
A framework for model transformation verification

LANO, Kevin, CLARK, T. <http://orcid.org/0000-0003-3167-0739> and
KOLAHDOUZ-RAHIMI, S.

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/12046/

This document is the Accepted Version [AM]

Citation:

LANO, Kevin, CLARK, T. and KOLAHDOUZ-RAHIMI, S. (2015). A framework for
model transformation verification. Formal Aspects of Computing, 27 (1), 193-235.
[Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A framework for verification of model transformations

K. Lano, T. Clark, S. Kolahdouz-Rahimi

Dept. of Informatics, King’s College London; Dept. of Informatics, Middlesex University

Abstract. A model transformation verification task may involve a number of different trans-
formations, from one or more of a wide range of different model transformation languages,
each transformation may have a particular transformation style, and there are a number of
different verification properties which can be verified for each language and style of transfor-
mation. Transformations may operate upon many different modelling languages. This diver-
sity of languages and properties indicates the need for a suitably generic framework for model
transformation verification, independent of particular model transformation languages, and
able to provide support for systematic procedures for verification across a range of languages,
and for a range of properties.
In this paper we describe the elements of such a framework, and apply this framework to a
range of transformation verification problems. Our particular contributions are (i) language-
independent verification techniques based around the concepts of transformation invariants
and variants; (ii) language-independent representation metamodels for transformation spec-
ifications and implementations, (iii) mappings from these representations to the B and Z3
formalisms, (iv) the use of transformation patterns to facilitate verification.
The paper is novel in covering a wide range of different verification techniques for a wide
range of MT languages, within an integrated framework.

Keywords: Model transformation verification; model transformation specification; model transfor-
mation engineering.

1 Introduction

Model transformation (MT) verification is a relatively new field, in which most work has so far been
specific to particular model transformation languages, or to particular verification properties. Such
approaches lead to problems in scenarios where systems consisting of multiple transformations,
possibly defined using different languages, need to be verified. In addition, the reuse of verification
techniques for different transformation languages is hindered by the language-specific nature of
these techniques.

The development of model transformations has often been unsystematic, and focussed upon
the implementation level, disregarding specifications. Common styles of transformation definition,
utilising recursion and implicit operation calls, also hinder verification.

In this paper we define a general language-independent framework for transformation verifica-
tion, and a range of language-independent verification techniques. The framework can be applied to
different transformation languages, and can employ different verification technologies appropriate
for establishing particular properties. The framework provides a systematic organisation for the
process of transformation verification, and defines a uniform semantic basis for verification.

The elements of the framework are:

– Metamodels to represent modelling languages, transformation specifications and transformation
implementations (Section 2).

– Transformation verification properties formalised in terms of this framework (Section 3).
– Language-independent verification techniques incorporated into the framework (Sections 4, 5,

7, 8).

In sections 9, 10 and 11 we illustrate the concepts using extracts from three verification case studies,
of (i) a refinement transformation (code generation of Java from UML) using UML-RSDS [49]; (ii) a
re-expression transformation using ETL [28]; (iii) a refactoring transformation (removal of attribute
clones from a class diagram) using GrGen.NET [26]. Section 12 gives an evaluation and section 13
compares related work.

2 Metamodels for model transformations

In this section we define metamodels for modelling languages, transformation specifications and
implementations, and show how languages, specifications and implementations for transformations
can be given formal mathematical interpretations, in order to support transformation verification.

2.1 Representation of languages

Transformations manipulate models or texts which conform to some metamodel or syntax definition.
There may be several input (source) models used by a transformation, and possibly several output
(target) models. A transformation is termed update-in-place if a model is both an input and output,
otherwise it is a separate-models transformation.

The key concepts for describing the effect of transformations at a high level are therefore lan-
guages and instances of languages (ie., models of the languages). Languages can be specified in
many different ways, eg., by UML class diagrams, by BNF syntax definitions, etc. Here we will
assume that UML class diagrams are used, together with OCL constraints. These form the concrete
syntax of language descriptions. For example, Figure 1 shows a simple language with two entity
types A and B , integer-valued attribute features of each, and a bidirectional association between
them. There is an explicit constraint that a.x > 0 for each a : A, and an implicit constraint that
the association roles ar and br are mutually inverse:

A→forAll(a | a.x > 0)

and

A→forAll(a | B→forAll(b | a.br→includes(b) equiv b.ar→includes(a)))

For convenience, in the following we will use the notation x : s to abbreviate the OCL expression
s→includes(x).

Fig. 1. Example language

In addition to such descriptions, we also need an abstract syntax for languages, ie., a metamodel
for languages, and a mathematical equivalent of the languages, in order to define concepts of proof
and satisfaction relative to a language.

Figure 2 shows a generic metamodel (termed M4) which can serve directly or indirectly as a
metamodel for a wide range of modelling languages. The metamodel is also self-representative. Con-
straints on M4 are that (i) general is non-cyclic, (ii) mult1upper = −1 or mult1lower ≤ mult1upper
and likewise for mult2, (iii) type : PrimitiveDataType implies mult2upper = 1 and mult2lower = 1
(no multi-valued attributes), (iv) names of entity types are unique, (v) names of data features owned
by the same entity type are unique. Further restrictions on modelling languages could be specified,
eg., no multiple inheritance. composite ends are interpreted as enforcing deletion propagation from
objects of the composite to the contained objects. An association end is mandatory if it has lower
bound ≥ 1.

Fig. 2. Minimal metamodel (M4) for modelling languages

Our example language can be represented as elements

A : EntityType B : EntityType
x : DataFeature y : DataFeature ar : DataFeature br : DataFeature
Integer : PrimitiveDataType
A.ownedFeatures = {x , br}
B .ownedFeatures = {y , ar}
x .type = Integer y .type = Integer
ar .type = A br .type = B

of an instance of M4, together with instances c1, c2 of a constraint metatype to represent the
constraints.

The metamodel for languages, based on M4, is shown in Figure 3.

Fig. 3. Language metamodel

Many variations on constraint languages could be used, Figure 4 shows one possible metamodel
for constraint expressions, which is used in UML-RSDS [49]. BinaryExpression, BasicExpression,
UnaryExpression and CollectionExpression all inherit from Expression.

To support verification, we need to be able to define a proof theory and (logical) model theory wrt
given languages, hence we need to associate a formal first order language and logic to each instance
of M4. Table 1 defines how a formal first-order set theory (FOL) language LL can be associated
to instances L of M4. The table defines how different forms of elements in the M4 metamodel
correspond to conceptual modelling elements, and how they are formalised in first-order set theory.

If mult1upper = 1 and mult1lower = 1 or mult1lower = 0 (ie, multiplicity 0..1 at the source end
of the feature) for an attribute, it is an identity (unique) attribute, ie., a primary key in relational

Fig. 4. Example constraint language

Modelling concept M4 representation Formal semantics

Entity type E Element of EntityType Type symbol E , the
set of instances of E

Concrete entity Element of EntityType
type E with isAbstract = false

Abstract entity Element of EntityType E = E1 ∪ ... ∪ El
type E with isAbstract = true where E1, ..., El are

all direct subtypes of E

Primitive type T Element of Mathematical type,
PrimitiveDataType Z, B, R, S, etc.

Single-valued DataFeature element with Function symbol
attribute att : Typ mult2upper = 1, mult2lower = 1 att : E → Typ′

of E and type ∈ PrimitiveDataType Typ′ represents Typ

Single-valued role DataFeature element with Function symbol
r of E with target mult2upper = 1, mult2lower = 1 r : E → E1
entity type E1 and type ∈ EntityType

Unordered many- DataFeature element with Function symbol
valued role r of E mult2upper ̸= 1 or mult2lower ̸= 1 r : E → F(E1)
with target and isOrdered = false and
entity type E1 type ∈ EntityType

Ordered many-valued DataFeature element with Function symbol
role r of E with mult2upper ̸= 1 or mult2lower ̸= 1 r : E → seq(E1)
target entity and isOrdered = true and
type E1 type ∈ EntityType

Supertype E1 of Element of Type E1 with
E E .general E ⊆ E1

Table 1. Correspondence of M4 and first-order logics

data terminology. A −1 multiplicity value represents ∗ multiplicity. An expression is either single-
valued (denoting a single value of a primitive data type, or a single instance of an entity type),
or many-valued, denoting a collection. Collections according to this metamodel are either ordered
(sequence-valued) or unordered (set-valued). Bags and ordered sets can be defined in terms of
sequences. Notice that an optional association end (with mult2lower = 0 and mult2upper = 1)
is formally represented as a set (or sequence) of size 0 or 1. Thus null elements are in this case
represented as empty collections, as in the OCL standard [44]. A denumerable type Object OBJ
is included in each LL to represent the set of all possible object references1. A finite set objects ⊆
Object OBJ represents the set of all existing objects at any point in time. Each entity type E has
E ⊆ objects. Additional axioms, eg., that distinct entity types unrelated by subtyping have disjoint
extents, could be assumed if required.

For simplicity, we will not consider the cases of OCL invalid or null expression values in this
paper, and we will operate entirely within two-valued logic both for OCL and its logical representa-
tions. As argued in [29], this is a pragmatic choice which greatly simplifies analysis of specifications,
and is adequate in most cases. Transformation specifiers should separately ensure that invalid
expression evaluations cannot occur in their transformations, using the definedness conditions of
expressions (Section 5). Instead of defining operators such as select or collect by iterators, we will
give these a conventional mathematical definition as set-comprehension expressions. Ultimately all
the standard numeric, string and collection function symbols and predicate symbols can be derived
from = and set membership (: or ∈).

We use some minor extensions of OCL. For entity types E with one attribute id designated as an
identity attribute (primary key), the abbreviation E [v] is introduced to represent E .allInstances()→select(id =
v)→any(), if v is single-valued, and to represent E .allInstances()→select(id : v) if v is collection-
valued. E .id denotes E .allInstances()→collect(id). The finite range of numbers from n to m in-
clusive is denoted Integer .subrange(n,m). The operator v→subcollections() gives the set of finite
subsets of a set v . The operator v→isDeleted() expresses that the object or object collection v are
removed from the model, ie., that objects→excludes(v) for an object v , it is inverse to oclIsNew
[44]. Operators s→intersectAll(e) and s→unionAll(e) form distributed intersections and unions,
and transitive closure of a many-valued self-association role end r : E → Set(E) is defined2 as
x .r→closure() = Integer .subrange(0,E .size)→unionAll(n | x .rn).

Constraints in this version of OCL are mathematically represented as first-order set theory
axioms in LL, for each language L. Tables 2 and 3 show some examples of semantic interpretations
of OCL logical operators, collection types and operators. In total, we have defined a mathematical
semantics for 33 OCL operators on non-collection types, and for 36 OCL collection type operators
[49].

Here we adopt the notation for set theory used by the B AMN formalism [31]. OCL sets are
represented as mathematical sets, OCL sequences s are represented as maps from 1..s.size to their
set of elements. Strings are also represented as sequences, of integers representing characters, or as
a primitive type.

E [e/x] denotes the substitution of e for free occurrences of x in E (avoiding free variable cap-
ture). sq↑i for sequence sq is the initial subsequence of sq with domain 1..i , sq↓i is the subsequence
of the elements with index > i .

For our example language of Figure 1 we have a corresponding formal first-order set theory
language LL, which has sort symbols (A,B), function symbols (x , y , ar , br), and axioms

∀ a : A · x (a) > 0
∀ a : A; b : B · b ∈ br(a) ≡ a ∈ ar(b)

Therefore we can operate simultaneously with three corresponding views of a language: (i) as a
set of entity types and their data features and specialisation relations, defined by a class diagram,
with OCL constraints defining restrictions on these elements; (ii) as instances of M4, together with
abstract syntax representations of the constraints; (iii) as mathematical languages in first-order set

1 As in [11], we could include a nullid reference in this type to represent OCL null .
2 The undefinability of finite transitive closure in pure predicate calculus [5] does not apply to set theory.
x .r0 = {x}, x .r1 = x .r , x .r2 = x .r .r , etc.

OCL Term e Condition Semantics e ′

P and Q P ′ ∧ Q ′

P or Q P ′ ∨ Q ′

P implies Q P ′ ⇒ Q ′

e→forAll(x | P) ∀ x : e ′ · P ′

e→exists(x | P) ∃ x : e ′ · P ′

e→exists1(x | P) ∃1 x : e ′ · P ′

Integer .subrange(a, b) a, b : Integer a ′..b′

Set{e1, ..., en} {e1′, ..., en ′}
Sequence{e1, ..., en} [e1′, ..., en ′]
s→size() set or sequence s cardinality card(s ′)
s→subcollections() set s F(s ′)
s→at(i) sequence s s ′(i ′)
s→includes(x) set s x ′ ∈ s ′

s→excludes(x) set s x ′ ̸∈ s ′

s→intersection(t) sets s, t s ′ ∩ t ′

s→union(t) sets s, t s ′ ∪ t ′

s→includes(x) sequence s x ′ ∈ ran(s ′)
s→excludes(x) sequence s x ′ ̸∈ ran(s ′)
s→including(x) set s s ′ ∪ {x ′}
s→excluding(x) set s s ′ − {x ′}
s→asSet() s set s ′

s→asSet() s sequence ran(s ′)
s→includesAll(t) sets s and t t ′ ⊆ s ′

s→includesAll(t) sequences s and t ran(t ′) ⊆ ran(s ′)
s→excludesAll(t) sets s and t s ′ ∩ t ′ = {}
s→excludesAll(t) sequences s and t ran(s ′) ∩ ran(t ′) = {}
s→sum() set s sum of elements of s ′

s→sum() sequence s, card(s ′) = n s ′(1) + ...+ s ′(n)
s→isUnique(x | e) set s card(s ′) = card({e ′[v/x] | v ∈ s ′})

Table 2. Semantic mapping for OCL logic and collection expressions

OCL Term e Condition Semantics e ′

objs→select(x | P) set objs {v | v ∈ objs ′ ∧ P ′[v/x]}
objs→reject(x | P) set objs {v | v ∈ objs ′ ∧ ¬ P ′[v/x]}
objs→collect(x | e) set objs bag {e ′[v/x] | v ∈ objs ′}
objs→collect(x | e) sequence objs {i 7→ e ′[objs ′(i)/x] | i ∈ dom(objs ′)}
objs→intersectAll(x | e) set-valued e

∩
(objs→collect(x | e))′

objs→unionAll(x | e) set-valued e
∪
(objs→collect(x | e))′

s→subSequence(i , j) sequence s (s ′↑j ′)↓(i ′ − 1)

s→insertAt(i , x) sequence s (s ′↑(i ′ − 1))a [x ′]a (s ′↓(i ′ − 1))
s→count(x) sequence s card(s ′

∼
(| {x ′} |))

s→indexOf (x) sequence s min(s ′
∼
(| {x ′} |))

Table 3. Semantic mapping for selection expressions

theory, together with axioms in these languages representing the mathematical semantics of the
constraints.

Assuming the use of an OCL-like language as a constraint language, the sets of syntactically
valid expressions Exp(L) and sentences Sen(L) in the constraint language based upon a language L
can be determined. Exp(L) in this paper denotes the set of all expressions in Figure 4 over L. It can
also be regarded as a set of expressions and formulae of LL, via the above semantic interpretation
of expressions3. The terms occurring in elements of Exp(L) and Sen(L) are always based on finite
collections, ie., for each expression e→select(x | P), e→forAll(x | P), etc., e is finite.

We will denote a language L by a metamodel ΣL which is an instance of M 4, and a set of
(OCL or FOL) sentences ΓL over ΣL defining restrictions on this metamodel: L = (ΣL, ΓL), where
ΓL ⊆ Sen(L).

For convenience, we write a language metamodel ΣL textually as a signature: a definition of a
tuple (E1, ...,Ek) of entity types, and of a tuple (f1, ..., fl) of data features (attributes and association
role ends) on these entity types, together with language constraints on these elements, which are
included in ΓL. We usually assume the inclusion of the standard primitive types Integer , Boolean,
String and Real in each language, so these will not be listed in ΣL.

The metaclass Structure in Figure 3 represents the concept of a structure or interpretation of a
language: such structures will have concrete representations as sets and maps for each entity type
and feature of their language. Model transformations will operate on such structures, modifying
them in-place or producing new structures from their data.

Structures for a language L can be represented as tuples m = ((Em
1 , ...,E

m
k), (f m1 , ..., f ml)) which

give interpretations of each element of ΣL:

1. For each entity type Ei of L, Em
i is a finite set (of atomic, unspecified, object identities)

representing the extent Ei .allInstances() of Ei . For abstract Ei , E
m
i is the union of the Fm

extents of the direct subtypes F of Ei .
2. For an attribute fj : Typ of Ei , f

m
j is a map of type Em

i → Typ′ from its source entity type
interpretation to a domain of values for its target type.

3. A single-valued (1-multiplicity) association end fj : F of Ei is interpreted by a map f mj : Em
i →

Fm .
4. An unordered many-valued (ie., not 1-multiplicity) association end fj : Set(F) of Ei is inter-

preted by a map f mj : Em
i → F(Fm).

5. An ordered many-valued association end fj : Sequence(F) of Ei is interpreted by a map f mj :
Em
i → seq(Fm).

6. If E is a subtype of F then Em ⊆ Fm .

There is a notion of structure isomorphism (Appendix A): m ≃ n means that the structures are
semantically indistinguishable by sentences of L.

A structure m of L can be considered to be an instance of ΣL, so we write m : L to say that m
is a structure for L. Mod(L) denotes the set of structures for L. This can be considered also as the
set of (logical) interpretation structures for the mathematical language LL.

