks. For instance the Domain Property
element needed for Completeness Check 1 is not contained in
Meta-Models (MM1, MM2, and MM4, and MM6), therefore
our second contribution is to consolidate six existing KAOS
Meta-Models found in literature into a complete Meta-Model
suitable for MDE tooling, and MLP. The result of our analysis
is shown in Table I, KAOS model elements gathered in
literature are shown at the left hand side of the table, while
the six Language definitions (Meta-Models) found in literature
are shown as MM1 to MM6 at the right hand side of the
table. We mapped the key concepts (model elements) of KAOS
against these six approaches found in literature starting from
MM1 to MM6. The key concepts contained in each Meta-
Model are shown as

√
, while those lacking are marked with

x. Key concepts which are not explicitly defined in the Meta-
Model are shown as ∂. This mapping suggests that each of
these approaches either lack some KAOS model elements/key

concepts, or focus exclusively on concrete syntax, and are thus
incomplete, and unsuitable for MDE tooling, and MLP.

In Figure 3, we present the abstract syntax for our proposed
complete KAOS Meta-Model. The root element/container-
KAOS contains two abstract super classes- Node and Link. A
Node is used to represent a model elements (key concept) such
as Agent, and Goal, while a Link represents the relationship
between model elements. For instance ObstructionLink assigns
Goals to Obstacles, thus showing an obstruction relationship
between a Goal and an Obstacle. A Node can be any of these
three abstract classes: RefinableNode, Object, and Opera-
tionNode. RefinableNode is an abstract class for those model
elements which can be decomposed into sub-nodes. e.g Goal
and Obstacle are types of RefinableNode because they can be
refined into SubGoals, and SubObstacles respectively. A Goal
or SubGoal can be refined into Expectation and Requirement,
while Obstacle can be refined into SubObstacle. We use the
same class to depict both Obstacle and SubObstacle since
there are no major different between them. Domain Properties
are conditions attached to Goal thus we classify them as
types of Goal. DomainInvariant, and DomainHypothesis are
types of Domain Property. Object is an abstract class for
both active and passive model elements such as Agents and
Entity respectively. Agents are active entities and can be
either SoftwareAgent or EnvironmentAgent. SoftwareAgent are
responsible for Requirements, while EnvironmentAgent are
assigned to Expectations. Entities are passive objects/material
used by agents to satisfy a Goal e.g. Credit Card, while
Associations are used to show relationships between passive
objects. The OperationNode is used to abstract operations el-
ements such as Operations and Events. When Agents performs
Operation, Events are produced [23].

There are so many types of Link in KAOS as defined in
[23], each link is used to show the type of relationship that
can exist between two or more model elements. For instance a
ConflictLink shows the relationship between two Goals which
are in Conflict, a ResolutionLink assigns an Obstacle to a
Requirement that resolves it, while ResponsibilityLink assigns
Agents to Requirements. Other types of Link are all shown in
Figure 3, and their descriptions can be found in Section II-B,
and in KAOS tutorial [23] .

B. KAOS Tooling

We implement our KAOS tool called KTool in Eclipse
Graphical Modeling Framework (GMF) using EuGENia-a
platform for Model Driven Software Development [14]. The
diagram in Figure 4 describes the steps involved in KAOS
tooling. First we design the abstract syntax or Meta-Model for
KAOS using Eclipse Modeling Framework (EMF/Ecore) and
annotate it as KAOS.ecore. The next step involves converting
the KAOS.ecore model to an EmFaTic file and annotating it
with java so as to describe the attributes of the objects/nodes
and their connectors/links. EmFaTic is a dependent develop-
ment environment that allows *.ecore files to be annotated
with Java. The EmFaTic code that generates our KAOS tool
is shown in the later part of Section IV-B, Line 1 declares the



Table I: Mapping of key KAOS concepts against the existing approaches

KAOS Key Concepts
Existing Meta-Models MM1 [20] MM2 [6] MM3 [23] MM4 [10] MM5 [17] MM6 [26]

