
Outsourcing service provision through step-wise
transformation

CLARK, Tony <http://orcid.org/0000-0003-3167-0739> and BARN, Balbir S

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/12061/

This document is the Accepted Version [AM]

Citation:

CLARK, Tony and BARN, Balbir S (2014). Outsourcing service provision through
step-wise transformation. In: ISEC '14 7th India Software Engineering Conference,
Chennai. New York, ACM, p. 8. [Book Section]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Outsourcing Service Provision
Through Step-Wise Transformation

Tony Clark
Middlesex University London, UK

t.n.clark@mdx.ac.uk

Balbir S. Barn
Middlesex University London, UK

b.barn@mdx.ac.uk

ABSTRACT
Component-based development principles promise a flexible
approach to system design and implementation. In particu-
lar service-based techniques provide a computational model
whereby the physical location of components makes no dif-
ference to the overall system behaviour. Economic business
models for organisations have led to outsourced services as
an attractive way of reducing costs and allowing a business
to focus on its key processes. In the context of business
and IT alignment, this raises a problem of how to trans-
form an organization and its enterprise systems so that it
can take advantage of an external service, given that in most
cases the existing processes will be embedded in many places
across the organisation. This paper addresses this problem
by proposing a simple component-based simulation language
together with transformation rules that can be used to in-
crementally isolate a service as an external component.

1. INTRODUCTION
Modern software systems are often organised in terms of

components. Component-based approaches generalise ba-
sic object-oriented implementation platforms by allowing
large collections of objects to be grouped together and exter-
nalised in terms of public interfaces. Such systems execute in
terms of messages between components where the distance
between message source and target is completely arbitrary.
Component-based approaches can be used at different stages
of the development life-cycle, at different levels of granular-
ity and can involve different architectural approaches. Else-
where we have critiqued the relative merits of various ar-
chitectural styles [10], here we present an short overview of
these approaches.

Service Oriented Architecture (SOA) organizes a system
in terms of components that communicate via operations or
services. Components publish services that they implement
as business processes. Interaction amongst components is
achieved through orchestration at a local level or choreog-
raphy at a global level. Its proponents argue that SOA

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ISEC ’14, February 19-21 2014, Chennai, India
Copyright 2014 ACM 978-1-4503-2776-3/14/02 ...$15.00
http://dx.doi.org/10.1145/2590748.2590756.

provides loose coupling, location transparency and proto-
col independence [3] when compared to more traditional im-
plementation techniques. The organization of systems into
coherent interfaces has been argued [25] as having disadvan-
tages in terms of: extensions; accommodating new business
functions; associating single business processes with complex
multi-component interactions.

As described in [18] and [23], complex events can be the
basis for a style of EA design. Event Driven Architecture
(EDA) replaces thick interfaces with events that trigger or-
ganizational activities. This creates the flexibility necessary
to adapt to changing circumstances and makes it possible to
generate new processes by a sequence of events [21]. EDA
and SOA are closely related since events are one way of view-
ing the communications between system components. The
relationship between event driven SOA and EA is described
in [1] where a framework is proposed that allows enterprise
architects to formulate and analyse research questions in-
cluding ‘how to model and plan EA-evolution to SOA-style
in a holistic way’ and ‘how to model the enterprise on a
formal basis so that further research for automation can be
done.’

Complex Event Processing (CEP) [12] can be used to pro-
cess events that are generated from implementation-level
systems by aggregation and transformation in order to dis-
cover the business level, actionable information behind all
these data. It has evolved into the paradigm of choice for
the development of monitoring and reactive applications [6].

Enterprise Architecture (EA) aims to capture the essen-
tials of a business, its IT and its evolution, and to sup-
port analysis of this information: ‘[it is] a coherent whole of
principles, methods, and models that are used in the design
and realization of an enterprise’s organizational structure,
business processes, information systems and infrastructure.’
[16]. A key objective of EA is being able to provide a holis-
tic understanding of all aspects of a business, connecting
the business drivers and the surrounding business environ-
ment, through the business processes, organizational units,
roles and responsibilities, to the underlying IT systems that
the business relies on. In addition to presenting a coherent
explanation of the what, why and how of a business, EA
aims to support specific types of business analysis includ-
ing [13, 22, 20, 5, 14]: alignment between business functions
and IT systems; business change describing the current state
of a business (as-is) and a desired state of a business (to-
be); maintenance the de-installation and disposal, upgrad-
ing, procurement and integration of systems including the
prioritization of maintenance needs; acquisition and mergers

describing the alignment of businesses and the changes that
occur on both when they merge.

EA has its origins in Zachman’s original EA framework
[28] while other leading examples include the Open Group
Architecture Framework (TOGAF) [24] and the framework
promulgated by the Department of Defense (DoDAF) [27].
In addition to frameworks that describe the nature of models
required for EA, modelling languages specifically designed
for EA have also emerged. One leading architecture mod-
elling language is ArchiMate [17].

Enterprise Architectures are built to support use-cases re-
lated to managing and evolving an organization. For ex-
ample, directive development is concerned with developing
directives that express how a business operates; business in-
telligence describes how a CEO is informed of the state of
the organization at any level; resource planning involves the
allocation of business resources to processes; impact analysis
covers a variety of analyses used to measure the effect a pro-
posed change has on an organization; change management
involves describing the context and requirements for changes
in any aspect of the business, including the construction of
as-is and to-be analysis and the calculation of the return on
investment (ROI) for any proposed change; regulatory com-
pliance checking establishes that an organization meets some
externally imposed constraints on its operating procedures;
risk analysis identifies dangers, both internal and external,
that can affect the successful operation of the organization;
acquisition and merger involves the comparison of two or-
ganizations to identify their similarities and differences with
respect to achieving a goal; outsourcing involves the iden-
tification of services that can be supplied by an external
partner. Supporting these use cases is challenging and re-
quires models that accurately describe relevant aspects of
an organization at an appropriate abstraction level.