A structure m of L is termed a (semantic) model of L if it satisfies all axioms in ΓL (ie., all the
implicit and explicit language constraints of L):

∀φ · φ ∈ ΓL ⇒ m |= φ

where |= ⊆ Mod(L)×F(Sen(L)) is the satisfaction relation of L (equivalently of LL). If L = S ∪T
for disjoint languages S and T , satisfaction over pairs (m,n) of structures m of S and n of T is
defined based on interpreting S language elements in m and T language elements in n: (m,n) |= φ
for φ ∈ Sen(L). Likewise for tuples of structures and languages.

A deduction relation ⊢ ⊆ F(Sen(L)) × Sen(L) is given by the usual deduction rules for
first-order logic with equality for LL. This is related to |= by the property of soundness:

∆ ⊢ φ ⇒
(∀m : Mod(L) ·m |= ∆ ⇒ m |= φ)

3 In a first-order language terms, built from function symbols, +, →select , etc., are distinguished from
formulae or predicates, which have an outermost operator as a logical operator or predicate symbol, ∈,
=, <, etc. A sentence is a formula without free variables.

for ∆ ⊆ Sen(L), φ ∈ Sen(L).
The converse relationship of completeness will usually hold:

(∀m : Mod(L) ·m |= ∆ ⇒ m |= φ) ⇒ ∆ ⊢ φ

for finite ∆ ⊆ Sen(L), φ ∈ Sen(L).
We discuss this issue in Appendix B.

2.2 Representation of transformations

At the specification level, the effect of a transformation can be characterised by a collection of
mapping specifications, which relate model elements of one or more models involved in the trans-
formation to each other [25]. These mapping specifications define the intended relationships which
the transformation should establish between the input (source) and output (target) structures of
the transformation, at its termination. That is, they define the postconditions Post of the transfor-
mation.

In the case of in-place transformations, the initial values of entity types and features can be
notated as E@pre, f@pre in postconditions to distinguish them from their post-state values.

For example, an in-place transformation τ on the language L of Figure 1 could be specified by
a mapping specification constraint R on a single (input and output) model m : L. R specifies that
there are B objects corresponding to each initial A object:

A@pre→forAll(a | B→exists(b | b.y = a.x@pre ∗ a.x@pre and a.br→includes(b)))

This is a postcondition of the transformation: a predicate which should hold at its termination.
Since neither A or x are updated by τ (ie., they are not in the write frame wr(R) of R, Section 5),
the @pre suffix can be omitted, and R written more simply as:

A→forAll(a | B→exists(b | b.y = a.x ∗ a.x and a.br→includes(b)))

A precondition could also be expressed, eg., that B has initially no instances:

B = Set{}

We adapt the mapping metamodel of [25] to represent such transformation specifications (Figure
5).

Fig. 5. Transformation specification metamodel

In this figure, Mapping , TransformationSpecification, ModelEnd , and MappingEnd are sub-
classes of NamedElement . Transformation specifications in declarative transformation languages
can be expressed in this metamodel, using abstraction techniques such as those defined for TGG

(triple graph grammars) and QVT-R in [14] and for ATL in [13]: these techniques express the in-
tended effect of transformations by a metamodel plus OCL constraints describing the poststate of
the transformation. Transformations in hybrid and imperative languages should also be given pre
and postcondition specifications, to provide a basis for their verification. In turn formal represen-
tations of transformation specifications can be generated from representations in this metamodel,
in a range of formalisms such as B [36], Z3 [51] or Alloy [2], to support semantic analysis. The
metamodel could be extended to include generalisation relations between mappings, as in ETL [28].

The rules.relation constraints express the postconditions Post of the transformation: all of these
constraints should be true at termination of the transformation. Typically each mapping relation
constraint Cn ∈ Post has the form of an implication

SCond implies Succ

forall-quantified over elements (the source mapping ends s : Si) of the source models. The application
conditions ACond of the mapping are then SCond and not(Succ), ie., the mapping is applicable
when its assumptions are true and when it is not already established. Analysis of the determinacy
and definedness of the mappings can be carried out by syntactic analysis of their relation constraints,
as described in Section 5.

The assumptions express the preconditions Asm of the transformation. The invariants define
properties Inv which should be true initially, and which should be preserved by each computation
step of the transformation: they serve to restrict the possible implementations of the transformation
to those which do maintain Inv . The postconditions, preconditions and invariants can be expressed
in the disjoint union of the languages parameters.language involved in the transformation, with
pre-state versions of language elements also being used in the case of parameters which are both
inputs and outputs.

A transformation τ preserves structures p ∈ τ.parameters which have p.modifiable = false,
otherwise τ may change the data of an actual structure supplied as the value for p. If a mapping
end is modifiable, so is its structure:

modifiable = true implies model .modifiable = true

is an invariant of MappingEnd . The entity type of a mapping end must also belong to the language
of the model end of the mapping end:

type : model .language.entityTypes

is an invariant of MappingEnd . Target models have modifiable = true, source models are only
modifiable if they are also target models.

Systems of transformations can be represented by UML activity diagrams, in which the trans-
formations are executable activity nodes and the structures or models they operate on are object
(data) nodes. Eg., Figure 6 shows a sequential composition of two transformations. An object flow
from τ to n : T indicates that n is a modifiable parameter of τ .

Fig. 6. Sequential composition of transformations

Transformation implementations are defined by a behavior , such as a UML Activity , in which
RuleImplementation instances are the executable activity nodes. Each rule implementation is for
a specific mapping, and itself has an activity or other behaviour defining its actions (Figure 7).
A key concept for both graph-transformation and model-transformation languages is the idea of a

computation step or transformation step: the application of a specific rewrite rule or transformation
rule to a specific matching location in a graph or to specific matching element(s) in a model. This
is also modelled as a behaviour in Figure 7: each rule implementation will usually be based upon
some iteration of the step for the mapping that it implements.

Fig. 7. Transformation implementation metamodel

This metamodel can be used to represent rules in hybrid or imperative languages, eg., GrGen
[26], ATL [24], ETL [25] or Kermeta [17]. Instead of creating a metamodel for each different trans-
formation language (ETL, ATL, GrGen, etc), we use the common implementation metamodel to
express and reason about implementation-level properties, independently of languages. Mappings
need to be defined between these languages and a suitable general behaviour representation, we
consider that this is feasible because model transformation languages have many common aspects,
such as lookup mechanisms using traces. We illustrate how such mappings can be defined in Sections
10 and 11.

The behavior of an implementation I of a transformation τ will determine the order in which the
δ ∈ RuleImplementation will be executed. Each δ in turn has an internal behaviour, usually defined
in terms of computation steps δr (ss) which attempt to establish the specification mapping r =
δ.applies for particular elements ss in the source domains of the mapping. Thus δ.computationStep =
δr .

For example, the constraint R would have individual computation steps δR(a) for a ∈ A, each
step creates a new b ∈ B and sets b.y = a.x ∗ a.x and adds b to a.br (and implicitly adds a to
b.ar), so establishing the quantified formula of R for a.

Such constraint applications δr (ss) are the computation steps both of the implementations δ of a
specific Cn ∈ Post and of the overall implementation I of a transformation τ . A partial computation
of I for τ is a finite sequence sq of computation steps of I , such that sq has a form permitted by
the behaviour of I , and such that Inv holds in the initial structures (m1, ...,mq) supplied as input
parameters of τ , and Inv holds in the final state of sq and after every initial subsequence of sq .

A completed computation of I from initial structures (m1, ...,mq) supplied as the parameter
values of τ , to terminal structure values (n1, ...,nq) for these parameters, will be denoted

(m1, ...,mq) −→τ,I (n1, ...,nq)

If parameter i is non-modifiable, ni = mi .
A completed computation from (m1, ...,mq) to (n1, ...,nq) for τ ∈ TransformationSpecification

where I .specification = τ , consists of a finite sequence sq of computation steps of I , such that sq has
a form permitted by the implementation algorithm of I , Inv is true initially and at all intermediate
states (ie., after any initial subsequence of sq), and where no further steps are permitted by I from
(n1, ...,nq), and such that no shorter initial subsequence of sq has this property.

For our example transformation, a completed computation according to the standard bounded
loop implementation of R will be a sequence [δR(a1), ..., δR(ap)] consisting of all the computation
steps for the distinct ai ∈ A in the source model, each ai processed exactly once, in an arbitrary
order. A partial computation would be any initial subsequence of such a sequence.

For existing transformations, the computation steps and rule implementations may be defined
using any means available in the transformation language (as in case studies 2 and 3 below). Alter-
natively, for new transformations, the steps, rule implementations and the overall implementation
can be derived systematically from the transformation specification (Section 8).

The notation

(m1, ...,mq) −→τ (n1, ...,nq)

means that there is a completed computation (m1, ...,mq) −→τ,I (n1, ...,nq) for some implementa-
tion I of τ .

We use the following program-like activity language for the language-independent behaviour
description of hybrid and imperative transformations.

The concrete syntax BNF of the language is as follows:

< statement > ::= < loop statement > | < creation statement > |
< conditional statement > | < sequence statement > |
< basic statement >

< loop statement > ::= “while” < expression > “do” < statement >
“invariant” < expression > “variant” < expression > |
“for” < expression > “do” < statement >

< conditional statement > ::= “if” < expression > “then” < statement >
“else” < basic statement >

< sequence statement > ::= < statement > “;” < statement >
< creation statement > ::= < identifier > “:” < type name >
< basic statement > ::= < basic expression > “:=” < expression > | “skip” |

“return” < expression > | “(” < statement > “)” |
< call expression >

This defines a subtype Statement(L) of Behavior , when based on the expressions Exp(L) of
language L. The semantics of these statements is given by the weakest-precondition operator [] :
Statement(L)×Exp(L) → Exp(L), using standard definitions, as for the B Generalised Substitution
language [31]. For example (using standard mathematical notation for expressions on the RHS):

[obj .f := e]P ≡ P [(f ⊕ {obj 7→ e})/f] for single object obj , writable feature f
[objs.f := e]P ≡ P [(f ⊕ (objs × {e}))/f] for set objs,writable f
[x := e]P ≡ P [e/x] for variable or entity type x
[(x : E ; S)]P ≡

∀ x · x : Object OBJ − objects ⇒ [E := E ∪ {x};
objects := objects ∪ {x}; S]P variable x , concrete entity type E

[if E then S1 else S2]P ≡ (E ⇒ [S1]P) ∧ (¬ E ⇒ [S2]P)
[S1; S2]P ≡ [S1]([S2]P)
[for x : e do S (x)]P ≡ [S (e1)]...[S (en)]P if e = Sequence{e1, ..., en}
[for x : e do S (x)]P ≡

∧
sq∈serial(e)[for x : sq do S (x)]P otherwise

Object OBJ is a denumerable type of all possible object references, objects maintains the set of
object references of all existing objects. In the clause for creation of x : E , updates F := F ∪ {x}
for each supertype F of E will also be included.

In the last clause, a conjunction is taken over all the possible serialisations of e at the start of
the loop:

serial(s) = {sq : 1..s.size → s | ran(sq) = s}

for a set s.

In practice, a bounded loop of this kind can be analysed by showing that the individual S (x)
are order-independent in their execution for distinct x , and hence only one serialisation needs to be
analysed, since all are semantically equivalent (Section 8).

For unbounded loops, we use the inference:

(I ∧ E ⇒ [S]I) ∧
(I ∧ ¬ E ⇒ P) ∧
(I ∧ E ⇒ v ∈ N) ∧
(∀ γ : N · I ∧ E ∧ v = γ ⇒ [S](v < γ)) ⇒

[while E do S invariant I variant v]P

For operation calls, call-by-value-result semantics is used.
In the remainder of the paper we will consider transformations which are either separate-models

transformations with one source and one target: τ : S → T , or update-in-place transformations on
a single model: τ : S → S . The verification techniques we define can be used in the same way for
transformations with multiple input and output languages.

For separate-models transformations, in order to relate properties of a source model to those
expressible in a target model, we use the concept of a language morphism or interpretation. This is
a mapping χ : S → T from the source language S to a target language T , consisting of a signature
morphism χ : ΣS → Exp(T) of entity types of S to set-valued expressions of T , and features of S
to features or expressions denoting maps of the same arity and of corresponding types of T , and
induced morphisms Sen(χ) : Sen(S) → Sen(T) and Mod(χ) : Mod(T) → Mod(S) which use χ
to interpret sentences of S as sentences of T , and to interpret structures of T as structures for
S . Sen(χ)(φ) is written as χ(φ) in the following. There is a category LANG of languages and
language morphisms, and a category PLANG of languages and partial language morphisms (where
χ : ΣS 7→ Exp(T)).

3 Transformation verification properties

A large number of verification properties have been proposed for model transformations, eg., [14,
36]. In this section we formalise some key properties using the framework of Section 2, and in the
following sections we identify techniques and technologies to establish these properties.

For separate-models transformations τ with one modifiable target parameter n : T and one
preserved source m : S , completed computations of τ will be of the form

(m,n0) −→τ (m,n)

where n0 is a default initial model which is usually the empty T structure ∅4. We say that n can
be produced from (m,n0) by τ if there is such a completed computation.

Correctness properties can either be considered for one specific implementation I of τ , or for all
possible implementations which maintain the invariants Inv .

Syntactic correctness of τ can be formalised as:

(m,n0) |= Asm ∪ ΓS ⇒ n |= ΓT

for each structure m of S , where n : T can be produced from (m,n0) by (any implementation of)
τ , and Asm are the assumptions of τ . Ie., if m is a model of S , any structure n produced by τ from
m should be a model of T . If restricted to a specific implementation I , syntactic correctness means
that structures produced from models of S by I should be models of T .

τ is said to be semantically preserving relative to a language interpretation χ : S → T [36] if:
m |= φ ⇒ n |= χ(φ) for n : T produced from m : S , n0 : T by (any implementation of) τ ,
and for φ ∈ Sen(S). Preservation may only be required for properties in a subset Pres of Sen(S),
and/or for (m,n0) |= Asm. Semantic preservation by a specific implementation I of τ is formulated
similarly.

τ is a semantic equivalence if m |= φ ≡ n |= χ(φ) for n ∈ Mod(T) produced from m ∈ Mod(S),
n0 by τ , and for φ ∈ Sen(S).5

4 The structure where each entity type of T is interpreted by the empty set.
5 The morphism χ will be an institution morphism [21] if τ has Mod(χ) as a right inverse, and τ is a
semantic equivalence.

Semantic correctness of an implementation I of τ means that the implementation establishes
the specified postconditions Post of τ : (m,n0) |= Asm ⇒ (m,n) |= Post for n : T produced from
m : S and n0 : T by I .

Model-level semantic preservation means that the internal semantics of source models is pre-
served, possibly under some interpretation ζ, by τ . Let semL : Mod(L) → Sem(L) be the semantics-
assigning functions for models of languages L = S , L = T , and ζ : Sem(S) → Sem(T), then
model-level semantics preservation means that:

ζ(semS (m)) ≈ semT (n)

for some relation ≈ of equivalence on the semantic domain, and where (m,n0) |= Asm and
(m,n0) −→τ (m,n) or (m,n0) −→τ,I (m,n). This can be alternatively expressed as a commuting-
diagram property [39].

In many cases the semantics can be formalised within LS and LT , so that model-level semantic
preservation can be reduced to language-level semantic preservation relative to a suitable χ inter-
pretation, or to invariant preservation of a formula expressing the commuting diagram property.
For example, if the models are state machines, their sets of input event traces can be formalised in
FOL as sets of sequences and preservation of such sets by τ can be expressed as preservation of a
suitable invariant formula φ. Section 11 gives an example of such reasoning.

A transformation τ is confluent, if for every m : S , and n, n ′ which can be produced by a
completed computation of τ from (m,n0), n ≃ n ′. Likewise for specific implementations I of τ .

τ (or an implementation I of τ) is terminating if for each model m of S , (m,n0) |= Asm, every
partial computation of τ (I) from (m,n0) has a completed computation extending it.

Similar formalisations can be given for update-in-place transformations. A transformation τ
operating on a single model of language S can be considered to have computations

(m,m) −→τ (m,n)

where we implicitly retain the initial model m : S in order to express the effect of the transformation
by predicates relating the initial values of entity type extents and features (denoted by E@pre and
f@pre in the transformation mapping relations) to their final values (denoted by E and f).

Syntactic correctness of such τ can be formalised as:

m |= Asm ∪ ΓS ⇒ n |= ΓS

for each structure m of S , where n : S can be produced from m by τ , and Asm are the assumptions
of τ .

Semantic correctness of an implementation I of τ means that I establishes the specified post-
conditions Post of τ : m |= Asm ⇒ (m,n) |= Post for n : S produced from m : S by I , where
pre-state terms in Post are evaluated in m.

The definitions of model-level semantic preservation, termination and confluence are as for the
separate-models case.

4 Transformation verification techniques

Four main distinct approaches to model transformation verification have been used or proposed:

1. Static analysis by syntactic analysis of the transformation source text, eg., to identify data-
dependency relations between variables or rules [36].

2. Constructing counter-examples to properties, using model checkers or satisfaction checkers [2,
14, 12, 13].

3. Proving properties using automated or interactive theorem-provers [36, 20].
4. Correct-by-construction synthesis of transformations from specifications [45, 38].

Both 2 and 3 may involve mapping the transformation text to a formalism which supports the se-
mantic analysis: the semantic model is termed a verification model or transformation model [36]. The
semantic mapping should itself be a semantics-preserving or semantic equivalence transformation,
in the sense of institution co-morphisms [41].

Our verification framework is based upon using the process of Figure 8 to express a range of dif-
ferent transformation languages in the transformation specification and implementation metamod-
els of Section 2 and then mapping these representations to verification formalisms. This approach
means that only one semantic mapping needs to be defined and verified for each target formalism,
rather than semantic maps for each different transformation language and target formalism.