Goal
√ √ √ √ √ √

Domain Property x x
√

x
√

∂
Domain Invariant x x ∂ x

√
x

Domain Hypothesis x x ∂ x
√

x
Requirement

√
∂

√ √ √ √

Expectation/Assumption
√

∂
√ √ √ √

Obstacle
√

x
√

∂ x ∂
Conflict ∂

√
∂

√
x

√

Refinement Link x ∂
√

x
√

x
And refinement

√
∂ ∂ ∂ ∂ ∂

Or Refinement
√

∂ ∂ ∂ ∂ ∂
Obstruction Link

√
x ∂ x x x

Resolution/Solution link
√

x ∂ x x ∂
Conflict Link x x ∂ x x x

Operationalization link x x ∂ x x x
Object

√ √
∂

√ √ √

Entity
√ √ √ √ √ √

Agent
√ √ √ √ √ √

Software Agent ∂ x ∂ ∂
√

∂
Environment Agent ∂ x ∂ ∂

√
∂

Association x x
√

x
√

x
Operation/Action x

√ √ √ √ √

Event x
√ √ √ √ √

Input Link ∂ x ∂ x x x
Output link ∂ x ∂ x x x

Assignment link ∂ x ∂ x x x

Legend:
MM-Meta-Model;√

-included in the Meta-Model
x-Not Included in the Meta-Model

∂-Implied in the paper but not included in the meta-Model

Figure 3: Our Proposed Meta-model



Figure 4: The KAOS Tooling Processes

namespace which specifies the location of http://Kaos.ecore as
”http://kaos/1.0”. Line 5 tells EuGENia that the root element
or container is kaos, and therefore should not be included in
the diagram. The gmf.node annotations from Line 17 to 70,
and Line 112, are used to specify that a particular Eclass i.e
Ecore Class is a node, and further defines the attributes such
as figure, label, and icon for a particular node. Nodes are
called Objects in palette, see Figure 5. Connectors or Links
are specified in EmFaTic file using the gmf.link annotations
as seen in Line 10, and Lines 74 to 107, and defines attributes
such as target-decorations, source, and target of the connector.
After annotating all the KAOS.ecore model with java, then
we used EuGeNia to generate the models that describes the
attributes of KAOS graphical editor. There are three basic
types of models generated by EuGENia, these include the
Graph Model, Tooling Model, and Mapping Model. The Graph
Model describes the elements of the graphical editor such
as connectors, labels, decorations; Tooling Model specifies
the elements tools that will be available in the palette of the
graphical editor; and theMapping Model maps the elements
in the Graph Model and creation tool with the Meta-Model
defined in Ecore [14]. Once these models are generated, then
the diagram plugin for KAOS is created, and finally after
running a new eclipse runtime the KAOS graphical editor is
generated.

The graphical convention for our KAOS tool uses a ’quali-
fied name of a Java class that implements Figure’. Goal, and
SubGoal are represented with a ’rounded rectangle’ without
an icon, while Obstacles are represented with a ’rounded
rectangle’ that has an icon. Expectation is represented with
a ’rounded rectangle’ with a ’dashed’ thick border, while
Requirement is modelled as a ’rounded rectangle’ with a
’dotted’ thick border. Domain Property is represented as
an ’ellipse’ with Icon, a ’dotted’ ellipse implies that the
domain property is an invariant, while a ’dashed’ ellipse
shows that it is a hypothesis. A Software Agent is modelled