2. PROBLEM AND CONTRIBUTION
An important EA use-case identified in the previous sec-

tion is outsourcing. This has become increasingly popular
across many sectors where it is difficult for an individual firm
to master all the knowledge required to perform all business
functions [29]. According to [19] outsourcing decisions are
taken during the development of a new system architecture
and modularity is a key enabler for these decisions: ‘A sys-
tem producer basically faces two alternatives to manage the
development of its components: in-house development or
outsourcing.’

Business Transformation involves changing the current
processes and resources used by a business in order to achieve
a goal. Outsourcing is an example of a transformation that
must identify those elements of a business that can be given
to a service provider. The transformation removes the ele-
ments of the business that are no longer required.

Achieving an outsourced business function through busi-
ness transformation involves a precise understanding of how
the as-is business operates and producing a to-be business
that incorporates the service provider. Component-based
techniques can help with this since the service provider can
be viewed as a component incorporated within the business
ecosystem. However, this approach relies on a precise repre-
sentation of the business as a collection of components and
the ability to decompose and refactor the components in
order to isolate the service provider.

Matching internal service needs with those provided by an

external service is reminiscent of some of the earlier work on
component re-use and repositories where research such as
that by Cheng et al [7] and Jeng et al [15] under the direc-
tion of Betty Cheng presented approaches of using formal
specifications utilising pre and post condition specification
of operations on components to attempt to perform match-
ing of required components with those stored in external
repositories.

Transformation and refactoring approaches to component-
based systems are often based on an analysis of the interfaces
or require detailed understanding of programming-language
semantics [4, 26]. However, if we are to work at the level of
abstraction required by EA and achieve outsourcing through
component-based refactoring, then there must be a precise,
but implementation independent language that supports ap-
proaches such as SOA and EDA without requiring detailed
knowledge of message protocols or run-time platforms.

Our hypothesis is that it is possible to take a component-
based approach to outsourcing in terms of precisely defined
decomposition operators that isolate the service provider
through transformation and refinement. Our primary con-
tribution is to define this approach using µLEAP which is
a simple, abstract, executable component language and to
show that the approach can be used to outsource a simple
service. µLEAP represents a new refinement of our existing
LEAP technology by the embedding of µLEAP as a domain
specific language in the LISP based platform Racket1.

3. CASE STUDY
The University of Middle England (UME) is under pres-

sure to reduce costs. It has been in contact with a number of
service providers in the UK Higher Education sector and has
found a company that offers a service to manage registration
and tuition fees for students.

Unfortunately, UME currently distributes student regis-
tration information around the institution. An academic
department holds information about the fees for the individ-
ual courses that it offers, and also holds information about
whether a student has paid the tuition fees. The UME fi-
nance department also manages information about whether
students have paid their fees. Although the finance function
knows about courses and departments, they do not currently
hold any information about tuition fees which are set at de-
partmental level. Each academic department also manages
a list of active staff members, whilst the finance department
knows about the staff grades for all members of department
that have ever been employed by UME.

UME would like to modify its internal architecture so that
it can take advantage of the service provider. This will in-
volve changing how both departments and finance operates
so that the provider manages registration and payment of
tuition fees, informing a department when each student can
officially start to study. Payroll, is to remain as a collabo-
ration between the academic departments and finance.

4. µLEAP
The language LEAP and its associated toolset [9, 2, 11,

10, 8] has been developed to support the design, analysis
and simulation of component-based systems. The LEAP
approach aims to reduce such systems to a small number
of orthogonal features. The full LEAP language contains

1http://racket-lang.org

p = programs
d ... e ...

d = definitions
(def name e)

| (def name (name ...) e)
e = expressions

const
| var
| ()
| (component e r ... e ...)
| (Name e ...)
| (fun (name ...) e)
| (block d ... e ...)
| (e e ...)
| (@ e e ...)
| (case e (p e) ...)

r = rules
(rule
(when p p)
(become e e)
e ...)

p = patterns
(= name p)

| name
| _
| const
| ()
| (p . p)
| (p ...)
| (∈ p p)
| (union p p)

Figure 1: µLEAP Syntax

many features that enable the language to integrate with a
tool-set, including the ability to produce diagrams directly
from the LEAP component models.

This paper uses our previous experience with LEAP as
a platform for validating our hypothesis that outsourcing
can be achieved using a compositional and transformational
component based approach. As such we do not need the
complete LEAP language and therefore we use a sub-set
called µLEAP as defined in figure 1. The rest of this section
provides an overview of µLEAP and the remainder of paper
uses the language to implement and analyse the case study.
µLEAP data items are: constants (numbers, strings, bools),

lists, terms, functions and components. Boolean constants
are tt and ff. µLEAP is embedded as a domain specific
language in Racket and uses Lisp-style lists consisting of
the empty list () and cons pairs (h . t). A term (F v ...)

consists of a functor, F, which is a name starting with a cap-
ital letter, followed by a sequence of values. The following
is a term representing a person with an age and a name:
(Person 34 "fred"). A function (fun (x y) (+ x y)) is a value
that can be applied to a collection of args and returns a
value.

The key data value in µLEAP is the component. Com-
ponents behave as independently executing state transition
machines. The state of a component can be any value and
the transitions are defined by a collection of rules. Messages
sent to a component are added to an internal message queue.
Each rule uses pattern matching against the current state
of the component and its message queue. Each time the
component changes, the rules are examined in turn. The
first rule that matches, fires producing a new component-
state and message queue and potentially sending messages
to other components.