Fig. 8. Verification process

We can distinguish between single-state formalisations, which only define a formal semantic
model of one state of a transformation, usually a terminal state [13], and multi-state approaches
which formalise the possible sequences of execution of the transformation [20]. The former can be
applied to analyse syntactic correctness and other end-state properties, whilst the latter can be
used to prove invariance of properties, termination and confluence.

Syntactic analysis is usually the least resource-expensive of the approaches, but may not be
able to establish all properties. Counter-example analysis is a specification-based version of testing,
and can detect flaws but not establish properties for all cases. Proof approaches in contrast can
establish, in principle, correctness of a transformation for all possible valid input models, but such
approaches require substantial effort. Finally, correctness-by-construction approaches can ensure
correctness for transformations which are specified using restricted forms of transformation rules.
They may also require proof effort to establish that necessary specification properties hold.

Manual or tool-supported proof of verification properties requires a clear organisation of ver-
ification steps and allocation of these steps to appropriate tools. We have found the concept of
a transformation invariant predicate Inv to be of key importance in connecting the properties of
transformation computations to required properties of transformation specifications. For update-in-
place transformations such as refactorings, the transformation invariant relates intermediate states
produced during the transformation to the initial state, and supports proof, by induction over
transformation steps, that certain properties are preserved. Termination proof for such transfor-
mations usually requires some transformation variant function Q to be defined: a non-negative
integer-valued expression whose value is strictly decreased by each transformation step. Confluence
follows if the condition Q = 0 is only possible in a unique (up to isomorphism) terminal state of the
transformation reachable from each given initial state. For transformations with separate source
and target models, the transformation invariant and postcondition can support proof of syntactic
correctness and semantic preservation by relating target elements to the source elements they are
derived from, and this correspondence of elements, together with the source language theory ΓS ,
enables the deduction of target model properties from source model properties. The invariant, to-
gether with assumptions about the initial state of the target model, is particularly useful to show
conservativeness of a transformation: that no extraneous elements or properties have been created
in the target model. To show semantic correctness of a particular implementation I , we derive the
postcondition Post of the transformation from the combination of Inv and the fact that in the
terminal state of the transformation, no further computation step is applicable according to I ’s
behaviour (and Q = 0 for update-in-place transformations).

Table 4 summarises how particular properties can be derived using manual or tool-supported
proof, using transformation invariants and variants. Asm0 denotes the Asm constraints which are
predicates of S only. For update-in-place transformations both Inv and Post may relate the pre-state
values f@pre, E@pre of features and entity type extents to their post-state values f , E .

Separate models τ : S → T Update-in-place τ : S → S

Semantic Asm0, Inv, ΓS , Post, Asm@pre, Inv, ΓS , Post,
preservation Pres ⊢ χ(φ) Q = 0, Pres@pre ⊢ χ(φ)
of φ ∈ Pres

Syntactic Asm0, Inv, ΓS , Post ΓS is invariant
correctness ⊢ φ for φ ∈ ΓT

Semantic Asm0, Inv, ΓS , no step Asm@pre, Inv, ΓS , Q = 0,
correctness is applicable ⊢ Post no step is applicable ⊢ Post

Termination Implementation uses Q is a variant
bounded loops

Confluence Order-independence of Unique Q = 0 state
rule applications

Invariance of Asm0, Inv, ΓS ⊢ Asm@pre, Inv, ΓS ⊢
Inv ∀ s : Si · ECond ⇒ [δi(s)]Inv ∀ s : Si · ECond ⇒ [δi(s)]Inv

Each computation step δi(s : Si) Each computation step δi(s : Si)
Table 4. Proof techniques for verification properties

In the last case, ECond is an execution condition expressing restrictions on when the computa-
tion step can be executed in the transformation implementation I of τ , eg., it can express that the
relation of some preceding mapping is true. Inv must also hold in the initial state, based on Asm0
and ΓS for separate-models transformations, and Inv [v/v@pre] must hold based on Asm and ΓS

for update-in-place transformations.
An alternative approach for proving confluence is direct reasoning that any two distinct trans-

formation steps commute with each other, ie., [α; β]P ≡ [β; α]P for any predicate P .
These proof techniques can be related to the model-based formulations of the verification

properties of Section 3 via the soundness condition linking ⊢ and |=. For example, for syntactic
correctness, if the proof of line 2 of Table 4 for a separate-models transformation τ holds, and
(m,n0) |= Asm ∪ ΓS , and

(m,n0) −→τ (m,n)

then (m,n) |= Asm0∪Inv∪ΓS∪Post by invariance of Inv , semantic correctness, and the preservation
of the data of S , so, by Table 4, (m,n) |= ΓT and n |= ΓT , as required.

Proof that Inv is invariant is carried out using inductive reasoning that each computation step
of the transformation preserves Inv , if executed according to the transformation implementation
algorithm. Additionally, Inv must be true initially. Likewise, the variant property of Q can be
proved by cases over computation steps.

The general scheme of proof-based verification is therefore:

1. Prove invariance of Inv , and (if necessary) the variant property of Q .
2. Use these to deduce semantic preservation, syntactic correctness and semantic correctness.
3. Use syntactic analysis or properties of Q to show termination and confluence.

We describe syntactic analysis techniques for our framework in Section 5, counter-example tech-
niques in Section 6, proof techniques in Section 7, and correctness-by-construction techniques in
Section 8.

5 Syntactic analysis of transformation specifications and
implementations

Syntactic analysis uses the specification or implementation of a transformation, expressed in the
metamodels of Figures 5 and 7, to statically identify properties of the transformation, such as the

definedness and determinacy conditions of the transformation rules, and issues concerning their
semantics, such as the need for a fixed-point implementation in the case of rules which potentially
both write and read the same entity types or features in a model. Some performance bounds can
also be estimated by static syntactic analysis [38].

Syntactic analysis has the advantage that no mapping to an additional formalism (such as B,
Z3, etc) is necessary, hence there is no reliance on the correctness of such a mapping. In this section
we will consider transformations represented in the metamodels of Figures 5 and 7. Regardless of
the form of a transformation τ (ie., whether it is an update-in-place transformation or not), each
of its mapping constraints should satisfy the following properties of definedness and determinacy.

For each postcondition, precondition and invariant constraint of a transformation, the defined-
ness condition is a necessary assumption which should hold before the constraint is applied or
evaluated, in order that its evaluation is well-defined. Postcondition constraints should normally
also satisfy the condition of determinacy.

Examples of the clauses for the definedness function def : Exp(L) → Exp(L) are given in
Table 5.

Constraint expression e Definedness condition def(e)

a/b b ̸= 0 and def (a) and def (b)

s→at(ind) ind > 0 and ind ≤ s.size and
sequence, string s def (s) and def (ind)

E [v] E .id→includes(v) and def (v)
entity type E with
identity attribute id ,
v single-valued

s→last() s.size > 0 and def (s)
s→first()
s→max ()
s→min()
s→any()

v .sqrt v ≥ 0 and def (v)

v .log v > 0 and def (v)

A and B def (A) and def (B)
A or B def (A) and def (B)
A implies B def (A) and (A implies def (B))

E→exists(x | A) def (E) and E→forAll(x | def (A))
E→forAll(x | A) def (E) and E→forAll(x | def (A))

Table 5. Definedness conditions for expressions

Examples of the clauses for the determinacy function det : Exp(L) → Exp(L) are given in
Table 6.

More sophisticated syntactic analysis of a postcondition constraint can be carried out by con-
sidering the data-dependency relationships between the language-elements that it relates.

The write frame wr(P) of a formula P ∈ Exp(L) is the set of features and entity types (ie.,
entity type extents) that it modifies, when interpreted as an action (an action stat(P) to establish
P , Section 8). This includes object creation. The read frame rd(P) is the set of entity types and
features read in P . The frames wr∗(P) and rd∗(P) give further precision by recording the sets of
objects (expressions denoting instances of entity types) whose features are written or read in P .
Table 7 gives some cases of the definitions of these frames.

In computing wr(P) we also take account of the features and entity types which depend upon
the explicitly updated features and entity types of Cn, such as inverse association ends.

If there is a constraint φ ∈ ΓL which implicitly defines a feature g in terms of feature f , ie:
f ∈ rd(φ) and g ∈ wr(φ), then g depends on f . In particular, if an association end role2 has a
named opposite end role1, then role1 depends on role2 and vice-versa.

Constraint expression e Determinacy condition det(e)

s→any() s.size = 1 and det(s)

Case-conjunction Conjunction of
(E1 implies P1) and ... not(Ei and Ej)
(En implies Pn) for i ̸= j , and each

(det(Ei) and (Ei implies det(Pi)))

A and B det(A) and det(B)
A or B false
A implies B det(A) and (A implies det(B))

E→exists(x | A) det(E) and E→forAll(x | det(A))
E→forAll(x | A) det(E) and E→forAll(x | det(A))

Additionally, order-independence of
A for x : E .

Table 6. Determinacy conditions for expressions

P rd(P) wr(P) rd∗(P) wr∗(P)

Basic expression e Set of features {} Set of pairs (obj , f) {}
without quantifiers, and entity type of objects and
logical operators or names used features, obj .f ,
=, :, E [], in P in P , plus
→includes, entity type
→includesAll , names in P
→excludesAll ,
→excludes,
→isDeleted

e1 : e2.r rd(e1) ∪ rd(e2) {r} rd∗(e1) ∪ rd∗(e2) {(e2, r)}
e2.r→includes(e1)
r many-valued
e1, e2 single-valued

e2.r→excludes(e1) rd(e1) ∪ rd(e2) {r} rd∗(e1) ∪ rd∗(e2) {(e2, r)}
r many-valued
e1, e2 single-valued

e1.f = e2 rd(e1) ∪ rd(e2) {f } rd∗(e1) ∪ rd∗(e2) {(e1, f)}
e1 single-valued

e2.r→includesAll(e1) rd(e1) ∪ rd(e2) {r} rd∗(e1) ∪ rd∗(e2) {(e2, r)}
r , e1 many-valued
e2 single-valued

e2.r→excludesAll(e1) rd(e1) ∪ rd(e2) {r} rd∗(e1) ∪ rd∗(e2) {(e2, r)}
r , e1 many-valued
e2 single-valued

E [e1] rd(e1) ∪ {E} {} rd∗(e1) ∪ {E} {}
E→exists(x | Q) rd(Q) wr(Q) ∪ {E} rd∗(Q) wr∗(Q) ∪ {E}
(E concrete entity type)

E→exists1(x | Q) rd(Q) wr(Q) ∪ {E} rd∗(Q) wr∗(Q) ∪ {E}
(E concrete entity type)

E→forAll(x | Q) rd(Q) ∪ {E} wr(Q) rd∗(Q) ∪ {E} wr∗(Q)

x→isDeleted() rd(x) {E} rd∗(x) {E}
x single-valued, of
entity type E

C implies Q rd(C) ∪ rd(Q) wr(Q) rd∗(C) ∪ rd∗(Q) wr∗(Q)

Q and R rd(Q) ∪ rd(R) wr(Q) ∪ wr(R) rd∗(Q) ∪ rd∗(R) wr∗(Q) ∪ wr∗(R)
Table 7. Definition of read and write frames

Creating an instance x of a concrete entity type E also adds x to each supertype F of E , and
these supertypes are also included in the write frames of E→exists(x | Q) and E→exists1(x | Q)
in the above table.

Deleting an instance x of entity type E by x→isDeleted() may affect any supertype of E and
any association end owned by E or its supertypes, and any association end incident with E or with
any supertype of E . Additionally, if entity types E and F are related by an association which is a
composition at the E end, or by an association with a mandatory multiplicity at the E end, ie., a
multiplicity with lower bound 1 or more, then deletion of E instances will affect F and its features
and supertypes and incident associations, recursively.

The read frame of an operation invocation e.op(pars) is the read frame of e and of the pars cor-
responding to the input parameters of op together with the read frame of the postcondition Postop
of op, excluding the formal parameters v of op. Its write frame is that of the actual parameters
corresponding to the outputs of op, and wr(Postop) − v . wr(G) of a set G of constraints is the
union of the constraint write frames, likewise for rd(G), wr∗(G), rd∗(G).

An example of these definitions is

rd(R) = {A, x}
wr(R) = {B , y , br , ar}

for the postcondition constraint R of the example of Figure 1, and

rd∗(R) = {A, (a, x)}
wr∗(R) = {B , (b, y), (a, br), (b, ar)}

Using the definitions of read and write frames we can perform some analysis of constraints and
transformation specifications using data-dependency analysis. This analysis is used to (i) identify
possible flaws in the specification to the developer, and (ii) to determine the choice of design and im-
plementation of the constraints and transformation for correctness-by-construction implementation,
in Section 8.

An important property of a postcondition constraint Cn is that its read and write frames are
disjoint:

wr(Cn) ∩ rd(Cn) = {}

We refer to such constraints as type 1 constraints. Subject to further restrictions, they have an
implementation as bounded iterations over their source model entity types. Our example constraint
R satisfies this property, even though the transformation itself is an update-in-place transformation.

For transformations τ : S → T , where S and T may be the same language, the general form of
transformation specification postcondition constraints Cn we consider are implications:

Si→forAll(s | SCond implies Tj→exists(t | TCond and Pred))

or

Si→forAll(s | SCond implies Succ0)

where SCond is a predicate over the source language S elements only, S1, ..., Sn are the entity types
of S which are relevant to the transformation, Tj is some entity type of the target language T ,
TCond is a condition in T elements only, eg., to specify explicit values for t ’s attributes, and Pred
refers to both t and s to specify t ’s attributes and possibly linked (dependent) objects in terms of
s’s attributes and linked objects. TCond does not contain quantifiers, Pred may contain further
exists or forAll quantifiers to specify creation/lookup of subordinate elements of t . If the t should
be unique for a given s, an exists1 (one) quantifier may be alternatively used in the succedent of
the constraint. In the second form Succ0 does not have an exists quantifier, and does not create
target elements but may look up previously created elements and modify them.

Additional forAll -quantifiers may be used at the outer level of the constraint, if quantification
over multiple source model elements is necessary, instead of over single elements. Each source entity
type Si which is forAll -quantified over at the outer level is referred to as a source domain of the
constraint. The target language entity types Tj are the target domains of the constraint.

A restricted form of constraint in which no forAll quantifier can appear in Pred or Succ0 is called
a conjunctive-implicative form constraint in [38], it has advantages in terms of comprehensibility and
analysability compared to general constraints (eg., which may have nested alternating quantifiers
in Pred).

The standard implementation (Section 8) of a type 1 postcondition Cn is a bounded loop for
s : Si do δi(s) iterating a computation step δi(s : Si) defined as

if SCond then stat(Succ)

where Succ is the succedent Succ0 or Tj→exists(t | TCond and Pred) of Cn, and stat is as defined
in Table 10. We assume that rule implementations using these δi steps are used to implement the
Cn in the following analysis.

We can classify transformation postcondition constraints Cn into several types, of increasing
complexity:

– Type 0 constraints: no quantification over source language elements, instead only updates to
specific objects are specified. For example:

Account [“33665”].balance = 0

to set the balance of a specific identified account. These are directly implemented by a RuleImplementation
whose behaviour is stat(Cn).

– Type 1 constraints with 1-1 mapping of identities (structure-preserving constraints).

– Type 1 constraints with merging of multiple source instances into single target instances, ie,
with a many-1 mapping of identities.

– Type 2 constraints:

wr(Cn) ∩ (rd(Pred) ∪ rd(TCond))

is non-empty, but

wr(Cn) ∩ (rd(SCond) ∪ {Si}) = {}

These constraints usually need to be implemented by a fixpoint iteration (instead of a bounded
loop): the basic transformation step δi(s) implementing one application of Cn is iterated over
any applicable source domain elements s until no applicable source element remains.

– Type 3 constraints: these have

wr(Cn) ∩ (rd(SCond) ∪ {Si}) ̸= {}

These constraints also need to be implemented by a fixpoint iteration, and each transformation
step δi(s) may modify the sets of applicable source objects for subsequent steps, making proof
of termination and confluence potentially more difficult than for type 2 constraints.

5.1 Analysis of type 1 constraints

For type 1 constraints, many of the verification properties (such as confluence, semantic correctness
and termination) can be established by syntactic checks on the constraint to ensure that distinct
applications of the constraint implementation cannot semantically interfere.

Given a type 1 constraint Cn:

Si→forAll(s | SCond implies Tj→exists(t | TCond and Pred))

the following conditions (internal syntactic non-interference) ensure that applications δi(s1), δi(s2)
of the computation step δi of Cn on distinct s1, s2 : Si , s1 ̸= s2, cannot interfere with each other’s
effects:

The only source data read in Cn should be data navigable from s. There should be no
reference to any identity attribute of Tj in the succedent Succ of Cn, except in an assignment
to it of the identity attribute value of s: t .tid = s.sid . Updates in TCond and Pred should
be local to t or s: only direct features of t or s should be updated. Updates t .f = e, e : t .f
or t .f→includesAll(e) to direct features f of t are permitted, in addition t can be added to
a set or sequence-valued expression e which does not depend on s or t : t : e. Likewise for
s. Deletions or removals of elements from collections are not permitted.
These conditions can be generalised slightly to allow 1-1 mappings of Si identities to Tj

identities.

Notice that Si is not equal to Tj or to any ancestor of Tj , and that no feature is both read and
written in Cn (by the type 1 property). Similar conditions apply for constraints with the Succ0
form succedent.

These conditions prevent one application δi(s1) of Cn from invalidating the effect of a pre-
ceding δi(s2), s1 ̸= s2, because the sets wr∗ of write frames of the two applications (ie., of
SCond implies Succ for s1 and s2) are disjoint6 except for collection-valued shared data items
(such as Tj itself), and these are written in a consistent manner (both applications add elements)
by the distinct applications. Such constraints are termed localised type 1 constraints.