as ’rectangle’ with an icon, while Environmental Agent is
modelled as a ’rectangle’ without an icon. An Entity is
modelled as an ’ellipse’ without an icon, while an Operation
is an ’ellipse’ with an icon. We use an ’ellipse’ that has
an icon and a ’dotted’ border to model Events, while a
solid ’ellipse’ is used for the And Refinement, and a hollow
’ellipse’ is used for Or Refinement. Similarly the links are
annotated with ’qualified name of a Java class that imple-
ments the org.eclipse.draw2d.RotatableDecoration interface’.
All the Links are connectors with different heads/pointer: the
Association Link is modelled with a ’filledsquare’ head, the
Operationalisation Link has a ’arrow’ head, obstruction Link
has a ’filledrhomb’ head, Conflict Link has a ’square’ head.
The output Link is ’dotted’ connector with a ’filledsquare’
head, and the Input Link is a ’dashed’ connector with a
’filledsquare’ head. The Resolution Link is ’dotted’ connector
with a ’square’ head, while Refinement Link has a ’filled-
closedarrow’ head, and the Assignment Link is a ’dashed’
connector with a ’filledsquare’ head. These connectors and
objects are shown in the palette of Figure 5, as used in the
modelling of our case study.

1 @namespace(uri="http://kaos/1.0",
2 prefix="kaos")
3 package kaos;
4

5 @gmf.diagram(foo="bar")
6 class Kaos {
7 val Link[+] has;
8 val Node[+] contains;}
9

10 @gmf.link(target.decoration="filledclosedarrow",
11 source="froma", target="toa", color="0,0,0")
12 abstract class Link {
13 attr String name;
14 ref Node[1] froma;
15 ref Node[1] toa;}
16

17 @gmf.node(label="name")
18 abstract class Node {
19 attr String name;}
20

21 @gmf.node(label.icon="false",
22 boder.color="0,0,0")
23 class Goal extends Node {}
24

25 @gmf.node(label="name")
26 class Obstacle extends Node {}
27

28 @gmf.node(label="name", border.style="dash",
29 border.width="3")
30 class Expectation extends Node {}
31

32 @gmf.node(label="name", border.style="dot",
33 border.width="3")
34 class Requirement extends Node {}
35

36 @gmf.node(label="name", figure="ellipse",
37 border.style="dot", boder.color="0,0,0")
38 class DomainInvariant extends Node {}
39

40 @gmf.node(label="name", figure="ellipse",
41 border.style="dash", boder.color="0,0,0")
42 class DomainHypothesis extends Node {}
43

44 @gmf.node(label="name", figure="rectangle")
45 class SoftwareAgent extends Node {}
46



47 @gmf.node(label="name", figure="rectangle",
48 label.icon="false")
49 class EnvironmentAgent extends Node {}
50

51 @gmf.link(target.decoration="filledsquare",
52 source="froma", target="toa")
53 class Association extends Link {}
54

55 @gmf.node(label="name", figure="ellipse",
56 label.icon ="false")
57 class Entity extends Node {}
58

59 @gmf.node(label="name", figure="ellipse")
60 class Operation extends Node {}
61

62 @gmf.node(label="name", figure="ellipse",
63 border.style="dot")
64 class Event extends Node {}
65

66 @gmf.node(label.icon="false",figure="ellipse",
67 color="0,0,0", border.color="0,0,0", size="1,1")
68 class And extends Node {}
69

70 @gmf.node(label.icon="false",figure="ellipse",
71 border.color="0,0,0", size="1,1")
72 class Or extends Node {}
73

74 @gmf.link(target.decoration="square",
75 source="froma", target="toa")
76 class OperationalizationLink extends Link {}
77

78 @gmf.link(target.decoration="arrow",
79 source="froma", target="toa")
80 class ResponsibilityLink extends Link {}
81

82 @gmf.link(target.decoration="filledrhomb",
83 source="froma", target="toa")
84 class ObstructionLink extends Link {}
85

86 @gmf.link(target.decoration="square",
87 source="froma", target="toa")
88 class ConflictLink extends Link {}
89

90 @gmf.link(target.decoration="filledsquare",
91 source="froma", target="toa", style="dot")
92 class OutputLink extends Link {}
93

94 @gmf.link(target.decoration="filledsquare",
95 source="froma", target="toa", style="dash")
96 class InputLink extends Link {}
97