Typically, component messages are terms where the term-
functor corresponds to the name of the message and the
term-elements are data items passed in the message. Rules
examine the head of the message queue. The following is
a component that is initialised with a starting integer, a
limit and a target component. It is sent Inc messages that
increments the integer until the limit is reached at which
point the target component is sent a Go message and before
re-initialising:

1 (component (list 0 limit target)
2 (rule
3 (when (limit limit target) ((Inc) . messages))

4 (become (list 0 limit target) messages)
5 (target (Go)))
6 (rule
7 (when (current limit target) ((Inc) . messages))
8 (become (list (+ current 1) limit target) messages)))

The program shown above provides examples of several key
µLEAP features. The state of the component is a list of
three elements. Line 1 uses the built-in function list to
construct a list of elements. A 3-element list is constructed
as (list x y z) which is equivalent to the expression:
(: 1 (: 2 (: 3 ()))), where : is the function that maps two
values (typically a list-head and a list-tail) to a pair.

Patterns are used in rules and in case-expressions. A pat-
tern matches a value and may contain variables that are
bound to sub-values as a result of a successful match. Rules
use patterns in the when clause to match against the current
state and message queue of a component. A case-expression
matches a value against a sequence of patterns and evaluates
the expression associated with the pattern. Structured pat-
terns match pairs, and lists, The pattern (union p q) treats
a list l as a set and matches p and q against any pair of
exhaustive set partitions of l. The membership pattern (∈
p q) is equivalent to (union (p) q).

The component defines two rules (lines 2 and 6). The first
rule has a guard on line 3 that matches against the current
state and message queue. The state-pattern must match a
list of three elements where the first two elements are the
same i.e., the limit has been reached. The message-pattern
matches a list of elements headed by a term whose functor
is Inc and without term-elements. The tail of the list is any
value and is matched against the variable messages.

The first rule performs a transition to a new component
state involving a list of three elements whose first element is
0 (the component has re-initialised), and where the message
has been consumed. The action performed by the rule (line
5) sends a message (Go) to the component target. Messages
are sent to components by applying them to a sequence of
arguments. Message passing may be synchronous or asyn-
chronous. Asynchronous message passing starts with @, as
in (@ target (Go)). In that case, the message is sent and the
expression immediately returns the value nothing. A syn-
chronous message omits the @, sends the message to the
target component and waits for the return value. The tar-
get component will handle the message using its own rules,
and the return value is provided by the corresponding rule-

action. The second rule (line 6) matches when the limit has
not been reached. In this case the current value is incre-
mented and no action is taken.

Both components and functions are first-class data values
in µLEAP. This feature is important since it used to imple-
ment a component combinator ⊕ that allows as-is architec-
tures to be decomposed into a collection of atomic compo-
nents that can be re-factored in order to identify and isolate
a service provider. As a result, µLEAP has the flavour of a
functional programming language and can support many of
the patterns that are typical of that idiom. For example:

1 (def map (f l)
2 (case l
3 (() ())
4 ((h . t)
5 (: (f h)
6 (map f t)))))

is a function that sends each message in the list l to the
function (or component) f, building a list of results. An
asynchronous version of this is:

1 (def @map (f l)
2 (case l
3 (() (block))
4 ((h . t)
5 (block
6 (@ f h)
7 (@map f t)))))

The function map is used in the case study below, as is the
function find that uses a predicate p to select an element in
a list:

1 (def find (p l)
2 (case l
3 (() (error "no element"))
4 ((h . t)
5 (case (p h)
6 (tt h)
7 (ff (find p t))))))

5. REFACTORING APPROACH
Our proposal is that we can use a flexible component-

based approach to decompose and refactor an architecture
in order to isolate a component that corresponds to a service
provider. Typically an as-is architecture will contain large
complex components where information and behaviour are
distributed, and possible duplicated, amongst many differ-
ent components. Therefore, any approach must allow large
complex components to be decomposed and represented as
a composition of much simpler components that can be re-
organised.

Consider a business that operates a software component
that manages two counters:

1 (def business
2 (component (list n m)
3 (rule
4 (when (n m) ((IncN) . ms))
5 (become (list (+ n 1) m) ms))
6 (rule
7 (when (n m) ((DecM) . ms))
8 (become (list n (- m 1)) ms))))

Suppose that a service provider offers an interface that in-
crements numbers at a very reasonable price. The business
would like to outsource that portion of its business that in-
crements the counter whilst it retains that which decrements
the counter. In this example the service provider component
is obvious. Suppose that the binary operator ⊕ maps two

components to a single combined component. Given such
an operator, business can be redefined as:

1 (def internal
2 (component m
3 (when m ((DecM) . ms))
4 (become (- m 1) ms)))
5
6 (def service
7 (component n
8 (when n ((IncN) . ms))
9 (become (+ n 1) ms)))

10
11 (def business (⊕ internal service))

Given this basic idea, the approach is described as follows:
Suppose that a business can be defined using a collection of
components A, B and C and that there is a service provider
D that roughly corresponds to B. Using infix notation and
being clear about associativity, the business is: A ⊕ (B ⊕
C). Notice that B is buried inside the expression, i.e., the
business. If, ⊕ is associative then the architecture can be
redefined as: (A ⊕ B) ⊕ C. If ⊕ is commutative then the
architecture is equivalent to: (B⊕A)⊕C. Now associativity
can be used to isolate B: B ⊕ (A ⊕ C). If we can define a
correspondence φ between B and D, then it is possible to
replace B by the service provider: φ(D)⊕ (A⊕ C).