The standard implementation of type 1 constraints is a fixed for-loop iteration for s : Si do δi(s)
of their rule implementations over the source domains (Section 8). The above conditions ensure that
the execution of the individual δi(s) applications in any sequential order by this implementation will
achieve the required logical condition Cn once all applications have completed. Semantic correctness
and termination therefore hold for the standard implementation of localised type 1 constraints.

For confluence of this implementation, we need the further conditions that the Cn are determi-
nate, ie., det(Cn) is true, and that additions of elements to any sequence are not permitted.

Theorem 1 If a type 1 constraint Cn is syntactically restricted as described above, then its standard
implementation is confluent.

Proof By determinacy, each individual application δi(s) of Cn has a unique (up to isomorphism)
result from a specific starting state.

Two applications δi(s1) and δi(s2) of Cn for distinct s1, s2 in Si have disjoint wr∗ frames,
except for collection-valued shared data items (such as Tj itself), because these are based on dis-
tinct Tj objects t1 and t2 or on the distinct s1 and s2. Hence the effects of δi(s1) and δi(s2) are
independent on these write frames. If a set-valued expression e is written in Pred by a formula t : e
or e→includes(t), then the written (outermost) feature of e is not read in Cn, so its value cannot
affect applications of Cn. The order of addition of t1 and t2 to e does not make any difference to its
resulting value, so such updates are order independent. Likewise with additions of s1 or s2 to a set. 2

The example of the postcondition constraint R illustrates this case: the wr∗ frames are disjoint
for executions of R’s computation step to distinct a1, a2 : A, except for the shared add-only
collection B .

Counter-examples to confluence when the conditions do not hold can easily be constructed. If
elements of Si are simply added to a global sequence:

Si→forAll(s | s : Root .instance.slist)

for a singleton entity type Root , with an ordered association end slist : seq(Si), then two different
executions of the transformation could produce two different orderings of slist . This is a localised
type 1 constraint, and the standard for-loop implementation is semantically correct, but not con-
fluent.

Likewise, if the mapping of identity attribute values is not 1-1, then the same Tj instance could
be updated by values derived from two different source objects, with only the second update being
retained:

S1→forAll(s | T1→exists(t | t .id = s.id/2 and t .y = s.x))

6 Although (t , f) for features f of Tj may occur in both wr∗ frames, t denotes distinct objects t1, t2 for
the two applications, because of the condition on tid and sid .

where all attributes are integer-valued.
In this example a T1 object t1 can be created for s1 : S1 with s1.id = t1.id = 0, but is then

selected (because of the ‘check before enforce’ principle, Section 8) as the target object matching
s2 with s2.id = 1. Only the value of s2.x is recorded in t1.y at termination.

This constraint is not localised, and is a counter-example to semantic correctness of the standard
(bounded loop) implementation of type 1 constraints: completed computations of this implemen-
tation cannot satisfy the constraint if Si elements with the same s.id/2 values have different s.x
values. A fixpoint iteration could be used instead, but then termination could not be proved in such
cases.

Assignment to features of objects other than t and s can violate confluence and semantic cor-
rectness in a similar way, for example:

S1→forAll(s | T1→exists(t | t .r = T0[“1”] and t .r .att = s.x))

This type 1 constraint is not localised, since (T0[“1”], att) is in the wr∗ frames of different ap-
plications, and att is not modified by addition of elements, but by assignment. Again, there is
no semantically correct implementation of this constraint, in general, and in practice type 1 non-
localised constraints should be avoided in transformation postconditions.

The above results apply directly to conjunctive-implicative form constraints, where the locality
properties of the constraint can be easily checked. For example, if source entity types S1 and S2
are mapped to corresponding target entity types T1 and T2, where there are one-many associations
r1 : S1 → Set(S2) and r2 : T1 → Set(T2) and unique name : String attributes of each entity type:

S2→forAll(s | T2→exists(t | t .name = s.name))
S1→forAll(s | T1→exists(t | t .name = s.name and t .r2 = T2[s.r1.name]))

In the second constraint, the expression T2[s.r1.name] returns all the existing T2 instances with
a name value in s.r1.name. Provided that all applications of the computation step of the first
constraint are completed before any application of the computation step of the second constraint is
attempted, this is a semantically correct transformation, and the standard implementation of each
constraint is confluent, terminating and semantically correct according to Theorem 1.

However, a more usual style of transformation specification is the ‘recursive descent’ form, where
subordinate parts of a source model element are transformed together with the element (eg., the
use of the where clause in QVT-R, or the example of Section 10). For this example, this style would
lead to a specification of the form:

S1→forAll(s | T1→exists(t | t .name = s.name and
s.r1→forAll(s2 | T2→exists(t2 | t2.name = s2.name and t2 : t .r2))))

This alternative form also satisfies the condition of disjoint wr∗ frames, even though there are
non-local assignment updates (eg., to t2.name), because it is impossible, due to the association
multiplicities, for two distinct t , t ′ to both contain the same t2 instance in their r2 sets, therefore
applications of the implementation of the above single rule to distinct s, s ′ will update disjoint parts
of the target model and will be non-interfering. We recommend that such specifications are rewritten
into conjunctive-implicative form in order to improve the comprehensibility and verifiability of the
specification. The efficiency of the implementation may also be higher [38].

A similar analysis can identify sufficient conditions for the confluence, termination and semantic
correctness of type 1 entity and instance merging constraints [39].

Type 1 constraints that fail the internal non-interference restrictions can be analysed using the
techniques for type 2 and 3 constraints in the following sections.

Analysis of syntactic correctness and semantic preservation for type 1 constraints can be achieved
by internal consistency proof in B (Section 7). For these purposes it is useful to formulate an
invariant Inv for the constraint. Usually the inverse constraint Cn∼:

Tj→forAll(t | TCond implies Si→exists(s | SCond and Pred))

of a conjunctive-implicative Cn will be an invariant for computations of stat(Cn), assuming an
initially empty target model.

5.2 Analysis of type 2 and type 3 constraints

A constraint Cn of form

Si→forAll(s | SCond implies Tj→exists(t | TCond and Pred))

is termed a type 2 constraint if

wr(Cn) ∩ (rd(Pred) ∪ rd(TCond))

is non-empty, but

wr(Cn) ∩ (rd(SCond) ∪ {Si}) = {}

This means that the order of application of the computation steps δi(s : Si) of the constraint to
instances s : Si may be significant, and that a single iteration through the initial set of Si elements
in the source model may be insufficient to establish Cn. A fixpoint computation may be necessary
instead, with iterations of δi repeated until Cn is established.

A constraint is of type 3 if Si ∈ wr(Cn) or wr(Cn) ∩ rd(SCond) ̸= {}. Again in this case a
fixpoint computation is necessary, with additional complexity because the set of source objects
being considered by the constraint is itself dynamically changing.

A variant function Q : S ×T → N on the source and target model data can be used to establish
the termination, confluence and correctness of type 2 and type 3 constraints, and should be defined
together with the constraint. Q should have the property that it is decreased by each computation
step δi of the constraint, and Q = 0 when the constraint is established.

Formally, Q is a variant function for Cn if:

∀ ν : N ·Q(smodel , tmodel) = ν ∧ s ∈ Si ∧ SCond ∧ ¬ (Succ) ∧ ν > 0 ⇒
[stat(Succ)](Q(smodel , tmodel) < ν)

and

Q(smodel , tmodel) = 0 ≡ {s ∈ Si | SCond ∧ ¬ (Succ)} = {}

Succ abbreviates the constraint rhs Tj→exists(t | TCond and Pred), smodel are expressions in the
source model data, tmodel are expressions in the target model data. The proof of the variant prop-
erty can assume that the invariants ΓS and Inv of the transformation hold. Q will be syntactically
defined as an expression in the union language S ∪ T . For example, a fixpoint implementation of
the constraint R would have a variant

A→select(a | not(B→exists(b | b.y = a.x ∗ a.x and b : a.br)))→size()

ie., in mathematical notation:

card({a ∈ A | ¬ (∃ b : B · y(b) = x (a) ∗ x (a) ∧ b ∈ br(a))})

This decreases from card(A) at the start of the transformation to 0 at the end.
The general fixpoint implementation of Cn has the form:

while not(Cn)
do δi(Si→select(s | SCond and not(Succ))→any())
variant Q

The variant function property of Q establishes termination of the fixpoint implementation of
Cn: each application of δi strictly reduces Q , and Q ≥ 0, so there can only be finitely many such
applications. Semantic correctness also follows, since when Q = 0, there are no remaining instances
of Si which violate the constraint, ie, Cn holds true.

Confluence requires that the Q = 0 state is unique:

Theorem 2 If for each particular starting state of the source and target models there is a unique
(up to isomorphism) possible terminal state of the models (produced by applying the constraint
computation step δi to instances of Si until the application conditions SCond and not(Succ) are
not true for any s ∈ Si) in which Q = 0, then the fixpoint implementation of the type 2 or 3
constraint is confluent.

Proof The terminal states of the transformation are characterised by the condition

{s ∈ Si | SCond ∧ ¬ (Succ)} = {}

But in such states we also have Q(smodel , tmodel) = 0. Therefore, there is a unique termination
state. 2

Verification of the variant function and unique 0 state properties of Q require proof, eg., by
refinement proof in B, syntactic correctness and semantic preservation also require proof (Section
7).

The optimisation patterns ‘Replace recursion by iteration’ and ‘Omit negative application condi-
tions’ can also assist in verification of type 2 and type 3 constraints Cn [38]. In the first case bounded
iteration can be used instead of fixpoint iteration, if each transformation step of Cn strictly reduces
the set of model elements that can match Cn’s application condition. Thus termination holds di-
rectly, and semantic correctness holds if the steps are non-interfering (localised). In the second case,
the fixpoint iteration can be simplified by removing the test for not(Succ), if SCond is inconsistent
with Succ. Semantic correctness holds directly for such implementations. An example of this is the
case study of Section 11.

6 Counter-example analysis of transformation specifications

Together with syntactic analysis, model-checking or satisfaction-checking of transformation speci-
fications can identify errors in specifications before more resource-intensive forms of proof analysis
are attempted.

In particular, in the case of a separate models transformation τ : S → T , a theory Γτ formalising
the axioms of ΓS ∪ Asm0 ∪ Inv ∪ Post in the union logical language LS∪T of S and T expresses
the conditions which should hold at termination of the transformation.

This theory should be satisfiable, otherwise the transformation is infeasible. In addition, each
axiom φ ∈ ΓT of T should be consistent with Γτ . Counter-examples will identify explicit cases where
the transformation could fail to establish ΓT , and hence identify specific errors in the transformation
specification.

A number of formalisms and tools can be used to support such analysis, here we will use the Z3
SMT checker [51] for first-order logic. This has an additional use as a theorem-prover: if

Γτ ∪ {¬ φ}

is unsatisfiable, then φ follows from Γτ , so that syntactic correctness (and likewise semantic preser-
vation) can be proved, in principle, using Z3.

For an update-in-place transformation τ : S → S , Γτ formalises ΓS ∪ Asm@pre ∪ Inv ∪ Post ,
with pre-state data names g@pre being represented by new constants g pre.

Table 8 shows examples of the mapping of OCL expressions to Z3.
The most significant step in this translation is the expression of existential quantifiers by skolem

functions: in a formula

E→forAll(x | Cond implies F→exists(y | Pred))

the existential quantifier is replaced by a new function fnew : E → F not occurring in any other
part of the OCL or Z3 theories, and the formula is then translated as:

(forall ((x E)) (⇒ Cond ′ Pred ′[fnew(x)/y]))

OCL expression/operator e Z3 expression/operator e ′

Integer Int
Boolean Bool
Real Real
Entity type E Sort E

Attribute att : Typ function att : E → Typ′

owned by E
Single-valued role function r : E → F
r to F owned
by E
Collection-valued role function r : E → List(F)
r to F owned
by E

implies ⇒
forAll forall
exists Expressed by skolemisation

first head
prepend insert
includes memberE (for each entity type E)
Set{ } nil
Set{ x1, ..., xn } (insert x1’ (... (insert xn’ nil) ...))

Table 8. Mapping of UML and OCL to Z3

In general, an exists-quantifier in the scope of several forAll -quantifiers is replaced by a new function
depending on all the forAll -quantified types.

Sets and sequences are both modelled as Z3 lists. Operators for OCL select and collect are
not in-built in Z3 and need to be defined using auxiliary functions. In addition, operators to check
membership in a list and to obtain a list element by its index need to be added as auxiliary functions.
An alternative to using lists to model OCL collections would be to use bitsets [47], however this
involves a highly complex encoding and requires size bounds to be placed on entity type extents
and collection sizes.

For separate-models transformations, or update-in-place transformations where the read and
updated sets of entity types and features are disjoint, the mapping from the metamodel of Figure
5 to a metamodel for Z3 performs the following translations:

– Each source and target language L (or language part) is represented by sorts E for each entity
type E of the language, and maps of the form f : E → Typ for each owned feature f of E ,
together with Z3 encodings of the constraints of ΓL for source languages L.

– The assumptions Asm0 on unmodified data are encoded and included.
– Each mapping rule.relation of the form

E→forAll(x | SCond implies F→exists(y | PCond))

is encoded as a function taurule : E → F and a predicate

∀ x : E · SCond ′ ⇒ PCond ′[taurule(x)/y]

– The invariant expressing the inverse of rule is encoded by a function sigmarule : F → E and a
predicate

∀ y : F · SCond ′[sigmarule(y)/x] and PCond ′[sigmarule(y)/x]

For data items g which are both read and updated, in update-in-place transformations, both the
pre-state value g pre and the post-state value g are represented, and the pre-state predicates of
Asm@pre are included.

For separate-models transformations, the consistency of the resulting theory Γτ with individual
constraints φ ∈ ΓT can be checked by adding φ′ to the theory, counter-examples can be searched
for by instead adding ¬ φ′.

Syntactic correctness can be shown by adding the negation of
∧
ΓT for the target language T ,

and establishing that the resulting theory is unsatisfiable. Semantic preservation of φ can then be
shown by adding ΓT , φ and the negation of χ(φ) and showing unsatisfiability. Unlike FOL or B,
Z3 does not contain proof techniques for unbounded induction, and so may fail to establish true
inferences which could be proved within FOL or B. In addition it provides decision procedures for
only some of the decidable subsets of first order logic. There may therefore be situations where Z3
may neither demonstrate counter-examples to a theory, nor establish its validity, and for these cases
analysis using proof in B or another theorem-prover will be necessary.

The mapping from UML and OCL to Z3 has been automated in the UML-RSDS tools [49].
As in first-order set theory, Z3 has no notion of undefined values, unlike in standard OCL.

Division in Z3 is a total function, but its value is unspecified for division by 0. A transformation
specifier should ensure that all expressions within a transformation invariant, assumption or rule
relation Cn have a defined value, ie., def (Cn) is true, whenever the predicate may be evaluated.
When reasoning about transformations using Z3, the results are only meaningful for transformation
implementations which satisfy this condition, ie., where no expression evaluation to OCL invalid
ever occurs.

There is no inbuilt Z3 representation for strings: these can be modelled as an unspecified sort
or as lists of integers. There is no direct representation for subtyping.

An example of mapping OCL to Z3 is our transformation example from Figure 1. The corre-
sponding Z3 theory is:

(declare-sort A)

(declare-sort B)

(declare-fun x (A) Int)

(declare-fun y (B) Int)

(declare-fun br (A) (List B))

(declare-fun ar (B) (List A))

(assert (forall ((a A)) (> (x a) 0)))

(assert (forall ((a A)) (forall ((b B)) (= (memberB b (br a)) (memberA a (ar b))))))

This expresses the theory of the class diagram. For the transformation postcondition a new skolem
function is introduced, and an axiom for the skolemised postcondition:

(declare-fun tau1 (A) B)

(assert (forall ((a A))

(and (= (y (tau1 a)) (* (x a) (x a))) (memberB (tau1 a) (br a)))))

Note that this is not within a decidable subset of first-order logic, since it involves non-linear
arithmetic.

The invariant is expressed by:

(declare-fun sigma1 (B) A)

(assert (forall ((b B))

(and (= (y b) (* (x (sigma1 b)) (x (sigma1 b)))) (memberB b (br (sigma1 b))))))

This combined theory expresses the state at termination of the transformation, and also defines
precisely how the terminal state of the system should relate to the starting state, by relating the
modified entity types and features {B , br , ar , y} to the unchanged values of {A, x}.

Consistency analysis shows that this combined theory is indeed consistent. If we add the addi-
tional constraint

(not (forall ((b B)) (> (y b) 2)))

a counter-example to B→forAll(b | b.y > 2) is found, where b is derived from a1 : A with a1.x = 1.
For a language L, soundness of deductions about L in Z3 holds, relative to the FOL proof

theory of LL, and using the above mapping: Z3 correctly represents the mathematical data types
Integer, Real of OCL, and Boolean, and likewise for operators upon these types, and for those OCL
collections and collection operators which can be expressed in Z3. If Z3 can represent all the entity
and data types, features and constraints of L, in a Z3 theory L′, then derivation of (the translation
φ′ of) a sentence φ ∈ Sen(L) in Z3 from L′ implies that φ is deducable in LL:

⊢Z3,L′ φ′ ⇒ ⊢LL
φ

The reverse implication fails, because Z3 is incomplete, even for decidable subsets of first-order set
theory.

Provided that the constraints of a transformation τ are within a decidable subset of first order
logic, we can ensure that the transformation specification of τ is in a decidable form if we restrict
it to the stratified sorts subset of first-order logic. This means that the entity types used in the
transformation can be assigned rankings in N so that for every association r used in the transfor-
mation specification, its target entity type is strictly lower in the ranking than its source. Such a
restriction however rules out transformations which utilise self-associations and bi-directional asso-
ciations: only navigations down strict composition hierarchies in the source and target models are
permitted.