98 @gmf.link(target.decoration="square",
99 source="froma", target="toa", style="dot",

100 width="2")
101 class ResolutionLink extends Link {}
102

103 @gmf.link(target.decoration="filledclosedarrow",
104 source="froma", target="toa")
105 class Refinement extends Link {}
106

107 @gmf.link(target.decoration="filledsquare",
108 source="froma", target="toa", style="dash",
109 width="2")
110 class AssignmentLink extends Link {}
111

112 @gmf.node(label.icon="false", boder.style="dash")
113 class SubGoal extends Node {}

As a demonstration, we apply our KTool to construct a
simple model of the case study described in Section II, for
the sake of space and page limitation we did not show all the
sub-models of KAOS in this example, we only constructed a
simplistic model of the case study using few model elements.

Figure 5: Example of KAOS Model in our KTool

As shown in Figure 5 the root Goal of Bank XYZ G1-
Provide excellent Point of Sale (POS) Services means that
all transactions must be successful, and secure. G1 is then
refined using the And Refinement into two SubGoals: SG1-
Secure Transaction from Hackers, and SG2-Successful Trans-
action. In order to ensure Secure Transactions from Hackers,
the Smart Card Information should be encrypted, thus we
refine the SubGoal: SG1-Secure Transaction from Hackers
into the Requirement: R1-Smart Card Information encrypted
and assign it to the SoftwareAgent: SA1-Encrypted Router
using the ResponsibilityLink. Similarly to ensure Successful
Transaction all Customers should be provided with a Smart
Card, thus we refine the SubGoal: SG2-Successful Transaction
into the Expectation:Ex1-Provide Smart Card to Customers
and assign it the EnvironmentAgent: EA1-Bank XYZ using the
AssignmentLink. The SoftwareAgent: SA1 is then assigned to
an Operation: OP1 using the OperationalisationLink.

V. INTEGRATION PLUGIN: EVL + KTool

The Final steps in our KAOS Tooling Process is to create
an integration plugin that allows our KTool to automatically
check the completeness of KAOS Model. We started the in-
tegration plugin development by first creating a new eclipse
plugin project where the constraint can be defined. This is
followed by adding the location of the user interface, and the
emf validation to the list of dependencies. Then we define
the completeness checks as a set of constraints written in



Figure 6: Completeness Check 1a

Epsilon Validation Language-EVL. EVL is a Domain Specific
Language (DSL) used to define and validate a set of con-
straints that can check the completeness or well formedness
of a model [13]. The EVL codes for completeness checks 1,
2, and 3 are shown and further explained in Sections V-A,
V-B, and V-C. The next step is to define the extensions that
will allow us to bind the EVL constraints to our KTool,
and final we run the new configuration to ensure that the
plugin development has been implemented correctly. A detailed
step by step process for creating an integration plugin in
Ecplipse Modelling Framework-EMF can be found in the
Epsilon Project.1 In the following Sections, we use our case
study to describe how Completeness Checks 1, 2, and 3 have
been implemented.

A. Completeness Check 1

Completeness Check 1 ensures that all Goals and SubGoals
are refined to Leaf Goals (Expectation, or requirement) or
into Domain Property using either And Refinement or the
Or Refinement. Therefore Completeness Check 1 is satisfied
when every Leaf Goal is Requirement, or Expectation, or
DomainHypothesis, or DomainInvariant. The EVl constraint
for Completeness Check 1 is shown in the listing below:

1 context Goal{
2 constraint ToLeaf{
3 check: Refinement.all.exists
4 (g|g.froma.isKindOf(And) or
5 g.froma.isKindOf(Or) and
6 g.toa.isKindOf(Requirement) or
7 g.toa.isKindOf(Expectation) or
8 g.toa.isKindOf(DomainInvariant) or
9 g.toa.isKindOf(DomainHypothesis))