In a realistic situation, it will be unlikely that existing
components can be decomposed in such a straightforward
manner. Further analysis leads to the following require-
ments for the composition operator ⊕:
[R1] A single component may send messages to itself. If a
component C is decomposed into D⊕ E then the independent
components D and E must be able to refer to the whole.
[R2] It is likely that several sub-components will be removed
when moving from an as-is architecture to a to-be involving a
service provider. Therefore, the operator ⊕ should be both
associative and commutative, or there should be variants
that can be selective used as appropriate. For example if a
component A can be decomposed into (B⊕ C)⊕ (D⊕ E) where
the service provider corresponds to B and E, then it should
be possible to transform the expression into (C⊕ D)⊕ (B⊕ E)
thereby isolating the service provider.
[R3] The internal interfaces used by an organisation are
likely to be different to those provided as a service. Since
components and messages are first class data in µLEAP it
is straightforward to rename messages. For example, given
a component C with a message interface (M) that is to be
replaced with a service component whose message interface
is (N), but otherwise has the same behaviour then we can
wrap a renaming: C[NM] which is shorthand for:

1 (component ()
2 (rule
3 (when () ((N) . ms))
4 (become () ms)
5 (c (M))))

[R4] An organisation will consist of a collection of compo-
nents and will execute in terms of message traces m ∈ M .
The state of the organisation is represented by the aggregate
state of the components Σ. If the organisation is broken
down into finer grained components that are composed us-
ing ⊕ then the structure of the aggregate state is Σ′ and the
execution traces are m′ ∈ M ′. However, it should be pos-
sible to define a mapping φ : Σ′ → Σ such that executions

can be mapped:

Σ′ m′
−−−−−→ Σ′

φ

y yφ
Σ −−−−−→

φ(m′)
Σ

If the diagram shown above commutes then it means that the
execution of the to-be organisation is consistent with the as-
is execution after re-namings, changes in state composition,
and modifications to messages are taken into account.

The approach to outsourcing is to be supported by a range
of operators that behave like ⊕ and [\] with well under-
stood properties. In our case study we use two operators
that are defined below. In order to satisfy R1, it must be
possible for each component-part to refer to the whole com-
ponent. This is achieved by defining pre-components as func-
tions that map a whole-component (self) to a component-
part. The pre-components are combined using the operators
as described below. Given a pre-component, it is trans-
formed into a whole-component using new:

1 (def new (pre-component)
2 (def whole-component (pre-component whole-component))
3 whole-component)

The pre-component composition operator is defined as fol-
lows:

1 (def combine (v1 v2)
2 (case (cons v1 v2)
3 (((Fail) . (Fail)) (Fail))
4 ((Fail) . v) v)
5 ((v . (Fail)) v)
6 ((_ . _) (error)))
7
8 (def ⊕ (c1 c2)
9 (fun (self)

10 (block
11 (def o1 (c1 self))
12 (def o2 (c2 self))
13 (component (list o1 o2)
14 (rule
15 (when s (m . ms))
16 (become s ms)
17 (combine (o1 m) (o2 m)))))))
18
19 (def ε (self)
20 (component ()
21 (rule () (m . ms))
22 (become () ms)
23 (Fail)))

The ⊕ operator combines pre-components that handle syn-
chronous messages (i.e., those that contain rules that return
results. The function combine ensures that the two compo-
nents o1 and o2 are independent and only one can return a
result for a given message (or both fail). This ensures that
the operator ⊕ is a commutative monoid:

X ⊕ Y = Y ⊕X
X ⊕ (Y ⊕ Z) = (X ⊕ Y)⊕ Z

X ⊕ ε = X = ε⊕X

Although the case study in this paper uses ⊕, in prac-
tice there is likely to be a family of operators that exhibit
different transformation properties. For example, we may
combine two components that exclusively deal with asyn-
chronous messages. In that case the following associative
and commutative operator can be used:

1 (def ⊗ (c1 c2)
2 (fun (self)

Figure 2: Overview of the As-Is Architecture

Figure 3: Overview of the To-Be Architecture

3 (block
4 (def o1 (c1 self))
5 (def o2 (c2 self))
6 (component ()
7 (rule
8 (when s (m . ms))
9 (become s ms)

10 (@ o1 m)
11 (@ o2 m))))))

6. WORKED EXAMPLE
Section 3 describes a case study that involves two inter-

acting components. The approach described in this paper
is a method for representing a component architecture and
subsequently transforming it in order to isolate a component
corresponding to a service provider.

Figure 2 shows the decomposition of the finance and aca-
demic departments into separate aspects. The academic de-
partment manages staff, students registered on courses (with
both paid and unpaid tuition fees) and the cost of the fees
for each course. The finance department manages all staff
grades, students who have paid and the process of payment.

Once the aspects of each major component have been
identified, the approach creates a to-be architecture as shown
in figure 9 where the aspects have been reallocated. Some
aspects are handled by the service provider and have been re-
moved from the as-is component. Others, such as recording
students as having paid for their courses are shared between
the service provider and the business.

Section 6.1 uses µLEAP to represent the as-is case study
architecture. Section 6.2 describes the service provider as
a µLEAP component and section 6.3 uses the approach to

1 (def department
2 (component
3 (list
4 (Staff (list (Lecturer "Dr Piercemuller")))
5 (Courses (list (Course "computer science" 9000 ()))))
6 (rule
7 (when ((Staff ls) cs) ((GetStaff) . ms))
8 (become (list (Staff ls) cs) ms)
9 ls)

10 (rule
11 (when
12 (ls (Courses (∈ (Course c f ss) cs)))
13 ((Register s c) . ms))
14 (become
15 (list
16 ls
17 (Courses (: (Course c f (: (Student s ff) ss)) cs)))
18 ms))
19 (rule
20 (when
21 (ls (= cs (Courses (∈ (Course _ _ (∈ (Student s _) _)) _))))
22 ((HasStudent s) . ms))
23 (become (list ls cs) ms)
24 tt)
25 (rule
26 (when s ((HasStudent _) . ms))
27 (become s ms)
28 ff)
29 (rule
30 (when
31 (ls (= cs (Courses (∈ (Course c _ (∈ (Student s _) _)) _))))
32 ((RegisteredFor s) . ms))
33 (become (list ls cs) ms)
34 c)
35 (rule
36 (when
37 (staff (= cs (Courses (∈ (Course c f _) _))))
38 ((GetFee c) . ms))
39 (become (list ls cs) ms)
40 f)
41 (rule
42 (when
43 (ls (Courses (∈ (Course c f (∈ (Student s _) ss)) cs)))
44 ((Paid s p) . ms))
45 (become
46 (list
47 ls
48 (Courses (: (Course c f (: (Student s p) ss)) cs)))
49 ms))))

Figure 4: As-Is Department Component

apply a step-wise transformation to the as-is architecture in
order to produce a to-be architecture containing the service
provider component.