7 Proof-based verification

Proof-based techniques for verifying transformation correctness properties have two main advan-
tages: (i) they can prove the properties for all cases of a transformation, that is, for arbitrary input
models and for a range of different implementations; (ii) a record of the proof can be produced,
and subjected to further checking, if certification is required. However, proof techniques invariably
involve substantial human expertise and resources, due to the interactive nature of the most general
forms of proof techniques, and the necessity to work both in the notation of the proof tool and in
the transformation notation.

We have selected B AMN as a suitable formalism for proof-based verification, B is a mature for-
malism, with good tool support, which automates the majority of simple proof obligations. Table 9
gives a comparison of B with other verification tools. We provide an automated mapping from trans-
formation specifications into B [49], and this mapping is designed to facilitate the comprehension
of the B AMN proof obligations in terms of the transformation being verified.

The entity types and features of the languages involved in a transformation τ are mapped into
B according to Table 1. OCL expressions are systematically mapped into set-theory expressions,
Tables 2 and 3 illustrate this mapping.

A B AMN specification consists of a linked collection of modules, termed machines. Each ma-
chine encapsulates data and operations on that data. Each transformation is represented in a single
main B machine, together with an auxiliary SystemTypes machine containing type definitions.

The mapping from the metamodel of Figure 5 to a metamodel for B performs the following
translations:

– Each source and target language L is represented by sets es for each entity type E of the
language, with es ⊆ objects, and maps f : es → Typ for each feature f of E , together with B
encodings of the constraints of ΓL for unmodified L. In cases where a language entity type or
feature g is both read and written by the transformation, a syntactically distinct copy g pre is
used to represent the initial value of g at the start of the transformation. A supertype F of entity
type E has B invariant es ⊆ fs. Abstract entity types E have a B invariant es = f 1s ∪ ... ∪ fls
where the Fi are the direct subtypes of E .
For each concrete entity type E of a source language, there is an operation create E which
creates a new instance of E and adds this to es. For each data feature f of an entity type E
there is an operation setf (ex , fx) which sets f (ex) to fx .

– The assumptions Asm of the transformation can be included in the machine invariant (using
g pre in place of g for data which is written by the transformation). Asm is also included in
the preconditions of the source language operations create E and setf .

– Each mapping rule is encoded as an operation with input parameters the names of the non-
modifiable ends of rule, and with its effect derived from rule.relation or from the behavior of an
implementation of rule. The operation represents transformation computation steps δi of the
rule implementation.

– Orderings of the steps for particular implementations can be encoded by preconditions of the
operations, expressing that rule ′.relation for one or more other mapping rule ′ has been already
established for all applicable elements.

– Invariant predicates Inv are added as B invariants, using g pre to express pre-state values
g@pre.

In contrast to the mapping to Z3 described in Section 6, this mapping explicitly represents the
computation steps of the transformation, and can therefore support verification that these maintain
Inv and decrease any variant, Q . For a separate-models transformation τ : S → T the machine
invariant expresses ΓS ∪Asm0∪Inv . For an update-in-place transformation τ : S → S the invariant
expresses ΓS ∪Asm@pre ∪ Inv . The machine represents the transformation at any state during its
computation.

This mapping is suitable to support the proof of syntactic correctness, semantic preservation
and semantic correctness by using internal consistency proof in B, a more complex mapping is used
for the proof of confluence and termination, using refinement proof [36].

The general form of a B machine Mτ representing a separate-models transformation τ with
source language S and target language T is:

MACHINE Mt SEES SystemTypes

VARIABLES

/* variables for each entity type and feature of S */

/* variables for each entity type and feature of T */

INVARIANT

/* typing definitions for each entity type and feature of S and T */

GammaS &

Asm0 & Inv

INITIALISATION

/* var := {} for each variable */

OPERATIONS

/* creation operations for entity types of S, restricted by Asm */

/* update operations for features of S, restricted by Asm */

/* operations representing transformation steps */

END

SystemTypes defines the type Object OBJ and any other type definitions required, eg., of enumer-
ated types.

The operations to create and update S elements are used to set up the source model data of
the transformation. Subsequently, the operations representing transformation steps are performed.

If Asm0 consists of universally quantified formulae ∀ s : Si · ψ, then the instantiated formulae
ψ[sx/s] are used as restrictions on operations creating sx : Si (or subclasses of Si). Likewise, oper-
ation setf (sx , fx) modifying feature f of Si has a precondition ψ[sx/s, fx/s.f]. All these operations
will include the preconditions Asm1 from Asm which concern only the target model.

As an example, the transformation of Figure 1 can be defined by the following partial machine:

MACHINE Mt SEES SystemTypes

VARIABLES objects, as, x, br, bs, y, ar

INVARIANT

objects <: Object_OBJ &

as <: objects & bs <: objects &

x : as --> INT & br : as --> FIN(bs) &

y : bs --> INT & ar : bs --> FIN(as) &

!a.(a : as => x(a) > 0) &

!a.(a : as => !b.(b : bs => (b : br(a) <=> a : ar(b)))) &

!b.(b : bs => #a.(a : as & y(b) = x(a)*x(a) & b : br(a)))

INITIALISATION

objects, as, x, br, bs, y, ar := {}, {}, {}, {}, {}, {}, {}

The invariant expresses ΓS and the Inv properties of the transformation. #b.P is B syntax for
∃ b ·P , !a.P is B syntax for ∀ a ·P . & denotes conjunction, <: denotes ⊆ and −− > is → (the total
function type constructor). A universal set objects of existing objects is maintained, this is a subset
of the static type Object OBJ declared in SystemTypes.

Occurrences E@pre or f@pre in Inv or Post are interpreted by the additional variables es pre,
f pre which have the same typing as es and f . They are modified in parallel with es and f by
the source model creation and modification operations, and are unchanged by the operations for
transformation computation steps.

The operations representing computation steps are derived from the rule implementations δi
of the constraints Cn. This modelling approach facilitates verification using weakest precondition
calculation, compared to more abstract encodings. If Cn has the form

Si→forAll(s | SCond implies Succ)

then the operation representing a computation step δi of Cn is:

delta_i(s) =

PRE s : sis & SCond & not(Succ) &

C1 & ... & Cn-1 & def(Succ)

THEN

stat’(Succ)

END

where stat ′(P) encodes the procedural interpretation stat(P) of P in B program-like statements,
called generalised substitutions. These have a similar syntax to the programming language described
in Section 2, and use the same weakest-precondition semantics. B has an additional statement form
v := e1∥w := e2 of parallel assignment: the assignments are performed order-independently, with
the values of e1, e2 being simultaneously assigned to v , w . The ANY WHERE THEN statement
of B corresponds to our creation statement.

If the implementation of τ defines a non-standard rule implementation of Cn, this implementa-
tion could be encoded in B in place of the above definition of delta i .

If τ ’s implementation requires that all constraints C1, ..., Cn−1 are established before Cn, this
ordering can be encoded by including C1, ..., Cn − 1 in the preconditions of delta i , as above (cf.,
the ECond conditions of Section 4). not(Succ) can be omitted if negative application conditions are
not checked by the implementation of Cn. For the mapping to B, def (Succ) includes checks that
numeric expressions in Succ are within the size bounds of the finite numeric types NAT and INT
of B, and that objects ̸= Object OBJ prior to any creation of a new object.

The computational model of a transformation τ expressed in Mτ therefore coincides with the
definition of transformation computation described in Section 2: a computation of τ is a sequence
of transformation steps executed in an indeterminate order, constrained only by the need to main-
tain Inv , and, if a specific implementation I is defined, to satisfy the ordering restrictions of I ’s
behaviour.

For the example of Figure 1, using a fixpoint implementation, the resulting completed B machine
has:

OPERATIONS

create_A(xx) =

PRE xx : INT & xx > 0 & objects /= Object_OBJ & bs = {}

THEN

ANY ax WHERE ax : Object_OBJ - objects

THEN

as := as \/ { ax } || objects := objects \/ { ax } ||

x(ax) := xx ||

br(ax) := {}

END

END;

setx(ax,xx) =

PRE ax : as & xx : INT & xx > 0 & bs = {}

THEN

x(ax) := xx

END;

r1(ax) =

PRE ax : as & not(#b.(b : bs & y(b) = x(ax)*x(ax) & b : br(a))) &

objects /= Object_OBJ & x(ax)*x(ax) : INT

THEN

ANY b WHERE b : Object_OBJ - objects

THEN

bs := bs \/ { b } || objects := objects \/ { b } ||

y(b) := x(ax)*x(ax) ||

br(ax) := br(ax) \/ { b } || ar(b) := { ax }

END

END

END

r1 defines the transformation step of the postcondition constraint. The machine is generated auto-
matically by the UML-RSDS tools from the UML specification of the transformation7. UML-RSDS
encodes the semantics of all cases of updates to associations, including situations with mutually
inverse association ends, as in this example (the last two assignments of r1).

Using these machines we can verify syntactic correctness and semantic preservation properties of
a model transformation, by means of internal consistency proof of the B machine representing the
transformation and its metamodels. Internal consistency of a B machine consists of the following
logical conditions:

– That the state space of the machine is non-empty: ∃ v .I where v is the tuple of variables of the
machine, and I its invariant.

– That the initialisation establishes the invariant: [Init]I
– That each operation maintains the invariant:

Pre ∧ I ⇒ [Code]I

where Pre is the precondition of the operation, and Code its effect.

B machines implicitly satisfy the frame axiom for state changes: variables v which are not explicitly
updated by an operation are assumed not to be modified by the operation. This corresponds to the
assumption made in our framework that v is unmodifed by activity act if v ̸∈ wr(act).

We can follow the scheme for proof indicated in Section 4 using B, as follows (for separate
models transformations):

1. Internal consistency proof of Mτ establishes that Inv is an invariant of the transformation.
2. By adding the axioms of ΓT to the INVARIANT clause, the validity of these during the trans-

formation and in the final state of the transformation can be proved by internal consistency
proof, establishing syntactic correctness.

3. By adding φ and χ(φ) to the INVARIANT of Mτ , for φ ∈ Pres, semantic preservation of φ can
be proved by internal consistency proof. Creation and update operations to set up the source
model must be suitably restricted by φ.

4. At termination of the transformation, all the application conditions of the transformation rules
are false. The inference

(
∧

¬ (ACond)) ⇒ Post

can be encoded in the ASSERTIONS clause of Mτ and proved using the invariants ΓS ∪ Inv ∪
Asm0.

For update-in-place transformations, termination, confluence and semantic correctness proof needs
to use suitable Q variants for each constraint, considered below.

Using Atelier B version 4.0, 24 proof obligations for internal consistency of the above machine
Mt are generated, of which 18 are automatically proved, and the remainder can be interactively
proved using the provided proof assistant tool.

In order to prove that a postulated Q measure is actually a variant function for a constraint,
refinement proof in B can be carried out, with an abstraction of the transformation model machine
Mτ defined as M 0τ :

7 In practice, single-letter feature, variable and entity type names should be avoided, since these have a
special meaning in B AMN.

MACHINE M0t SEES SystemTypes

VARIABLES /* variables for source model data */, q

INVARIANT

/* typing of source model data */ &

q : NAT

INITIALISATION

es, q := {}, 0

OPERATIONS

/* creation and update operations for source

model: these set q arbitrarily in NAT */

delta() =

PRE q > 0

THEN

q :: 0..q-1

END

END

delta represents a transformation step of the constraint for which q is the postulated variant. The
operator q :: s assigns an unspecified element of s to q . Each constraint Ci may have a corresponding
variant qi , the operation delta i for abstracted transformation steps of Ci then has the form:

delta_i() =

PRE qi > 0 & qk = 0 /* for k < i */

THEN

qi :: 0..qi-1 || qj :: NAT /* for j > i */

END

where the constraint implementations of C1, ..., Ci−1 are designed to terminate prior to any exe-
cution of delta i and therefore their variants are assumed to be 0 in the precondition of delta i .

The original Mτ machine is then used to define a refinement of M 0τ , with the refinement relation
giving an explicit definition of the qi variants. Refinement proof then attempts to verify that the
explicit definition of each qi obeys the abstract specification, ie, that it is strictly decreased by every
execution of delta i .

Refinement obligations in B are [31]:

– The joint invariants InvA ∧ InvR of the abstract and refined machines are satisfiable together.
– The refined initialisation InitR establishes the invariants:

[InitR]¬ [InitA]¬ (InvA ∧ InvR)

– Each refined operation PRE PreR THEN CodeR END satisfies the pre-post relation of its
abstract version:

InvA ∧ InvR ∧ PreA ⇒
PreR ∧ [CodeR]¬ [CodeA]¬ (InvA ∧ InvR)

Refinement proof is usually manually intensive, with the majority of proof obligations requiring
interactive proof.

To verify confluence of a transformation, it is sufficient to show that there is a unique state
(up to structure isomorphism) where all the variants qi have qi = 0. This can be verified in the
refinement by adding an ASSERTIONS clause of the schematic form:

ASSERTIONS

q1 = 0 & ... & qn = 0 => tstate = f(sstate)

This clause expresses that the target model state tstate has specific values in terms of the source
model state sstate, when all the qi are zero.

The B tools will produce proof obligations for this assertion, and will act as a proof assistant in
structuring the proof and carrying out routine proof steps automatically. A further consequence of
the proof of the assertion is semantic correctness of the implementation: that the desired semantics

of target model elements relative to source model elements also holds at termination. An example of
this form of confluence proof is given in [39]: in this case one direction (that the computed transitive
closure of a relation r is always a subset of the actual transitive closure) of the equality is part of
the transformation invariant, and the other direction follows from Q = 0.

The above procedures can be used as a general process for proving Inv and Pres properties, and
for proving termination, semantic correctness and confluence, by means of suitable postulated Q
variant functions. The techniques can be generalised to any transformation implementation whose
transformation steps can be serialised, that is, each execution of the implementation is equivalent
to one in which the computation steps occur in a strict sequential order. This assumption is made
implicitly in the B model.

Representation and verification of other declarative model transformation languages, such as
TGG or QVT-R could be carried out by means of translations of these languages to the metamodels
of Section 2. For TGG it may be preferable to combine the operations which update the input
model and those which express transformation steps, since a transformation step in TGG involves
the simultaneous update of source, target and correspondence models.

Proof transcripts can be produced by the Atelier B proof assistant, these could then be checked
by an independent proof checker in order to achieve certification requirements of standards such as
DO-178C [19]. As with Z3, it can be argued that our translation of OCL to B accurately represents
the semantics of (our classical logic version of) OCL, so that proof in B is sound with respect
to logical deduction over OCL sentences in first-order logic, however the numeric types NAT and
INT in B are bounded, and correspond to 32-bit unsigned and signed integers, respectively, so that
soundness only applies if the same meaning is given to OCL Integer . In addition, the type Real
must be excluded from constraints and transformations in order to carry out valid proof analysis
in B. Object OBJ is finite in B, so that an a-priori upper bound should be set on the maximum
number of objects.

The size of the B formal model Mτ is linear in terms of the size of the model transformation
τ , however the complexity of the transformation rules has a considerable effect on the proof effort
required. Postcondition constraints using forAll quantifications nested within exists in their succe-
dents cannot be effectively verified, and the use of conjunctive-implicative form is necessary instead.
Recursive update operations cannot be represented. B is not suitable for establishing satisfiability
properties asserting the existence of models of certain kinds, and tools such as Z3, UMLtoCSP [15],
Alloy [2] or USE [29] are more appropriate for these.

7.1 Transformation verification tools

Table 9 lists some existing formalisms/technologies which can be used for transformation verification
based on proof, and identifies their appropriateness or limitations for different verification tasks.

The most comprehensive technology appears to be B, which is also the only one to directly
support inductive proof over computation steps. However, B requires substantial expertise in logic
and set theory to use successfully, as most verification tasks involve interactive proof: automated
proof may only resolve a small percentage of refinement obligations in particular. B also does not
provide any counter-example finding capabilities. A disadvantage of many formalisms is that they
are based on a two-valued first-order or relational logic, in contrast to the 3-valued logic of OCL
used in UML. However, the complexity of the full OCL value system, involving both invalid and
null values, and its lack of clear semantics, means that tools which do attempt to handle full OCL
necessarily make specific assumptions about the semantics, which may not match the specifier’s
intentions [11].

Z3 is well-suited to proof of properties within a single state, but transformations may only have
decidable theories if they satisfy the stratification property (ie., that only navigations in a consistent
direction up or down the composition heirarchies of the metamodels are used), and Z3 is also limited
by its restricted representation capabilities for OCL, ie., it has no direct representations of operators
such as select , collect , etc, in contrast to B. This limitation also applies to Alloy. The USE tool
works directly on UML and OCL, so reducing the semantic gap between the analysis formalism and
the transformation being analysed, however USE has no proof capabilities. B lacks support for real
numbers, and uses bounded integers, whilst Z3 lacks support for strings and subtyping. HOL-OCL
has a comprehensive representation of OCL, but proof in HOL-OCL is primarily interactive.

Formalism Capabilities Limitations

Alloy [2] Constraint analysis; Bounded search space: incomplete
counterexample counter-example detection.
construction Uses relational logic.

B [36] Proof (interactive and Refinement
automated) proof can be highly

time-intensive.
Two-valued logic used.

UML-RSDS Syntactic analysis, Requires transformation to
[49] maps to B, Z3, USE be written in UML-RSDS.

Uses 2-valued logic.

USE [29] Counterexample Bounded search
construction space.

Z3 [51] Satisfaction checking, Incomplete counterexample
proof by failure of detection, proof.
counterexample Limited expressiveness for
search OCL. Uses 2-valued logic.

HOL-OCL [10] Interactive and Tool-specific
automated proof semantics for OCL.

Table 9. Verification technologies for model transformations

Therefore a heterogeneous approach to transformation verification tool support is necessary in
general, with technologies being selected on the basis of their appropriateness for particular tasks.