10 message:"The " + self.name +
11 " should be refined into a leaf Goal"
12 }

1http://www.eclipse.org/epsilon/doc/articles/evl-gmf-integration/

13 }
14

15 context SubGoal{
16 constraint ToaLeaf{
17 check: Refinement.all.exists
18 (g|g.froma.isKindOf(And) or
19 g.froma.isKindOf(Or)
20 and
21 g.toa.isKindOf(Requirement) or
22 g.toa.isKindOf(Expectation) or
23 g.toa.isKindOf(DomainInvariant) or
24 g.toa.isKindOf(DomainHypothesis))
25 message:"The " + self.name +
26 " should be refined into a leaf Goal"
27 }
28 }

The term context in Line 1 is an EVL keyword showing
the model element where the constraint is defined, in this
case Goal. The constraint keyword in Line 2 specifies that
the name of the constraint is ToLeaf, while the check keyword
in Line 3 defines the algorithm for the constraint. The message
keyword in Line 10 shows the output message if the check is
not satisfied. To demonstrate Completeness Check 1, we use
our KTool to construct a simple but incomplete KAOS model of
the case study we described in Section II. As shown in Figure
6 the root Goal of Bank XYZ G1-Provide excellent Point of
Sale (POS) Services is refined into SG1-Secure Transaction,
and SG2-Successful Transaction, then we validate this KAOS
model by clicking on the validate button in Eclipse Modelling
Framework-EMF as shown in Figure6. When the validate
command is executed, our tool checks if this KAOS model
satisfies the constraints for completeness check 1. If this is
true, there will be no error sign in context model elements
concerned, or error message in the problem dialogue box of
EMF. But if false (as in this case) an error signs will appear
in the context model elements in this case G1, SG1, and SG2;
this will be accompanied by error messages, displayed in
the problem dialogue box. The error messages ”The ¡Goal¿
G1 , and The ¡SubGoals¿ SG1, and SG2-should be refined
into a leaf Goal” indicates that the model is incomplete and
malformed but gives instruction on what the user should do
to make the model complete.

For the model to be well formed/complete, the leaf goal
should either be a Requirement, Expectation, DomainInvariant
or DomainHypothesis. Thus we further refine the SubGoals:
SG1 and SG2 into Leaf Goals- Requirement: R1, and Ex-
pectation: EX1 respectively , and revalidate it. The result of
the revalidated model is shown in Figure 7. The error signs
have moved from conetx G1, SG1, and SG2 to R1 and Ex1,
this means that although the Goals and SubGoals have been
completely refined into Leaf Goals, and Completeness Check
1 has been satisfied, the model is not yet complete because
Completeness Check 2 has not been satisfied.

B. Completeness Check 2

In Completeness Check 2 each Leaf Goals must be assigned
to at least one Agent, this implies that Expectation must be
assigned to an Environment Agent using AssignmentLink,
and Requirement must be linked to a SoftwareAgent using



Figure 7: Completeness Check 1b

Figure 8: Completeness Check 2

Responsibility Link. The EVL constraint for Completeness
Check 2 is shown in the listing below. The error messages
and signs in Figure 7 shows that the Requirement: R1, and
the Expectation: Ex1 have not been assigned to Software and
Environment Agents respectively, thus Completeness Check 2
has not been satisfied.

1 context Requirement{
2 constraint AssignedToSoftwareAgent{
3 check: ResponsibilityLink.all.exists
4 (I|I.froma=self and
5 I.toa.isKindOf(SoftwareAgent))
6 message:"The Requirement " + self.name +
7 " should be assigned to a Software Agent"
8 }
9

10 }
11 context Expectation{
12 constraint AssignedToEnvironmentAgent{
13 check: AssignmentLink.all.exists
14 (I|I.froma=self and
15 I.toa.isKindOf(EnvironmentAgent))
16 message:"The Expectation " + self.name +

Figure 9: Fixing Completeness Check 3

17 " should be assigned to an Environment Agent"
18 }
19

20 }

To satisfy Completeness Check 2, we simply assign a
SoftwareAgent:SA1-Encrypted Router to Requirement-R1, and
an Environment Agent-EA1-Bank XYZ to the Expectation-Ex1,
and then re-validate the model. The new model in Figure 8
shows that each Leaf Goal has been assigned to at least one
Agent, and Completeness Check 2 has been satisfied. However
the model is not yet complete because the SoftwareAgent:
SA1 has not been operationalised. This will be done in
Completeness Check 3.