6.1 As-Is Architecture
The current system is implemented using two components.

The first component is used to manage a department within
the university and the second deals with finance. This sec-
tion gives a simple implementation of both components us-
ing µLEAP.

Figure 4 shows a component department that manages a
department. The state of the component consists of a list
of lecturers and a list of courses. Each course is a term of
the form (Course name fees students) where students is a list of
student terms of the form (Student name paid?).

The department component defines rules that process the
following messages:

(GetStaff) that returns the list of lecturers in the depart-
ment.

(Register student course) that adds a student record to the

1 (def finance
2 (component
3 (list
4 (Departments (list department))
5 (Staff (list (Grade "Dr Piercemuller" 10)))
6 (Students ())
7 (Courses (list (Course "computer science" department))))
8 (rule
9 (when ((Departments ds) gs ss cs) ((Payroll) . ms))

10 (become (list (Departments ds) gs ss cs) ms)
11 (map
12 (fun (d)
13 (map (fun (l) (finance (Pay l))) (d (GetStaff))))
14 ds))
15 (rule
16 (when
17 (ds (Staff (∈ (Grade n g) ls)) ss cs)
18 ((Pay (Lecturer n)) . ms))
19 (become
20 (list ds (Staff (: (Grade n g) gs)) ss cs) ms)
21 ; make payment
22)
23 (rule
24 (when (ds gs (Students ss) cs) ((Register s) . ms))
25 (become
26 (list ds gs (Students (: (Student s ff) ss)) cs) ms))
27 (rule
28 (when
29 ((Departments ds) gs (Students (∈ (Student n _) ss)) cs)
30 ((Pay n a) . ms))
31 (become
32 (list
33 (Departments ds)
34 gs
35 (Students (: (Student n (>= a f)) ss))
36 cs)
37 ms)
38 (def ds (find (fun (d) (d (HasStudent n))) ds))
39 (def course (department (RegisteredFor n)))
40 (def fee (department (GetFee course)))
41 (department (Paid n (>= a f))))))

Figure 5: As-Is Finance Component

appropriate course. The student is marked as having
fees outstanding.

(HasStudent name) returns true when the department has a
named student.

(RegisteredFor student) returns the name of the course that
the named student is studying.

(GetFee course) returns the fee associated with the named
course.

(Paid student paid?) informs the department that the stu-
dent has paid something towards their tuition fees.
The boolean value paid? determines whether the fees
are full paid or not.

Figure 5 shows the finance component of the university.
The state consists of four elements: (1) a list of the depart-
ments in the university; (2) a list of the all university staff
and their job-grades; (3) a list of student records of the form
(Student name paid?); (4) a list of terms that associate course
names with departments.

The finance component has an interface that handles the
following messages:

(Payroll) which causes all of the staff of the university to
be paid. This involves iterating over all of the depart-
ments, getting the staff in each department, looking

1 (def provider
2 (component
3 (list
4 (Courses (list (Course "computer science" department 9000)))
5 (Students ()))
6 (rule
7 (when (cs (Students ss)) ((Register n c) . ms))
8 (become (list cs (Students (: (Student n c ff) ss))) ms))
9 (rule

10 (when ((= cs (Courses (∈ (Course c d f) _)))
11 (Students (∈ (Student s c _) ss)))
12 ((Pay s a) . ms))
13 (become
14 (list cs (Students (: (Student s c (>= a f)) ss))) ms)
15 (case (>= a f)
16 (tt (d (Register s c)))))))

Figure 6: Service Provider

up their job-grade and making an payment based on
the grade.

(Pay lecturer) looks up the job-grade of the lecturer and
makes the payment.

(Register student) adds a new student record. The student
is marked as having tuition fees outstanding.

(Pay student amount) informs finance that the student has
made a payment. The tuition fee is requested from
the appropriate department and the student record is
updated accordingly.

6.2 Service Provider
Figure 6 shows an implementation of the service provider

component. The provider manages the financial aspect of
student registration and therefore manages a state that is
a list of course and student terms. A course term has the
form (Course name department fees) and a student has the form
(Student name course paid?). When a student registers with the
provider they are marked as owing tuition fees and when
the pay the correct amount their status changes, and the
appropriate department is informed.

6.3 Transformation
Our proposition is that we can take the as-is architecture

described in section 6.1, decompose it using the operator
⊕, transform the resulting tree of pre-components and then
show that the service provider defined in 6 can be isolated
in the to-be architecture.