An important area which has not been developed previously is the definition of proof techniques
for compositions of transformations. We identify some rules in [39]. In particular, for sequential
compositions such as Figure 6, the syntactic correctness of the composed transformation τ1; τ2
follows from that of τ1 and τ2 separately, provided that the assumptions Asm2 of τ2 can be ensured
at termination of τ1, either because these and Asm1 are implied by the overall assumptions Asm
of the composition, and Asm2 are not invalidated by τ1, or because τ1 establishes Asm2. Likewise,
semantic preservation and termination properties compose over sequential composition. However,
for confluence of τ1; τ2, confluence of τ1 is required, and additionally that τ2 is isomorphism-
preserving: it maps isomorphic source models to isomorphic target models.

8 Correctness by construction techniques

If transformations are specified in a platform-independent declarative manner, using postconditions,
preconditions and invariants expressed in the transformation specification metamodel (Figure 5),
then platform-independent implementations (expressed in the metamodel of Figure 7) can be de-
rived from them, and given the existence of mappings to particular transformation languages, such
as ETL, ATL, etc, platform-specific implementations can then be generated from these implementa-
tion models. These platform-specific implementations should then be correct-by-construction with
respect to the specifications: they will satisfy semantic correctness without the need for further
proof. In UML-RSDS we generate executable Java implementations directly from the platform-
independent implementations [38].

The transformation specification in the metamodel of Figure 5 plays the role of a Computation-
independent model (CIM) in model-driven development terminology, ie., a model without explicit
algorithmic details, whilst the platform-independent implementation (Figure 7) plays the role of a
Platform-independent model (PIM).

The basis for the synthesis of a correct-by-construction implementation of mapping rules, is the
definition of a procedural interpretation, stat(P), for certain OCL predicates P . stat maps from
expressions over a language (or a union of languages) L to behaviours over L:

stat : Exp(L) 7→ Statement(L)

The intent behind this mapping is that stat(P) should establish P , assuming the definedness of
expressions in P :

def (P) ⇒ [stat(P)]P

for P ∈ dom(stat).

The design-level activity stat(P) associated with a transformation specification postcondition
predicate P is defined systematically based on the structure of P . stat(P) can be read as ‘Make P
true’. Table 10 shows some of the main cases of this definition.

P stat(P) Condition

x = e x := e x is assignable,
x ̸∈ rd(e)

e : x x := x→including(e) x is assignable,
x→includes(e) set-valued, x ̸∈ rd(e)

e / : x x := x→excluding(e) x is assignable,
x→excludes(e) collection-valued, x ̸∈ rd(e)

e <: x x := x→union(e) x is assignable,
x→includesAll(e) set-valued, x ̸∈ rd(e)

e / <: x x := x − e x is assignable,
x→excludesAll(e) collection-valued, x ̸∈ rd(e)

x→isDeleted() E := E→excluding(x) Each entity type E
(single object x) containing x

obj .op(e) obj .op(e) Single object obj
objs.op(e) for x : objs do x .op(e) Collection objs

P1 and P2 stat(P1); stat(P2) wr(P2) ∩ wr(P1) = {}
wr(P2) ∩ rd(P1) = {}

E→exists(x | x .id = v if E .id→includes(v) E is a concrete entity type
and P1) then x := E [v]; stat(P1) with E→isUnique(id)

else (x : E ;
stat(x .id = v and P1))

E→exists(x | P1) (x : E ; stat(P1)) E is a concrete entity type, P1
not of form x .id = v and P2
for unique id attribute of E

e→exists(x | x .id = v if e→includes(E [v]) then Non-writable expression
and P1) (x := E [v]; stat(P1)) e with element type E ,

else skip E→isUnique(id)
e→exists(x | P1) if e→notEmpty() then Non-writable expression

(x := e→any(); e, P1 not of
stat(P1)) else skip above form

E→exists1(x | P1) if E→exists(x | P1) then skip E is a concrete entity
else stat(E→exists(x | P1)) type or non-writable

expression e with
element type E

E→forAll(x | P1) for x : E do stat(P1) P type 1, localised

P1 implies P2 if P1 then stat(P2) else skip
Table 10. Definition of stat(P)

Updates to association ends may require additional further updates to inverses of the association
ends, updates to entity type extents or to features may require further updates to derived and
other data-dependent features, and so forth. These updates are all included in the stat activity.
In particular, for x→isDeleted(), x is removed from every association end in which it resides, and
further cascaded deletions may occur if these ends are mandatory/composition ends.

The clauses for X→exists(x | x .id = v and P1) test for existence of an x with x .id = v before
creating such an object: this has implications for efficiency but is necessary for correctness: two
distinct X elements with the same primary key value should not exist. This design strategy is

a case of the well-known principle of ‘check before enforce’ used in QVT, ETL, ATL and other
transformation languages.

stat(E→forAll(x | P1)) has special definitions for type 2 and 3 quantified formulae, and for
type 1 non-localised formulae, based on fixpoint iteration ([38]).

The write frame of stat(P) is equal to wr(P), the read frame includes rd(P).
As an example of these definitions, stat(R) for the postcondition of the transformation of Figure

1 is:

for a : A

do

(b : B; b.y := a.x*a.x;

a.br := a.br \/ { b };

b.ar := b.ar \/ { a })

The selection of a suitable PIM for a transformation CIM is based upon the data-dependency
relations of the postconditions of the CIM.

Given the set Post of postconditions of a transformation τ , we wish to find an ordering of the
postcondition constraints such that the sequential composition of the ‘natural’ implementations
stat(Cn) of the constraints Cn ∈ Post achieves the conjunction

∧
Post of the postconditions.

To find such an ordering we consider the following properties of constraints:
A dependency ordering Cn < Cm is defined between distinct constraints by

wr(Cn) ∩ rd(Cm) ̸= {}

“Cm depends on Cn”.
A transformation implementation with rule implementations ri of postconditions Ci (ie., with

each ri .applies.relation = Ci) ordered as r1, . . . , rn should satisfy the syntactic non-interference
conditions:

1. If Ci < Cj , with i ̸= j , then i < j .
2. If i ̸= j then wr(Ci) ∩ wr(Cj) = {}.

Together, these conditions ensure that the behaviour stat(Cj) of the implementations rj of subse-
quent constraints Cj cannot invalidate earlier constraints Ci , for i < j .

A transformation implementation with the ordering r1, . . . , rn of rule implementations satisfies
semantic non-interference if for i < j :

Ci ⇒ [stat(Cj)]Ci

Syntactic non-interference implies semantic non-interference, but not conversely.
If the ordering r1, ..., rn satisfies semantic non-interference, then by induction it can be proved

that the corresponding sequential composition of rule implementations establishes the conjunction
of the Ci [38]. Thus any semantically non-interfering ordering of the ri is equivalent in this sense.

The resulting PIM implementation therefore has activity r1; ...; rn where ri ∈ RuleImplementation
implements Ci : ri .applies.relation = Ci . In turn, each ri has ri .behaviour = stat(Ci).

As described in Section 5, depending upon the internal data-dependencies of Ci , its imple-
mentation stat(Ci) can be defined as a bounded or fixpoint iteration of individual transformation
steps δi . For a type 1 localised constraint Si→forAll(s | SCond implies Succ), this leads to an
implementation of the form

for s : Si do δi(s)

where δi has activity stat(SCond implies Succ).
If an ordering of the Post constraints of τ can be found that satisfies semantic non-interference,

then semantic correctness therefore holds for an implementation constructed using this ordering.
Termination and confluence properties can be established by syntactic analysis of the individual
constraints, for type 1 constraints, following the process of Section 5. For other forms of constraint,
these properties may require verification of suitable variants (Section 7). Syntactic correctness and
semantic preservation properties may need proof, eg., using Z3 or B.

8.1 Reverse-engineering of model transformation implementations

The above process may be applied in reverse in order to abstract existing MT code to declarative
specifications. A statement Code ∈ Statement can be abstracted to a postcondition predicate P if
stat(P) = Code.

In particular, an assignment x := e abstracts to x = e[x@pre/x] and Code1; Code2 abstracts
to P1 and P2 if stat(P1) = Code1, stat(P2) = Code2 and wr(P1) ∩ wr(P2) = {} and wr(P2) ∩
rd(P1) = {}. Likewise for bounded loops, conditionals, etc. In cases where the data dependency
conditions do not hold in the code, the construct ¬ [Code]¬ (v ′

1 = v1 and ... and v ′
k = vk)

can be used to extract a pre-post specification from Code, where wr(Code) = {v1, ..., vk}. Eg.,
¬ [x := x ∗ 5; x := x + 1]¬ (x ′ = x) is x ′ = (x ∗ 5) + 1, ie., x = (x@pre ∗ 5) + 1.

If P is of the form Si→forAll(s | F (s)) and rd(P) ∩ wr(P) ̸= {}, then stat(P) is a general
fixpoint iteration of the schematic form

while not(P)

do

(select s : Si with not(F(s));

stat(F(s)))

Thus any fixed-point iteration of this form, but with a more determinate means of iterating through
the s : Si , will abstract to P , provided that the iteration is guaranteed to reach all elements of Si .
Section 10 gives an example.

These techniques provide a basis for mapping hybrid or imperative MT code into MT specifi-
cations in the metamodels of Section 2.

9 Case study 1: UML to Java code synthesis

We consider a small fragment of this refinement transformation τ , to illustrate how the above
verification techniques can be applied to such transformations. Figure 9 shows the parts of the
source and target language metamodels which we consider here.

Fig. 9. UML and Java metamodels

The theory ΓS of the source UML language includes the uniqueness property of class names.
The assumptions Asm0 on the source model of the transformation include that there are no cases
of multiple inheritance or cycles of inheritance in the source model. Asm is Asm0 together with the
assumption that the target model is empty: JavaClass = Set{}, etc.

The required Java language properties ΓT are that Java class names are unique and that there
is no multiple inheritance or cycles of inheritance.

The transformation mappings (the specification postconditions Post of τ) express properties
such as:

(R1) : UMLClass→forAll(c | JavaClass→exists(cj |
cj .name = c.name and cj .isAbstract = c.isAbstract))

and

(R2) : UMLClass→forAll(c, d | d : c.generalisation.general implies
JavaClass[d .name] : JavaClass[c.name].superclass)

defining how the poststate UML and Java models should correspond. JavaClass[s] denotes the Java
class with name s. This specification is written using the ‘Map objects before links’ pattern [38].

In R1 the mapping endpoints are the non-modifiable c ∈ UMLClass from the UML input model
of the transformation, and cj ∈ JavaClass (modifiable) from the Java output model. Similarly c, d
are input endpoints of R2.

Inv expresses conservativeness properties such as (Inv1):

JavaClass→forAll(cj | UMLClass→exists(c |
c.name = cj .name and c.isAbstract = cj .isAbstract))

and (Inv2):

JavaClass→forAll(cj , dj | dj : cj .superclass implies
UMLClass[dj .name] : UMLClass[cj .name].generalisation.general)

which are inverses of the corresponding postcondition Post properties.
For this transformation, the language interpretation mapping χ can be defined as:

UMLClass 7−→ JavaClass
UMLClass :: name 7−→ JavaClass :: name

This is a partial language morphism, as features such as general and generalisation have no inter-
pretation in the target language.

An example of a semantic preservation proof is the preservation of the property φ that no class
name contains the space character:

UMLClass→forAll(c | not(“ ” : c.name→characters()))

This translates to χ(φ):

JavaClass→forAll(c | not(“ ” : c.name→characters()))

By using Inv1 we can deduce this from the original property φ of UML classes. Notice that this
proof is independent of the particular implementation chosen: any implementation that maintains
Inv will also ensure semantic preservation of φ.

A specific implementation I of τ with behaviour stat(R1); stat(R2) is chosen, which performs
all computation steps r1(c) of R1 before any computation step r2(c, d) of R2. This implementation
satisfies the semantic non-interference property of Section 8 because

rd(R1) = {UMLClass,UMLClass :: name,UMLClass :: isAbstract}
wr(R1) = {JavaClass, JavaClass :: name, JavaClass :: isAbstract}
rd(R2) = {UMLClass,UMLClass :: name,UMLClass :: generalisation,

JavaClass,Generalization :: general}
wr(R2) = {JavaClass :: superclass}

so that R1 < R2 and stat(R2) is syntactically non-interfering wrt R1.
The transformation step for R1 is:

r1(c : UMLClass)
(cj : JavaClass; cj .name := c.name; cj .isAbstract := c.isAbstract)

and similarly for r2.
We can deduce that Inv is preserved by applications r1 of R1, from the form of R1: the newly

created cj : JavaClass produced by an application r1(c) clearly satisfies Inv1, and it is not connected

to any other Java class by superclass links, so Inv2 is preserved. Also, applications r2 of R2 preserve
Inv since they do not create new Java classes, but only link existing instances in such a way that
Inv2 is satisfied.

If no application of R1 or R2 is enabled, this means that the conclusions of these mappings are
true for all source model elements that satisfy their assumptions, ie., that Post is true. Therefore,
semantic correctness of the implementation I holds (also since this is the correctness-by-construction
implementation).

Syntactic correctness of the transformation (using this implementation) means that it is guar-
anteed to produce syntactically valid Java programs, satisfying ΓT , from valid UML models that
satisfy Asm. Syntactic correctness follows from ΓS , Asm, Post and Inv . For example, if there are
two distinct Java classes cj1, cj2 with the same name in the target model, these must have been
derived from the same UML class c (by Inv1 and the uniqueness of name for UML classes). But R1
implies that c is mapped to a unique Java class with name c.name. Likewise, if there is a situation
of multiple or cyclic inheritance in the Java target model, by Inv2 there must be a corresponding
situation of multiple inheritance or cyclic inheritance in the UML model which it was derived from,
contradicting Asm. These proofs could be formalised using internal consistency proof in B (the
stratification property does not hold for this specification, so a formalisation in Z3 may not be
effective for proof).

Termination follows from the fact that the computations of both R1 and R2 are bounded
iterations, over UMLClass and over UMLClass ×UMLClass, respectively.

Clearly applications of r1 are order-independent, since different applications update entirely
disjoint data items. Applications of r2 could interfere with each other, if there was multiple inheri-
tance in the UML model, eg., distinct classes d1 and d2 in some c.generalisation.general : only one
superclass d1 or d2 of c could be represented in the Java model. But Asm ensures that this cannot
occur. Therefore confluence holds.

10 Case study 2: Re-expression of trees as graphs

This example is defined in ETL in [28] and illustrates how existing transformations can be veri-
fied by our techniques, by reverse-engineering the ETL implementation to a representation in the
transformation metamodels of Section 2. ETL contains language mechanisms typical of hybrid
transformation languages, such as ATL or GrGen, including essential use of transformation traces.

Figure 10 shows the source S (on the lhs) and target T (on the rhs) metamodels of this trans-
formation.

Fig. 10. Tree and Graph metamodels

The aim of the transformation is to re-express tree structures as graphs, with explicit graph
edges in place of links from a tree instance to its parent.

An assumption Asm0 is that there are no cycles in the parent relation:

Tree→forAll(t | t .parent→closure()→excludes(t))

It is also assumed that the target model is empty: Edge = Set{} and Node = Set{}.

A required property of ΓT is that there are no duplicate edges:

Edge→forAll(e1 | Edge→forAll(e2 |
e1.source = e2.source and e1.target = e2.target implies e1 = e2))

An invariant Inv can be formulated, which expresses that the only nodes and edges in the target
model are those (uniquely) derived from some source model elements:

Node→forAll(n | Tree→exists1(t | t .label = n.label))

Edge→forAll(e | Tree→exists1(t | t .parent .size > 0 and
e.source.label = t .label and e.target .label = t .parent .label→any()))

The transformation is implemented in [28] using trace lookup and implicit rule invocation:

rule Tree2Node

transform t : Tree!Tree

to n : Graph!Node

{ n.label := t.label;

if (t.parent.isDefined())

{ var edge := new Graph!Edge;

edge.source := n;

edge.target := t.parent.equivalent();

}

}

The obj .equivalent() expression looks up in the transformation trace Trace to check if obj has
already been mapped to a target element tobj , if so, it returns such an element, otherwise it invokes
any applicable rules (in this case, Tree2Node itself) to map obj to a target element, which is then
returned.

The semantics of the above rule can therefore be expressed in the activity language of our
transformation implementation metamodel as a behaviour:

Tree2Node(t : Tree, nout : Node)

(if (Node.label->contains(t.label))

then nout := Node[t.label]

else

(n : Node;

n.label := t.label;

if (t.parent.size > 0)

(edge : Edge;

edge.source := n;

if Trace->exists(tr | tr.source = t.parent->any())

then

edge.target := Trace->select(tr |

tr.source = t.parent->any())->collect(target)->any()

else

Tree2Node(t.parent->any(),edge.target)

);

nout := n

)

)

This makes explicit the implicit recursive call in the ETL code. We assume that check-before-
enforce semantics is used for the above rule, otherwise duplicate nodes and edges could be created
by distinct calls of Tree2Node operating on the same tree branch.

The operation code constitutes computation steps for a specification postcondition Post0:

Tree→forAll(t | Node.label→excludes(t .label) implies
(t .parent .size = 0 implies Node→exists(n | n.label = t .label)) and
(t .parent .size > 0 implies Node→exists(n | n.label = t .label and

Edge→exists(edge | edge.source = n and
edge.target = Node[t .parent .label]→any())))

This is a type 3 constraint, with an implementation as a fixpoint iteration stat(Post0) which iterates
the quantified body of Post0 until no tree remains without a matching node. This can be compared
to the ETL Tree2Node(t ,n) which performs corresponding actions for t and all ancestors of t .
Unlike stat(Post0) it uses a fixed order of iteration, from descendants to parents. stat(Post0) should
compute the same target model as Tree2Node applied to each leaf node of the tree(s) in the source
model.