C. Completeness check 3

Completeness Check 3 can be satisfied each SoftwareAgent
is assigned to an Operation using the OperationalisationLink.
The EVL constraint for this check is shown in the listing below.

1 context SoftwareAgent{
2 constraint AssignedToOperation{
3 check:OperationalizationLink.all.exists
4 (l|l.froma=self and l.toa.isKindOf(Operation))
5 message:"SoftwareAgent" + self.name +
6 "should be asigned to a Operation"
7

8 }
9 }

To satisfy Completeness Check 3, we assign an Operation:
OP1 to the SoftwareAagent using OperationalisationLink and
revalidate the model. The result as shown in Figure 9 is
a complete KAOS model without of error signs and error
messages.

VI. CONCLUSION

In this research we propose a tool that can automatically
check the completeness, and well formedness of KAOS model.
Apart from other benefits of model checking, completeness
check in KAOS can reduce the cost associated with incomplete



Goal Oriented Requirement Models, especially when using
KAOS as a basis for integrating GORE with MDE. Automating
the completeness model checking in KAOS can reduce the
error, difficulty, and cost associated with existing manually or
semi-automatic KAOS completeness checks which can benefit
the requirement engineering community in both industry and
research. We aim to take this work further, thus in our future
work we tend to demonstrate how a complete KAOS model
can facilitate MLP by proposing an automatic transformation
from a textually defined Goal model to KAOS and vice versa.

REFERENCES

[1] Fernanda M. Alencar, Beatriz Marin, Giovanni Giachetti, Oscar Pastor,
Jaelson Castro, and Joao Henrique Pimentel. From i* requirements
models to conceptual models of a model driven development process.
In PoEM, pages 99–114, 2009.

[2] Annie Anton. Goal-based requirements analysis. In ICRE, pages 136–
144, 1996.

[3] C. Asuncion, D. Quartel, S. Pokraev, M. Iacob, and M. van Sinderen.
Combining goal-oriented and model-driven approaches to solve the
payment problem scenario. In 8th Semantic Web Services Challenge
Workshop, SWSC 2009, Eindhoven, The Netherlands. SEALS Project
(Semantic Evaluation at Large Scale), 2010.

[4] David Baccarini, Geoff Salm, and Peter ED Love. Management of
risks in information technology projects. Industrial Management & Data
Systems, 104(4):286–295, 2004.

[5] Salah Baina, Pierreyves Ansias, Michael Petit, and Annick Castiaux.
Strategic business/it alignment using goal models.

[6] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-
directed requirements acquisition. Sci. Comput. Program., 20(1-2):3–50,
1993.

[7] Wilco Engelsman, Dick Quartel, Henk Jonkers, and Marten van Sin-
deren. Extending enterprise architecture modelling with business goals
and requirements. Enterprise Information Systems, 5(1):9 – 36, 2011.

[8] Wilco Engelsman and Roel Wieringa. Goal-oriented requirements
engineering and enterprise architecture: Two case studies and some
lessons learned. In REFSQ, pages 306–320, 2012.

[9] P. Espada, M. Goulao, and J. Araujo. Measuring complexity and com-
pleteness of kaos goal models. In Empirical Requirements Engineering
(EmpiRE), 2011 First International Workshop on, pages 29 –32, aug.
2011.

[10] W. Heaven and A. Finkelstein. Uml profile to support requirements
engineering with kaos. Software, IEE Proceedings -, 151(1):10 – 27,
feb. 2004.