The first step is to decompose the as-is architecture. Con-
sider the department component. It consists of two different
aspects: staff and courses. The staff can be defined as a
separate pre-component:

1 (def department-staff (self)
2 (component
3 (list (Lecturer "Dr Piercemuller"))
4 (rule
5 (when staff ((GetStaff) . ms))
6 (become staff ms)
7 staff)
8 (rule
9 (when s (m . ms))

10 (become s ms)
11 (Fail))))

From now on the rule that produces (Fail) will be omit-
ted from pre-components since it is always the last rule.
The courses information is slightly more structured since

it contains two aspects, the tuition fees and the students.
Therefore the tuition fees are identified as a separate pre-
component:

1 (def department-courses-fees (self)
2 (component (list (Course "computer science" 9000))
3 (rule
4 (when
5 (= courses (∈ (Course name fee) _)) ((GetFee name) . ms))
6 (become (list courses) ms)
7 fee)))

The students information relates to students that have paid
their fees and those that have not. Therefore we can separate
these issues out. The students that have paid their fees
are maintained by a pre-component that manages a list of
courses. Each course contains a list of students who have
paid their tuition fees:

1 (def department-paid-students (self)
2 (component (list (Course "computer science" ()))
3 (rule
4 (when (∈ (Course c ss) cs) ((AddPaid s c) . ms))
5 (become (: (Course c (: (Student s) ss)) cs) ms))
6 (rule
7 (when
8 (∈ (Course c (∈ (Student s) ss)) cs)
9 ((HasPaidStudent s) . ms))

10 (become (: (Course c (: (Student s) ss)) cs) ms)
11 tt)
12 (rule
13 (when cs ((HasPaidStudent s) . ms))
14 (become cs ms)
15 ff)
16 (rule
17 (when
18 (∈ (Course c (∈ (Student s) ss)) cs)
19 ((RegisteredFor s) . ms))
20 (become (: (Course c (: (Student s) ss)) cs) ms)
21 c)))

The pre-component department-unpaid-students is virtually the
same as that shown above except it handles additional mes-
sages for (HasUnpaidStudent) and (RemoveUnpaid).

Having defined all of the pre-components it is possible
to compose them to produce a single component for a de-
partment. Firstly, a pre-component department-students that
manages students is defined as follows:

1 (def student-extension
2 (fun (self)
3 (component ()
4 (rule
5 (when s ((Paid student) . ms))
6 (become s ms)
7 (self (AddPaid student (self (RegisteredFor student))))
8 (self (RemoveUnpaid student)))
9 (rule

10 (when s ((HasStudent name) . ms))
11 (become s ms)
12 (or (self (HasPaidStudent name))
13 (self (HasUnpaidStudent name))))))))
14
15 (def department-students
16 (⊕ (⊕ department-paid-students department-unpaid-students)
17 student-extension))

Next, the courses and staff can be added:

1 (def pre-department
2 (⊕ department-staff
3 (⊕ department-courses-fees department-students)))

Finally, a department is created by:

1 (def department (new pre-department))

The finance component is decomposed into pre-components
as shown in figure 7.

1 (def finance-departments (self)
2 (component
3 (list department)
4 (rule
5 (when ds ((GetDepartments) . ms))
6 (become ds ms)
7 ds)))
8
9 (def finance-staff (self)

10 (component
11 (list (Grade "Dr Piercemuller" 10))
12 (rule
13 (when gs ((Payroll) . ms))
14 (become gs ms)
15 (map
16 (fun (d)
17 (map (fun (l) (self (Pay l))) (d (GetStaff))))
18 (self (GetDepartments))))
19 (rule
20 (when (∈ (Grade n g) gs) ((Pay (Lecturer n)) . ms))
21 (become (: (Grade n g) gs) ms))))
22
23 (def finance-students-paid (self)
24 (component ()
25 (rule
26 (when ss ((AddPaid s) . ms))
27 (become (: (Student s) ss) ms))))
28
29 (def finance-students-unpaid (self)
30 (component ()
31 (rule
32 (when ss ((Register s) . ms))
33 (become (: (Student s) ss) ms))
34 (rule
35 (when (∈ (Student s) ss) ((RemoveUnpaid s) . ms))
36 (become ss ms))))
37
38 (def finance-payment (self)
39 (component ()
40 (rule
41 (when () ((Pay n a) . ms))
42 (become () ms)
43 (def d (find (fun (d) (d (HasStudent n)))
44 (self (GetDepartments))))
45 (def c (d (RegisteredFor n)))
46 (def f (d (GetFee c)))
47 (case (>= a f)
48 (tt (d (Paid n)))))))
49
50 (def pre-finance
51 (⊕ (⊕ finance-staff finance-departments)
52 (⊕ finance-payment
53 (⊕ finance-students-paid finance-students-unpaid))))))
54
55 (def finance (new pre-finance))

Figure 7: Finance Decomposition

6.4 Outsourcing
The previous section has decomposed the as-is architec-

ture as a collection of components combined using ⊕. We
can use the properties of these operators to transform the
pre-components in order to isolate the service provider. It
is unlikely that the transformations will produce a compo-
nent that is in one-to-one correspondence with the service
provision component, however a mapping φ can be defined
between the states of the isolated pre-component and the
service provider component and used to to establish equiv-
alence.

The first step is to transform the pre-components. To
make this more concise, we rename the pre-components as
shown in figure 8. Therefore, a department pre-component
is:

A⊕ (B ⊕ ((C ⊕D)⊕ E)

A department-staff

B department-courses-fees

C department-paid-students

D department-unpaid-students

E student-extension

F finance-staff

G finance-departments

H finance-payment

I finance-students-paid

J finance-students-unpaid

Figure 8: Pre-Component Labels

Given the properties of ⊕ we can transform this expression
into the following pre-component:

(B ⊕ (D ⊕ E))⊕ (A⊕ C)

The finance department pre-component is defined as follows:

((F ⊕G)⊕ (H ⊕ (I ⊕ J)))

Again, using the properties of the pre-component combina-
tion operator the expression can be transformed into:

(F ⊕G)⊕ (H ⊕ (I ⊕ J))

Through transformation, we have isolated two elements of
pre-components that can be combined to produce a new
component: (B⊕(D⊕E))⊕(F⊕G), producing the following
system defined by three pre-components instead of two:

pre-department = (A⊕ C)
pre-finance = (F ⊕G)
pre-service = (B ⊕ (D ⊕ E))⊕ (H ⊕ (I ⊕ J))

We must now establish that the new system configuration
has equivalent behaviour to the as-is architecture and that
the pre-service component captures the behaviour of the ser-
vice provider as defined in figure 6.