To verify properties of such recursive computations, induction on call depth can be used. That
is, assuming that the call Tree2Node(t .parent→any(), edge.target) creates a correct target model
graph for the tree structure at and above t .parent , we can argue that Tree2Node(t ,nout) does so
for the tree structure at and above t .

Termination can be shown by arguing that every call of Tree2Node terminates: any chain of
parent links must be finite since loops are forbidden by Asm and because models are finite.

However the implementation appears excessively complex, and in order to produce an improved
and more easily verified version of this transformation, we can use the correctness-by-construction
technique of Section 8, starting from a specification with the following two postcondition constraints
Post1:

Tree→forAll(t | Node→exists(n | n.label = t .label))

to relate trees to nodes, and Post2:

Tree→forAll(t | t .parent .size > 0 implies
Edge→exists1(e | e.source = Node[t .label] and

e.target = Node[t .parent .label]→any()))

to relate parent links to edges. These are both localised type 1 constraints.
This new specification is an example of the ‘Map objects before links’ specification pattern [38],

which should be used in such cases of recursive structures in the source metamodel.
The constraints satisfy the syntactic non-interference property if ordered as above, and are both

of type 1, satisfying internal syntactic non-interference, so a semantically correct, terminating and
confluent implementation can be automatically synthesised as stat(Post1); stat(Post2):

for t : Tree do delta1(t);

for t : Tree do delta2(t)

where delta1 is:

delta1(t : Tree)

(n : Node;

n.label := t.label)

and delta2 is:

delta2(t : Tree)

(if t.parent.size > 0

then

if Edge->exists(e | e.source = Node[t.label] and

e.target = Node[t.parent.label]->any())

then skip

else

(e : Edge;

e.source := Node[t.label];

e.target := Node[t.parent.label]->any()

)

)

In this case we can prove that the invariant properties hold: after any sequence of transformation
steps, each existing target model node must be derived from exactly one source model tree, and
similarly for edges. Duplicate edges cannot occur because Post and Inv together imply that two
edges e1 and e2 with common source nodes and common target nodes, must be derived from a
single tree t with a unique parent t1 and (from the second postcondition), that therefore e1 = e2.
Therefore syntactic correctness holds.

11 Case study 3: Refactoring class diagrams

This update-in-place transformation rationalises a class diagram by removing duplicate copies of
attributes from sibling classes [27]. Figure 11 shows the metamodel of the single language of this
transformation.

NamedElement

name : String

Generalization Entity Property Type
1

type
**0..1

1

*

*

generalisation

specialisation
general

owned
Attribute

1
specific

Fig. 11. Basic class diagram metamodel

There are three mapping rules, of which the simplest is rule 1: Pull up common attributes
of all direct subclasses: If the set g = c.specialisation.specific of all direct subclasses of a class
c : Entity has two or more elements, and all classes in g have an owned attribute with the same
name n and type t , add an attribute of this name and type to c, and remove the copies from each
element of g (Figure 12).

Fig. 12. Rule 1 specification

To prove syntactic correctness, the following properties need to be established for the termination
state of the transformation:

1. Single inheritance: generalisation.size ≤ 1 for all classes.
2. No duplicated attribute names in classes: allAttributes→isUnique(name) where allAttributes

is defined recursively as

allAttributes = ownedAttribute ∪ generalisation.general .allAttributes

These constraints can also be assumed as the preconditions Asm of the transformation.
Additionally, there is a postcondition Post that there should be no cases of attributes satisfying

the application condition of Rule 1 (Figure 12) in the termination state.
A model-level semantic preservation property is that the semantics of the transformed model

must be equivalent to the semantics of the source model: where the semantics is the set of possible
collections of objects which could exist for the leaf classes e : Entity in the model, ie., if:

sem(m) = {possible object configurations for leaf classes of m}

then we need to show sem(m) = sem(n). This can be internalised as the invariant that c.allAttributes
for each leaf c ∈ Entity is not essentially changed by the transformation steps (the names and types
are preserved, although not the exact Property objects), nor is the set of leaf classes; Equiv1:

Entity→select(e | e.specialisation.size = 0) =
Entity@pre→select(e | e.specialisation@pre.size = 0)

and Equiv2:

Entity→forAll(e | e.specialisation.size = 0 implies
e.allAttributes ≈ e.allAttributes@pre)

where atts1 ≈ atts2 is atts1→forAll(p1 | atts2→exists(p2 | p2.name = p1.name and p2.type =
p1.type)) and atts2→forAll(p2 | atts1→exists(p1 | p1.name = p2.name and p1.type = p2.type)).

The GrGen.NET implementation of rule 1, from [27], is as follows:

r u l e ru l e1 {
c : Class ;
: SuperOf (c , g1) ; : SuperOf (c , g2) ;
g1 : Class −: ownedAttribute−> a1 : Property −: type−> t : Type ;
g2 : Class −: ownedAttribute−> a2 : Property ;
: SameAttribute (a1 , a2) ;
negat ive {

g3 : Class ;
: SuperOf (c , g3) ;
g1 ;
negat ive {

g3 −: ownedAttribute−> a3 : Property ;
: SameAttribute (a1 , a3) ;

}
}
modify

c −: ownedAttribute−> a4 : Property −: type−> t ;
eva l {

a4 . name = a1 . name ;
}
exec (RemoveAttributeFromSubclasses (c , a4) ;> [c r ea t e Inve r s eEdges]) ;

}
}

Class is used instead of Entity here, for consistency with the UML metamodel.
In the exec clause, applications of RemoveAttributeFromSubclasses and createInverseEdges are

explicitly chained after the main rule by means of invocation.
This rule implementation can be abstracted to the metamodel of Figure 7 in a similar way to

the ETL example of Section 10:

rule1(c : Class)

(if there exist g1, g2, a1, a2, t satisfying

the guard conditions

then

select such g1, g2, a1, a2, t;

(a4: Property;

a4.type := t;

c.ownedAttribute := c.ownedAttribute->including(a4);

a4._name := a1._name;

RemoveAttributeFromSubclasses(c,a4))

)

In this case, createInverseEdges has no actions to perform, so is omitted.
To establish the properties Asm in the post-state, one technique, as described in Section 4,

is to show that these are invariants of the transformation, ie., they are preserved by each trans-
formation computation step. We can either prove the preservation at the specification level using
the specifications (eg., using a mapping relation based on Figure 12) of the steps, and then show
semantic correctness of the step implementations wrt the step specifications, or prove directly the
preservation for each step implementation.

For the GrGen implementation we take the second option, using the representation rule1 of the
implementation in the metamodel of Figure 7. Since the rule1 code does not modify generalisation,

the first Asm property is trivially preserved. For the second, the new attribute a4 with name
a1. name is introduced into c, in themodify clause. However, in the invoked RemoveAttributeFromSubclasses(c, a4)
operation, any attribute with the same name as a4 is removed from each class in c.specialisation.specific.
The property 2 is therefore maintained, since allAttributes is not otherwise modified for any class
by the rule implementation.

A formal proof of this argument could be constructed by translating the GrGen rule implemen-
tations to operations of a B machine, and expressing the properties as invariants of this machine.
Internal consistency proof of the machine will include the invariance of the properties over trans-
formation steps.

Termination follows since the number of Property instances in the model is strictly decreased
by each rule application, ie, Property .allInstances()→size() gives an upper bound for a variant of
the transformation.

At termination of the implementation, rule1 cannot be applied, ie., there are no cases of classes c
satisfying the application conditions of rule1. But this implies that there are no cases of same-named
and -typed attributes in all (at least 2) direct subclasses of a class, as required.

Confluence does not hold, since alternative orders of applications of some rules (rules 2 and 3
of [27]) may produce non-isomorphic terminal models.

For model-level semantic correctness, we can prove that the above predicates Equiv1 and Equiv2
are invariant. They are clearly true initially, and rule 1 preserves the set of leaf classes and the
total set of (name, type) pairs of their allAttributes properties. Thus the semantics of the model is
preserved.

An example of a heterogeneous system of transformations could be the transformation of case
study 3 followed by that of case study 1: overall semantic correctness of this sequential composition
would follow from the correctness of the individual transformations, and by the establishment of
the preconditions of the UML-to-Java transformation by the refactoring transformation. Likewise,
overall termination holds.

12 Evaluation

Our approach has been implemented using the UML-RSDS language and toolset [38, 49]. Trans-
formation specifications are defined by UML use cases, with preconditions, invariants and post-
conditions, whilst designs are defined using activities in the statement language presented here.
Syntactic analysis is performed on the specifications, and these can be automatically translated to
Z3 and B AMN for semantic analysis. Designs are generated from specifications using the approach
of Section 8, executable code in Java is automatically synthesised from the designs. Thus all steps of
the general process of Figure 8 have been implemented except for the reverse-engineering of exist-
ing transformations into language-independent representations. Currently we use a manual process
to perform this step, but automation (for ETL and GrGen) is being investigated. The techniques
defined here have been applied to many cases of transformation verification. Examples include the
class diagram refactoring case study of [27], the computation of the transitive closure of a relation
[39], a large-scale migration transformation [33], and the slicing of state machines [34]. The exam-
ple of [27] is a semantically complex update-in-place transformation (of which the simplest rule is
discussed in Section 11). We were able to prove termination, syntactic correctness and semantic
correctness for the UML-RSDS implementation using manual proof with less than 1 person day
effort. The case study of [39] was formally proved using proof in B to establish termination and
confluence. This required approximately 5 person days of interactive proof, primarily concerning
the refinement obligations to establish the necessary variant properties. The example of [33] has
66 entity types and features, and represents a realistic migration problem. We were able to iden-
tify failures of semantic preservation and syntactic correctness in the proposed migration mapping,
and to establish termination, confluence and semantic correctness by syntactic analysis. The ef-
fort required was approximately 3 person days. The state machine slicing algorithms of [34] form
part of a large and complex software engineering tool for model slicing. The model-level semantic
preservation of the slicing algorithms was shown by induction over the individual transformation
steps which rewrite state machines into simpler forms. This involved approximately 5 person days
of manual proof.

We have found that the organisation of proof steps described in Section 4 are generally very
effective in carrying out manual or tool-supported proof: the verification effort is broken down into
separate verification of the transformation invariants and variants, relative to a given implementa-
tion, and then verification of syntactic and semantic correctness and semantic preservation using
these invariants and variants. Proof of syntactic correctness and semantic preservation can in some
cases be carried out independently of particular implementations by relying instead upon the in-
variant properties. This permits reuse of proof effort, if the implementation is changed, provided
the modified implementation also maintains the invariants.

Table 11 shows examples of the extent of automation of internal consistency and refinement
proof using B for some transformations. Even for internal consistency proof, the proof effort is
higher for the transformations (the computation of transitive closure, and the balancing of binary
trees) which use type 2 or 3 constraints, compared to those using only type 1 constraints.

Case study Total proof Auto-proved Interactively Auto-proof
obligations proved percentage

Transitive closure
(internal consistency) 17 11 6 65%
(refinement) 48 26 22 54%

Balancing binary trees
(internal consistency) 29 19 10 66%
(refinement) 47 27 20 57%

UML to RDB
(internal consistency) 31 26 5 84%

A to B
(internal consistency) 24 18 6 75%

Table 11. B proof automation on case studies

In order to minimise the proof effort required for verification, we recommend the combination
of syntactic analysis, satisfaction checking and correctness-by-construction synthesis to develop
new transformations. This requires restrictions on the form of the transformation specification,
ie., that these should satisfy syntactic or semantic non-interference, but most practical cases of
refinements, migrations, re-expressions and other separate-models transformations can be defined
to satisfy these restrictions. The Conjunctive-implicative pattern, and related patterns, such as
the Map objects before links pattern, described in [38] are recommended for the structuring of
transformation specifications and implementations, in order to reduce proof effort. In contrast,
recursive descent structuring, or the use of implicit rule invocation via a mechanism such as ETL
equivalent/equivalents greatly complicate verification.

Even in cases where semantic non-interference does not hold, as in the case study of Section
11 (where applications of rule 3 can introduce new cases of classes to which rule 1 can be applied,
and vice-versa), correctness-by-construction synthesis can still be used to generate a semantically
correct implementation from the transformation specification [38]. Proof of the variant property for
designated variant functions will however be necessary to ensure termination, and likewise proof
will be required to establish confluence, if this holds.

Limitations of our approach are the reliance upon the serialisation of implementations, in order
to carry out weakest precondition reasoning, and the problems of scale encountered with large low-
level transformation implementations, such as the Kermeta implementation in [27], which we were
unable to verify.

13 Related work

In [38] we introduced the correctness-by-construction MT approach using UML-RSDS, and we
described design patterns which can be used to define modular, efficient and verifiable transforma-
tions. In [36] an overview of verification techniques for UML-RSDS is given. In the present paper,

we provide detailed semantic foundations for MT verification, not specific to UML-RSDS, and de-
fine in detail MT language-independent verification techniques using syntactic analysis, satisfaction
checking and theorem proving.

In [25], metamodels for the requirements, specification and design of model transformations are
introduced, together with a process for the development of transformations using these languages.
We follow the approach of [25], and extend this to deal with the generation of verification conditions
from transformation specifications, and the mapping of transformation specifications to verification
formalisms. In contrast to the transML approach, we take advantage of the many similarities between
MT languages to define a language-independent transformation implementation representation, to
avoid a multiplicity of metamodels for individual languages. Here we have focussed upon the high-
level design and low-level design stages of [25]. In future work we intend to integrate the techniques
of this paper with the other elements of the transML approach of [25].

In this paper we have primarily used the idea of a verification or transformation model in or-
der to perform semantic analysis of a model transformation. The paper [32] introduces one of the
first attempts to use the verification model approach: relational transformation specifications are
formalised in the B AMN specification language, which is then used to prove syntactic correctness
of the transformations. The concept of verification model is described (as ‘transformation models’)
in [8], and much subsequent work on transformation verification has used this approach. Eg., [14]
shows how QVT-R and TGG specifications can be mapped to a verification model consisting of
OCL formulae, which captures the semantics of the specifications. This verification model can then
be analysed using any OCL tool. This work has subsequently been extended to consider a declar-
ative subset of ATL [12, 13]. In contrast to our approach, the verification model of [13] expresses
only the intended post-state of the transformation, and does not represent the transformation steps
or dynamic behaviour of the transformation. It is therefore less appropriate for proof of invari-
ance, termination or confluence properties. Invariant-based properties such as model-level semantic
preservation/equivalence seem to require modelling of transformation steps, and not simply the ter-
mination states of a transformation. The approach of [13] appears restricted to type 1 constraints
in our terms.

Other related work is [9], which uses a verification model based on rewriting logic to analyse
QVT-like transformations, and [16], which maps ATL into a verification model based on the Coq
theorem prover. Alloy has been used to analyse UML and OCL specifications and model transfor-
mations in QVT [3, 2]. Alloy provides bounded satisfaction-checking capabilities, but in a restricted
relational language, which limits the forms of transformation specification which can be analysed.
Eg., nested collections cannot be represented. Translations from model transformation languages to
different formalisms have also been used to perform termination analysis [50, 46], proof of syntactic
correctness [23], counterexample generation [13] and proof of semantic preservation [40]. Table 12
summarises such approaches. It can be seen that these deal primarily with declarative transfor-
mation languages, and are often limited to restricted subsets of these and to specific verification
properties.

In this paper we extend the verification model concept to cover all elements of a practical
transformation language (UML-RSDS), and to include hybrid and imperative model transforma-
tion languages. We represent transformations from multiple transformation languages in a common
representation and use mappings from these metamodels of transformation specifications and im-
plementations to verification models in different formalisms (such as B, Z3, etc) to support the
verification of a range of verification properties. This enables analysis of transformations expressed
in a wide range of transformation languages, and of transformation systems involving multiple
transformation languages. In contrast to [13], our representation of transformations includes be-
havioural details (Figure 7), enabling us to represent hybrid and imperative transformations, and
to reason about transformation executions using induction over computation steps.

We have also given detailed language-independent verification techniques, and we have defined
criteria that semantic mappings to verification formalisms should ideally satisfy, ie., they should be
institution comorphisms. Institutions and institution comorphisms are used as a basis to support
the use of multiple logical frameworks in the HETS environment [41]. It is possible to construct such
morphisms based upon our mappings to Z3 and B AMN, these morphisms satisfy the soundness
direction of the co-morphism property (that validity of a translated property in the verification

Approach Transformation Formalisms Analyses Mappings Results
languages

Asztalos et. al. VMTS MCDL, semantic Automated Automated proof
[4] MCIL correctness that implementation

achieves required
postconditions

Becker et. al. Graph symbolic avoidance of Automated invariance proof/
[6, 7] transformation verifier invalid states counterexamples

Boronat et al QVT-R Maude invariance Manual Partial invariance
[9] subset proof, proof, counterexample

counterexamples generation

Buttner et. al. Declarative OCL, syntactic Automated Partial counterexample
[13] ATL Alloy correctness generation for syn. corr.

(counterexamples) of declarative ATL

Calegari et. al. ATL CIC, syntactic Manual Interactive proof
[16] subset Coq correctness of syn. corr.

Giese et. al. TGG Isabelle/ model-level Manual Manual proof
[20] HOL semantic of semantic

equivalence equivalence

Inaba et. al. UnCAL Monadic syntactic corr., Automated Automated decision
[23] subset + 2nd order counter-example procedure for

annotations logic generation syn. corr. of
restricted UnCAL
transformations

Massoni et. al. none Alloy, example Manual, Proves simple UML
[40] PVS generation, restricted refactorings

proof semantically
preserving

Rensink et. al. GXL Promela, invariance, Automated bounded
[46] checkVML SPIN termination model-checking
GROOVE GXL state-transition invariance, Automated bounded

system termination model-checking

Stenzel et. al. QVT-O KIV syn. corr., Manual Interactive proof
[48] model-level of syn. corr.,

sem. pres. model-level
sem. pres.