[11] Sommerville Ian. Software Engineering. Addison Wesley, 6th edition,
2006.

[12] E. Kindler. Model-based software engineering: the challenges of mod-
elling behaviour. In Proceedings of the Second International Workshop
on Behaviour Modelling: Foundation and Applications, page 4. ACM,
2010.

[13] Dimitrios Kolovos, Louis Rose, Richard Paige, and Fiona AC Polack.
The epsilon book. Structure, 178:1–10, 2010.

[14] Dimitrios S Kolovos, Louis M Rose, Saad Bin Abid, Richard F Paige,
Fiona AC Polack, and Goetz Botterweck. Taming emf and gmf using
model transformation. In Model Driven Engineering Languages and
Systems, pages 211–225. Springer, 2010.

[15] Alexei Lapouchnian. Goal oriented requirement engineering: An
overview of the current research, 2005.

[16] Ivan Markovic and Marek Kowalkiewicz. Linking business goals to
process models in semantic business process modeling. In EDOC, pages
332–338, 2008.

[17] Raimundas Matulevicius and Patrick Heymans. Analysis of kaos meta-
model: Technical report, 2005.

[18] Raimundas Matulevicius and Patrick Heymans. Comparing goal mod-
elling languages: An experiment. In REFSQ, pages 18–32, 2007.

[19] R. Monteiro, J. Arau andjo, V. Amaral, and P. Patri andcio. Mdgore:
Towards model-driven and goal-oriented requirements engineering. In
Requirements Engineering Conference (RE), 2010 18th IEEE Interna-
tional, pages 405 –406, 27 2010-oct. 1 2010.

[20] R. Monteiro, J. Araujo, Vasco Amaral, M. Goulao, and P. M. B. Patricio.
Model-driven development for requirements engineering: The case of
goal-oriented approaches. In Ricardo Machado Joao Pascoal Faria,
Alberto Silva, editor, 8th International Conference on the Quality of In-
formation and Communications Technology (QUATIC 2012), number 8
in Quality of Information and Communications Technology, pages 75–
84. IEEE Computer Society, 09 2012.

[21] OMG. Business motivation model, 2010.
[22] D. Quartel, W. Engelsman, H. Jonkers, and M. van Sinderen. A goal-

oriented requirements modelling language for enterprise architecture.
In Enterprise Distributed Object Computing Conference, 2009. EDOC
’09. IEEE International, pages 3 –13, sept. 2009.

[23] Respect-IT. A kaos tutorial, 2007.
[24] D.T. Ross and Jr. Schoman, K.E. Structured analysis for requirements

definition. Software Engineering, IEEE Transactions on, SE-3(1):6–15,
Jan 1977.

[25] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in
goal-oriented requirements engineering. IEEE Transactions on Software
Engineering, 26:978–1005, 2000.

[26] Vera Maria Bejamim Werneck, Antonio de Padua Albuquerque Oliveira,
and Julio Cesar Sampaio do Prado Leite. Comparing gore frameworks:
i-star and kaos. In Ibero-American Workshop of Engineering of
Requirements, Val Paraiso, Chile, July 2009.

[27] Khim Teck Yeo. Critical failure factors in information system projects.
International Journal of Project Management, 20(3):241–246, 2002.

[28] Eric Yu. Modeling strategic requirement for process reengineering,
1995.

[29] Eric Yu, Paolo Giorgini, Neil Maiden, and John Mylopoulos. Social
modeling for requirement engineering:an introduction, 2009.


	Introduction
	MDE and KAOS
	Model Driven Engineering
	KAOS
	The Goal Model
	 The Object Model
	The Operation Model
	The Responsibility Model

	Related Work
	The Tooling Process
	Our KAOS Meta-Model
	KAOS Tooling

	Integration Plugin: EVL + KTool
	Completeness Check 1
	Completeness Check 2
	Completeness check 3

	Conclusion
	References