Equivalence is established by defining state mappings pre-
serve the behaviour between systems. Since µLEAP states
and messages are explicitly represented in each component,
equivalence can be established through inspection of the def-
initions and reasoned argument. The state of the to-be ar-
chitecture has three elements corresponding to the separate
components. The form of the state is given as type signa-
tures.

1 ((Lecturer String)... (Course String (Student String)...))
2 ((Grade String Integer)... Department ...)
3 ((Course String Integer)... (Course String (Student String)...)...)

A to-be department (1) has a state containing lecturers and
courses with paid-up students. A to-be finance component
(2) manages the staff and their grades and contains a collec-
tion of departments. The to-be model of the service-provider
has a state (3) containing the same course occurring in three
different aspects: fees, paid students and unpaid students.

Taken as a whole, the to-be state can be mapped to the as-
is state. For example, the paid and non-paid students that
are now managed by the service provider can be mapped
back to the states in the finance and academic departments.
Therefore, no information has been lost. Furthermore, if we
exercise the to-be system by processing messages, we find
that the state changes are consistent with respect to the
mapping.

1 (def department
2 (component
3 (list
4 (Staff (list (Lecturer "Dr Piercemuller")))
5 (Courses (list (Course "computer science" ()))))
6 (rule
7 (when ((Staff ls) cs) ((GetStaff) . ms))
8 (become (list (Staff ls) cs) ms)
9 staff)

10 (rule
11 (when
12 (ls (Courses (∈ (Course c ss) cs))) ((Register s c) . ms))
13 (become
14 (list
15 ls
16 (Courses (: (Course c (: (Student s) ss)) cs))) ms))))
17
18 (def finance
19 (component
20 (list
21 (Departments (list department))
22 (Staff (list (Grade "Dr Piercemuller" 10)))
23 (rule
24 (when ((Departments ds) gs) ((Payroll) . ms))
25 (become (list (Departments ds) gs) ms)
26 (map
27 (fun (d)
28 (map
29 (fun (l) (finance (Pay l)))
30 (d (GetStaff))))
31 ds))
32 (rule
33 (when
34 (ds (Staff (∈ (Grade n g) gs))) ((Pay (Lecturer n)) . ms))
35 (become (list ds (Staff (: (Grade n g) gs))) ms))))

Figure 9: To-Be Architecture

If we now reverse the decomposition based on the defini-
tions of pre-department and pre-finance that have been achieved
by transformation and refinement above, the to-be architec-
ture is produced as shown in figures 9 and 6, with compo-
nents department, finance and provider as required.

7. ANALYSIS AND CONCLUSION
This paper has identified a use-case of component-based

systems and Enterprise Architecture in particular: organi-
zational transformation in order to outsource business func-
tionality. Such a use-case is intrinsic to any notion of busi-
ness and IT alignment as the requirement to move from an
as-is architecture to an to-be architecture leads to a prob-
lem: how to analyse and transform the architecture in order
to achieve confidence that the resulting business, based on
the new service, is equivalent to the existing business.

Our contribution is to identify and implement a process
for achieving outsourced services that is based on component
decomposition and transformation. Our claim is validated
by implementing the process using an abstract, higher-order,
executable component language µLEAP and using the im-
plementation to address a simple case study. The process
requires more detailed elaboration outside the scope of this
paper, for example to include discussions on how candidate
components for outsourcing may be identified. For example,
outsourcing any operation needs to be done in a business
context of strategy and goals of an organisation. Our previ-
ous work provides an indication of such a direction of travel
[11].

Whilst we have shown that the approach can be imple-
mented, the case study is the basis for much further work.

µLEAP is executable and therefore has an operational se-
mantics, and all of the examples shown in the paper have
been implemented as µLEAP executable models. The mod-
els have been run against test data that supports the claims
that have been made for the architectural transformations.
A precise analysis of component-based architectures is likely
to require a more declarative semantics than that presented
here; the form of the semantics and the ability to use it as a
basis for reasoning about architecture is left as further work.

In addition, µLEAP lacks a type system that would help
to validate claims of component equivalence. As identified
earlier in this paper, the⊕ pre-component composition oper-
ator is likely to be one of many and therefore more elaborate
case studies will be required in order to identify alternatives.

This paper presents a technological basis for an approach,
as such it lacks a methodological framework within which
the technology can be used. Given an as-is enterprise, there
must be some guidance regarding its representation as a
µLEAP model. Existing component-based approaches might
be used here, however given the aim of using refinement and
transformation using operators, the subsequent identifica-
tion and isolation of an outsourced component is likely to
be facilitated by judicious choice of representation for as-is
structures. Our hypothesis is that use-cases can be used to
identify that slice of an organisation that is pertinent to a
collection of related business functions and that the resulting
collection of information and behaviour can be represented
as a single µLEAP component and subsequently refined into
multiple components that is in correspondence with the as-is
internal structure.

Although the approach as described here is textual, it
could be supported by graphical languages such as UML
where a high-level view of an organization is described as a
collection of components via diagrams and µLEAP is used to
define the internal details for simulation. Such an approach
would require a UML profile to allow components to be ex-
pressed as a combination of sub-models using the operators
defined in this paper.

Our case study has been used to validate the technology
but lacks validation through results that establish its prac-
ticality. For example, without guidance, how easy is it to
get an organisation of components that makes subsequent
transformation difficult or impossible? Given the size of an
organisation, is the technology too detailed, leading to prob-
lems of maintenance and availability of expertise? These
areas are left for further work.