Varro et. al. graph Petri termination Manual Partial termination
[50] transform- Nets Not analysis of graph

ations exact transformations
semantically with NACs

Table 12. Verification model approaches

model implies validity of the property in the original OCL/FOL representation), but not the con-
verse direction, due to incompleteness of the Z3 and B formalisms.

Model-level semantic correctness (also known as model-level semantic preservation [35]), that is,
the preservation of the internal semantics of models by a transformation, is specifically considered by
several works. The paper [48] considers this verification property for QVT-O transformations, and
uses a dynamic-logic based formalism to verify that certain semantic properties of source models are
preserved in the target models. Our approach potentially facilitates such verification, because the
Post and Inv predicates of a transformation τ : S → T precisely characterise how a target model
n relates to its source m. A language-level interpretation χ also characterises how the language ele-
ments of S are expressible in terms of T . The derived mapping Mod(χ) of models supports analysis
of the semantic preservation of static model-level properties relative to χ, and formal proof of such
preservation can be carried out by inductive proof using the B representation of transformations,
provided that the semantics is representable in B [39]. The concept of a transformation invariant is
applicable to proof of model-level semantic preservation, ie., an invariant can express that seman-
tic preservation holds for all target elements created up to an arbitrary intermediate stage of the
transformation, or for all restructurings of the model so far carried out – in each case these are
inductions over transformation steps. An attempt at using such invariant-based reasoning is made
in [48], however this is complicated by the recursive descent style of implementation used for the
transformation, resulting in a complex invariant and proof task. The approach of [48] relies upon a
strict composition hierarchy in models, which we do not require for invariant-based reasoning. The
paper [1] also considers model-level semantics preservation, for a code-generation transformation.
Proof is not used, instead model-checking is used to confirm that required properties are preserved
for specific models. Likewise, in [42, 43] preservation of semantic properties on a model-by-model
basis is verified by using a structural correspondence (a bisimulation) between the source and tar-
get models. An invariant-based approach is used to verify model-level semantic equivalence in [20],
however they use manual proof in Isabelle/HOL to show invariance of semantic equivalence under
transformation steps, whilst a formalisation using B can potentially automate more of the proof
effort.

There has been considerable work on the formalisation of OCL and UML for semantic analysis
[2, 10, 11, 47]. The complexity of modelling OCL null and invalid , together with inconsistencies in
the OCL semantic definitions of these values, means that systems such as [11] must make additional
assumptions to provide a reasoning framework for full OCL. Instead, we choose to rule out such
values completely and to work with classical logic, which has the advantage of unambiguity and the
existence of many powerful proof and analysis tools. We agree with [11] that OCL invalid should
not be used for modelling, but we would go further and forbid the use of null also. By considering
that 0..1 multiplicity association ends are collection-valued (of size 0 or 1), a simple and uniform
treatment of many data structure properties can be given, without the need to test for null values.

OCL was originally intended as a language for logical expression evaluation, to express declar-
ative constraints of UML models. However, transformation languages such as QVT and Kermeta
now use OCL to define executable effects, to update models. The imperative use of OCL as a
programming language introduces semantic problems, for example, how a forAll or other itera-
tion should behave if (logically) its evaluation can be terminated before all elements are processed,
whilst (imperatively) some intended side-effect behaviour could still arise if additional elements are
considered. We rule out such cases by clearly distinguishing the logical and imperative use of OCL.
Table 10 defines precisely when an expression E is interpreted imperatively, ie., as stat(E). We
exclude side-effects when an expression is used logically. Thus the logical evaluation of iterators
can be made more efficient. In an imperative interpretation stat(E) of expression E , however, the
computation only terminates when E is established (which may require fix-point iteration, etc.).

For example, logical evaluation of s→forAll(x | x .att = v) can return false as soon as some
x ∈ s with x .att ̸= v is found, and no updates are performed. But stat(s→forAll(x | x .att = v))
is for x : s do x .att := v and always iterates completely through all elements of s, assigning
v to x .att for each x ∈ s. The logical and imperative interpretations are related naturally by the
property

def (E) ⇒ [stat(E)]E

This relationship also forms the basis for reverse-engineering existing transformation code in hybrid
or imperative languages to specifications.

Conclusions

We have shown how a systematic language-independent framework and techniques for model trans-
formation verification can be given, and we have illustrated the use of these techniques on represen-
tative case studies of different kinds of transformation. A significant benefit of formally modelling
transformation specifications, implementations and verification properties, is that the mapping of
these into verification formalisms such as B or Z3 can be automated. Such mappings have been
incorporated into the UML-RSDS tools [49].

We have shown the problems which arise with regard to verification if transformation implemen-
tations use techniques such as recursive descent or implicit rule invocation. We therefore recommend
that transformations are structured in accordance with patterns such as Conjunctive-implicative
form and Map objects before links in order to make verification feasible.

Acknowledgements

Richard Paige of York University and Steffen Zschaler of King’s College London have contributed
to the ideas presented here. The ETL specification presented in Section 10 is due to Kolovos et al.,
and appeared in [28]. The GrGen specification presented in Section 11 is due to Pieter Van Gorp
and appeared in [27].

References

1. L. Ab Rahim, J. Whittle, Verifying semantic conformance of state machine-to-Java code generators,
MODELS 2010, LNCS, 2010.

2. K. Anastasakis, B. Bordbar, J. Kuster, Analysis of Model Transformations via Alloy, Modevva 2007.
3. K. Anastasakis, B. Bordbar, G. Georg, I. Ray, On challenges of model transformation from UML to

Alloy, Software Systems Modelling, vol. 9, no. 1, 2010.
4. M. Asztalos, P. Ekler, L. Lengyel, T. Levendovszky, G. Mezei, T. Meszaros, Automated verification by

declarative description of graph rewriting-based model transformations, MPM 2010.
5. T. Baar, The definition of transitive closure in OCL: limitations and applications, EPFL, Switzerland.
6. B. Becker, D. Beyer, H. Giese, F. Klein, D. Schilling, Symbolic invariant verification for systems with

dynamic structural adaption, ICSE 2006, ACM Press.
7. B. Becker, L. Lambers, J. Dyck, S. Birth, H. Giese, Iterative development of consistency-preserving

rule-based refactorings, ICMT 2011, LNCS vol. 6707, 2011.
8. J. Bezivin, F. Buttner, M. Gogolla, F. Jouault, I. Kurtev, A. Lindow, Model Transformations? Trans-

formation Models!, ATLAS group, University of Nantes, 2006.
9. A. Boronat, R. Heckel, J. Meseguer, Rewriting logic semantics and verification of model transformations,

FASE 2009, pp. 18–33, 2009.
10. A. Brucker, B. Wolff, The HOL-OCL book, Technical report 525, ETH Zurich, 2006.
11. A. Brucker, M. Krieger, B. Wolff, Extending OCL with null-references, MODELS 2009 Workshops,

LNCS 6002, pp. 261–275, 2010.
12. F. Buttner, J. Cabot, M. Gogolla, On validation of ATL transformation rules by transformation models,

MoDeVVa 2011.
13. F. Buttner, M. Egea, J. Cabot, M. Gogolla, Verification of ATL transformations using transformation

models and model finders, ICFEM 2012.
14. J. Cabot, R. Clariso, E. Guerra, J. De Lara, Verification and Validation of Declarative Model-to-Model

Transformations Through Invariants, Journal of Systems and Software, 2010.
15. J. Cabot, R. Clariso, D. Riera, UMLtoCSP: a tool for the verification of UML/OCL models using

constraint programming, Automated Software Engineering ’07, pp. 547–548, ACM Press, 2007.
16. D. Calegari, C. Luna, N. Szasz, L. Tasistro, A type-theoretic framework for certified model transforma-

tions, in FM 2011, LNCS vol. 6527, pp. 112–127, 2011.
17. Drey, Z., Faucher, C., Fleurey, F., Mahe, V., Vojtisek, D., Kermeta Language Reference Manual,

https://www.kermeta.org/docs/KerMeta-Manual.pdf, April, 2009.

18. H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, G. Taentzer, Information preserving bidirectional model
transformations, FASE 2007, pp. 72–86, 2007.

19. FAA, DO-178C, Software considerations in airborne systems and equipment certification, January 2012.
20. H. Giese, S. Glesner, J. Leitner, W. Shafer, R. Wagner, Towards verified model transformations, pro-

ceedings of 3rd international workshop on model-driven engineering, verification and validation (MOD-
EVVA), 2006.

21. J. Goguen, R. Burstall, Institutions: abstract model theory for specification and programming, Journal
of the ACM, 39: 95–146, 1992.

22. F. Hermann, H. Ehrig, F. Orejas, K. Czarnecki, Z. Diskin, Y. Xiong, Correctness of model synchronisa-
tion based on Triple Graph Grammars, MODELS 2011, LNCS vol. 6981, pp. 748–752, Springer-Verlag,
2011.

23. K. Inaba, S. Hidaka, Z. Hu, H. Kato, K. Nakano, Graph-transformation verification using monadic
second-order logic, PDPP ’11, 2011.

24. F. Jouault, I. Kurtev, Transforming Models with ATL, in MoDELS 2005, LNCS Vol. 3844, pp. 128–138,
Springer-Verlag, 2006.

25. E. Guerra, J. de Lara, D. S. Kolovos, R. F. Paige, O. Marchi dos Santos, transML: A Family of
Languages to Model Model Transformations, MODELS 2010, pages 106–120, Springer-Verlag, LNCS
volume 6394, 2010.

26. E. Jakumeit, S. Buchwald, M. Kroll, GrGen.NET: the expressive, convenient and fast graph rewrite
system, International Journal on Software Tools for Technology Transfer (STTT), 12: 263–271, 2010.

27. S. Kolahdouz-Rahimi, K. Lano, S. Pillay, J. Troya, P. Van Gorp, Goal-oriented measurement of model
transformation methods, submitted to Science of Computer Programming, 2012.

28. D. S. Kolovos and R. F. Paige and F. Polack, The Epsilon Transformation Language, ICMT, 2008, pp.
46–60.

29. M. Kuhlmann, M. Gogolla, From UML and OCL to relational logic and back, MODELS 2012, Springer
LNCS, vol. 7590, 2012.

30. J. Kuster, Definition and validation of model transformations, SoSyM vol. 5, no. 3, pp. 233–259, 2006.
31. K. Lano, The B Language and Method, Springer-Verlag, 1996.
32. K. Lano, Using B to Verify UML Transformations, MODEVA 06, 2006.
33. K. Lano, S. Kolahdouz-Rahimi, Migration case study using UML-RSDS, TTC 2010, Malaga, Spain,

July 2010.
34. K. Lano, S. Kolahdouz-Rahimi, Slicing techniques for UML models, Journal of Object Technology, vol.

10, 2011.
35. K. Lano, S. Kolahdouz-Rahimi, I. Poernomo, Comparative evaluation of model transformation specifi-

cation approaches, International Journal of Software Informatics, Vol. 6, Issue 2, 2012.
36. K. Lano, S. Kolahdouz-Rahimi, T. Clark, Comparison of model transformation verification approaches,

Modevva workshop, MODELS 2012.
37. K. Lano, S. Kolahdouz-Rahimi, Model-driven development of model transformations, ICMT 2011, 2011.
38. K. Lano, S. Kolahdouz-Rahimi, Constraint-based specification of model transformations, Journal of

Systems and Software, to appear, 2012.
39. K. Lano, S. Kolahdouz-Rahimi, T. Clark, Verification of model transformations, Dept. of Informatics,

King’s College London, 2012.
40. T. Massoni, R. Gheyi, P. Borba, Formal refactoring for UML class diagrams, 19th Brazilian symposium

on Software Engineering, 2005.
41. T. Mossakowski, C. Maeder, K. Luttich, The Heterogeneous Tool Set, University of Bremen, Germany,

2012.
42. A. Narayanan, G. Karsai, Towards verifying model transformations, GT-VMT 2006, ENTCS, 2006.
43. A. Narayanan, G. Karsai, Verifying model transformations by structural correspondence, GT-VMT 2008.
44. OMG, Object Constraint Language v2.3.1 Specification, formal/2012-01-02, 2012.
45. I. Poernomo, J. Terrell, Correct-by-construction Model Transformations from Spanning tree specifica-

tions in Coq, ICFEM 2010.
46. A. Rensink, A. Schmidt, D. Varro, Model checking graph transformations: A comparison of two ap-

proaches, ICGT 2004, LNCS vol. 3256, 2004.
47. M. Soeken, R. Wille, R. Dreschsler, Encoding OCL data types for SAT-based verification of UML/OCL

models, University of Bremen, 2012.
48. K. Stenzel, N. Moebius, W. Reif, Formal verification of QVT transformations for code generation,

MODELS 2011, Springer LNCS vol. 6981, 2011.
49. UML-RSDS toolset and manual, http://www.dcs.kcl.ac.uk/staff/kcl/uml2web/, 2013.
50. D. Varro, S. Varro-Gyapay, H. Ehrig, U. Prange, G. Taentzer, Termination analysis of model transfor-

mations by Petri Nets, ICGT 2006, LNCS vol. 4178, 2006.
51. Z3 Theorem Prover, http://research.microsoft.com/en-us/um/redmond/projects/z3/, 2012.

A Structure isomorphism

As described in Section 2, a structurem for a language L can be considered to be a tuple ((E1
m , . . . ,Ek

m), (f m1 , ..., f ml)) of
the sets Ei

m of instances of each entity type Ei of L, and of the maps f mj : Ei
m → Typ representing the

values of the data features of these entity types.

Structures are considered isomorphic if they cannot be distinguished on the basis of feature values. Let
hi : Ei

m → Ei
m′

be a family of bijections between the entity type instance sets for two structures m and
m ′ of the same language L. Then m and m ′ are isomorphic m ≃ m ′ if:

1. hi(x) = x ′ ⇒ f mj (x) = f m
′

j (x ′) for each attribute feature fj of Ei , x ∈ Ei
m

2. hi(x) = x ′ ⇒ hk (fj (x)) = f m
′

j (x ′) for each single-valued role feature fj : Ei → Ek of Ei , x ∈ Ei
m

3. hi(x) = x ′ ⇒ hk (| fj (x) |) = f m
′

j (x ′) for each set-valued role feature fj : Ei → Set(Ek) of Ei , x ∈ Ei
m .

4. hi(x) = x ′ ⇒ fj (x); hk = f m
′

j (x ′) for each sequence-valued role feature fj : Ei → Sequence(Ek) of Ei ,
x ∈ Ei

m .

This has the consequence that m and m ′ satisfy the same sentences of Sen(L).

B Notations and logical foundations

In this paper we use a number of different formal notations: internally within transformations and their
input and output languages L we use an OCL-like notation, eg.:

A→forAll(a | a.x > 0)

However by the semantic mapping of a language L to a first-order set theory (FOL) language LL, such
constraints can be considered as being simply alternative syntax for conventional logical formulae, eg.:

∀ a : A · x (a) > 0

These alternative notations have no semantic distinction. Likewise we treat the usual model transfor-
mation concept of ‘model’, ie., an instance of a modelling language defined by a metamodel, as equivalent
to the FOL concept of a mathematical model and interpretation for a FOL theory. Unlike [5], we consider
that models are implicitly infinite. Models have finite interpretations for all entity types, but depend upon
finite set theory and also upon infinite sets such as interpretations of the set of integers. Thus even the ∅
structure for a language is infinite. The concept of a structure, as an interpretation for the symbols of a
language which does not necessarily satisfy all the language constraints, is also considered equivalent for
OCL and FOL.

We also use FOL notation for metalogical reasoning and definitions.

The Godel Completeness Theorem holds for first order set theory: every consistent set of sentences of
LL has a model (which will be infinite, since all models contain an interpretation of N). Thus if a property
φ is valid in all models of a consistent theory ΓL, it must be provable from ΓL.

Z3 and B AMN have distinct notations for logic and set theory. Only a subset of the OCL/FOL notations
can be expressed in a semantically equivalent manner in Z3 and B AMN, and we have explicitly identified in
Sections 6 and 7 where these issues arise. For Z3, numeric types and operators can be considered equivalent
to the OCL/FOL forms, eg., Z3 Int expresses OCL Integer and FOL Z. The Z3 syntax

(forall ((a A)) (> (x a) 0))

equivalently expresses the example constraint. However, OCL sets are modelled by Z3 lists, so that operators
such as →including() on sets need to be encoded by conditional expressions, to avoid multiple copies of
elements in lists. Strings are encoded as atomic elements or as lists of integers. Subtyping cannot be directly
represented. The relation of provability ⊢Z3 in Z3 is more restricted than ⊢ for FOL.

In B, the key semantic distinction from OCL/FOL is the finiteness of INT and Object OBJ, and the
lack of representation for real numbers. Thus numeric values outside the range of INT have no denotation
in B AMN and must be avoided in the transformation being analysed.

The constraint in B notation is:

!a.(a : A => x(a) > 0)

In order to obtain semantic convergence between OCL/FOL and B AMN, a finitary set theory could
be used for the former. In this version of set theory (ZF set theory with the axiom of infinity replaced by
its negation), all sets are finite. The standard models of such a set theory are those based on the set Vω

of hereditarily finite sets: thus the models themselves remain infinite. Completeness is true for finitary set
theory.

In UML-RSDS we use int and double in the specification language to indicate the use of the bounded
numeric types. For attributes and values of these types, additional definedness clauses are needed, eg.:
def (e) includes the condition

−231 + 2 ≤ e and e ≤ 231 − 2

for expressions e whose values should be in int. Likewise, prior to creation of an object, some test that
sufficient resources exist to complete the creation should be performed.