8. REFERENCES
[1] M. Assmann and G. Engels. Transition to

service-oriented enterprise architecture. Software
Architecture, pages 346–349, 2008.

[2] Balbir S. Barn and Tony Clark. Goal based alignment
of enterprise architectures. In Slimane Hammoudi,
Marten van Sinderen, and José Cordeiro, editors,
ICSOFT, pages 230–236. SciTePress, 2012.

[3] D. Barry. Web services and service-oriented
architecture: the savvy manager’s guide. Morgan
Kaufmann Pub, 2003.

[4] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq,
Vivien Quéma, and Jean-Bernard Stefani. The fractal
component model and its support in java. Software:
Practice and Experience, 36(11-12):1257–1284, 2006.

[5] T. Bucher, R. Fischer, S. Kurpjuweit, and R. Winter.
Analysis and application scenarios of enterprise
architecture: An exploratory study. In 10th IEEE
International Enterprise Distributed Object Computing
Conference Workshops, 2006. EDOCW’06, 2006.

[6] A. Buchmann and B. Koldehofe. Complex event
processing. IT-Information Technology, 51(5):241–242,
2009.

[7] Yonghao Chen and Betty HC Cheng. Formalizing and
automating component reuse. In Tools with Artificial
Intelligence, 1997. Proceedings., Ninth IEEE
International Conference on, pages 94–101. IEEE,
1997.

[8] T. Clark, B. Barn, and S. Oussena. LEAP: a precise
lightweight framework for enterprise architecture. In
Arun Bahulkar, K. Kesavasamy, T. V. Prabhakar, and
Gautam Shroff, editors, ISEC, pages 85–94. ACM,
2011.

[9] Tony Clark and Balbir Barn. Goal driven architecture
development using leap. Enterprise Modelling and
Information Systems Architectures, 8(1):40–61, 2013.

[10] Tony Clark and Balbir S. Barn. A common basis for
modelling service-oriented and event-driven
architecture. In Sanjeev K. Aggarwal, T. V.
Prabhakar, Vasudeva Varma, and Srinivas
Padmanabhuni, editors, ISEC, pages 23–32. ACM,
2012.

[11] Tony Clark, Balbir S. Barn, and Samia Oussena. A
method for enterprise architecture alignment. In Erik
Proper, Khaled Gaaloul, Frank Harmsen, and
Stanislaw Wrycza, editors, PRET, volume 120 of
Lecture Notes in Business Information Processing,
pages 48–76. Springer, 2012.

[12] L. David. The power of events: an introduction to
complex event processing in distributed enterprise
systems, 2002.

[13] M. Ekstedt, P. Johnson, A. Lindstrom,
M. Gammelgard, E. Johansson, L. Plazaola, E. Silva,
and J. Lilieskold. Consistent enterprise software
system architecture for the CIO - a utility-cost based
approach. In System Sciences, 2004. Proceedings of
the 37th Annual Hawaii International Conference on
System Sciences (HICSS’04), 2004.

[14] J. Henderson and N. Venkatraman. Strategic
alignment: Leveraging information technology for
transforming organizations. IBM systems Journal,
32(1), 1993.

[15] Jun-Jang Jeng and Betty HC Cheng. Specification
matching for software reuse: a foundation. In ACM
SIGSOFT Software Engineering Notes, volume 20,
pages 97–105. ACM, 1995.

[16] M. Lankhorst. Introduction to enterprise architecture.
In Enterprise Architecture at Work, The Enterprise
Engineering Series. Springer Berlin Heidelberg, 2009.

[17] M. Lankhorst, H. Proper, and J Jonkers. The
Anatomy of the ArchiMate Language. International
Journal of Information System Modeling and Design,
1(1).

[18] B. Michelson. Event-driven architecture overview.
Patricia Seybold Group, 2006.

[19] Juliana Hsuan Mikkola. Modularity, component
outsourcing, and inter-firm learning. R&D

Management, 33(4):439–454, 2003.

[20] K. Niemann. From enterprise architecture to IT
governance: elements of effective IT management.
Vieweg+ Teubner Verlag, 2006.

[21] S. Overbeek, B. Klievink, and M. Janssen. A flexible,
event-driven, service-oriented architecture for
orchestrating service delivery. IEEE Intelligent
Systems, 24(5):31–41, 2009.

[22] C. Riege and S. Aier. A Contingency Approach to
Enterprise Architecture Method Engineering. In
Service-Oriented Computing–ICSOC 2008 Workshops.
Springer, 2009.

[23] G. Sharon and O. Etzion. Event-processing network
model and implementation. IBM Systems Journal,
47(2):321–334, 2008.

[24] J. Spencer et al. TOGAF Enterprise Edition Version
8.1. 2004.

[25] G. Wang and C.K. Fung. Architecture paradigms and
their influences and impacts on component-based
software systems. 2004.

[26] Hironori Washizaki and Yoshiaki Fukazawa. A
technique for automatic component extraction from
object-oriented programs by refactoring. Science of
Computer Programming, 56(1-2):99 – 116, 2005. New
Software Composition Concepts.

[27] D Wisnosky and J. Vogel. DoDAF Wizdom: A
Practical Guide to Planning, Managing and Executing
Projects to Build Enterprise Architectures Using the
Department of Defense Architecture Framework
(DoDAF), 2004.

[28] J. Zachman. A framework for information systems
architecture. IBM systems journal, 38(2/3), 1999.

[29] Francesco Zirpoli and Markus C Becker. The limits of
design and engineering outsourcing: performance
integration and the unfulfilled promises of modularity.
R&d Management, 41(1):21–43, 2011.

