
1A Lazy Non-Deterministic Functional LanguageA. N. Clark, Department of Computing, University of BradfordBradford, West Yorkshire, BD7 1DP, UKe-mail: a.n.clark@comp.brad.ac.uk, tel.: (01274) 3851331 IntroductionA useful starting point for the development of programs which involve search, suchas Knowledge Based Systems, is a naive program. Such a program employs non-deterministic choice to explore a search space and pays no attention to the controlwhich is necessary in order to make the best choice at each stage. Such a startingpoint has the merit that it is complete, i.e. it describes every possible solution andthat it is computational, i.e it describes (abstract) calculations and can be used asthe starting point of program re�nement. Re�nement is used to introduce clevertechniques which control the exploration of the search space and which graduallytransform a non-deterministic naive program into a deterministic clever (or Knowl-edge Based) program.The techniques for the re�nement of naive programs and the properties whichmust be upheld are described in (?) and (?). This paper addresses the starting pointof the re�nement process: the naive program. Although a naive program provides auseful starting point for re�nement and is complete with respect to all the possibleoutcomes it usually exhibits exponential computational complexity which prohibitsusing the initial naive system as a prototype.The computational complexity of naive programs arises due to the simple andobvious operational semantics for non-deterministic choice: at the point in the cal-culation which the choice is made, the calculation splits into two calculations whichcontinue independently. The result of performing a single program is selected atrandom from the results of all the calculations which the program gives rise to.If this operational semantics is implemented as a programming language for pro-totyping naive systems then the resources required are beyond the capabilities ofmost computer systems for all but the simplest naive programs. The operationalsemantics for naive programs must be made more sophisticated in order to use themas prototypes.One possibility is that non-deterministic choice is deferred until it is necessary,in the hope that the choice will never have to be made. When a non-deterministicchoice is called for, a single value is returned (called an nd-value) which containsboth alternatives. Computation need not be duplicated since the calculation neversplits into two. Unfortunately, this simple scheme causes problems when nd-valuesare copied within a calculation. Since an nd-value represents one of the choicesit contains, when an nd-value is copied so is the ability to choose. This is to becompared with the case where the choice is made eagerly, if the value is then copiedthe choice has already been made. These two alternatives produce very di�erentoutcomes.This paper describes a system which implements non-deterministic choice using

2nd-values, but imposes constraints on the format of programs which ensures thatthey are consistent with eager choice. The constraints take the form of a type systemwhich prevents programs which copy nd-values from being written. Functions whichwish to copy nd-values must be identi�ed and use a special function notation: �-functions which can be performed automatically. Such functions are shown to besyntactic sugar for expressions which reify nd-values, manipulate them as d-valuesand then install them back into the calculation as nd-values.This paper is structured as follows. x2 describes a simple functional languagewith non-deterministic choice and uses it to construct a simple KBS application forData Fusion. The application will be used to demonstrate the results of this work.Examples of program execution are given in terms of the number of computationalsteps. x3 introduces a modi�ed language which implements lazy non-deterministicchoice, examples of calculations are given and problems with copying nd-values areidenti�ed. x4 describes a type system which prevents nd-values from being copiedand x5 shows that the forcing of nd-values can be localized within a program frag-ment. x6 shows how the techniques can be applied to the Data Fusion applicationin order to use a naive program as a Data Fusion prototype. Finally, x7 describesrelated work, analyses the results and outlines future work.2 A Naive ProgramA naive program is a computer program which involves choice and which employsno sophisticated techniques to cut down on the number of di�erent choices whichmust be explored before the correct choice is taken. Such systems are convenientlyexpressed in terms of a simple functional programming language which containsprimitives for non-deterministic choice. The syntax of such a language is givenbelow:E ::= I j �I:E j EE j (E; : : : ; E) j if E then E else E j E �E j faili 2 I is a program identi�er; �i:b is a function with argument i 2 I and body b 2 E;e1e2 is an application with operator e1 2 E and operand e2 2 E; (e1; : : : ; en) is ann-tuple where each ei 2 E is a component; if e1 then e2 else e3 is a conditionalexpression where e1 2 E is the antecedent, e2 2 E is the consequent and e3 2 E isthe alternative; e1 � e2 is a non-deterministic choice where e1 2 E or e2 2 E will bechosen non-deterministically; fail is a suicide expression.The operational semantics of this simple language is given by a state transitionmachine. The machine is based upon the SECD machine (?) and includes exten-sions which are necessary for non-deterministic primitives (�) and fail. The essentialdi�erence is that the state transitions hold between single states and sets of statesproduced by executing non-deterministic operators. An similar machine and appli-cation is described in () and an introduction to functional programming is given in(?).Each machine state is a 4-tuple and contains computational values which aredescribed as follows: a list is either empty [] or a cons v : l of a value v and alist l, [v1; v2; : : : ; vn] is shorthand for v1 : (v2 : (: : : (vn : []) : : :)); an n-tuple of

3(s; e; i : c; d) 7�! f(e(i) : s; e; c; d)g(s; e; �i:b : c; d) 7�! f(<i; e; b> : s; e; c; d)g(s; e; (e1e2) : c; d) 7�! f(s; e; e1 : e2 : @ : c; d)g(v : <i; e0; b> : s; e;@ : c; d) 7�! f([]; e0(i 7! v); [b]; (s; e; c; d))g(v : ; ; []; (s; e; c; d)) 7�! f(v : s; e; c; d)g(s; e; (e1; : : : ; en) : c; d) 7�! f(s; e; en : : : : : e1 : [n] : c; d)g(v1 : : : : : vn : s; e; [n] : c; d) 7�! f((v1; : : : ; vn) : s; e; c; d)g(s; e; if e1 then e2 else e3 : c; d) 7�! f(s; e; e1 : [e2; e3] : c; d)g(true : s; e; [e1; e2] : c; d) 7�! f(s; e; e1 : c; d)g(false : s; e; [e1; e2] : c; d) 7�! f(s; e; e2 : c; d)g(s; e; e1 � e2 : c; d) 7�! f(s; e; e1 : c; d); (s; e; e2 : c; d)g(; ; fail : ;) 7�! ;Fig. 1. The Semantics of An ND-Functional Languagevalues (v1; : : : ; vn); an environment is a function from identi�ers to values, given anenvironment e it is extended with a binding between i and v by e(i 7! v); a functionclosure <i; e; b> contains an argument i 2 I , an environment e and a body b 2 E;and, booleans true and false.Machine instructions are values which occur in the control of the machine: ap-plication @; n-tuple construction [n]; and boolean choice [e1; e2] where e1 2 E ande2 2 E are consequent and alternative respectively.A machine state is a 4-tuple (s; e; c; d) where s is a sequence of values; e is anenvironment; c is a sequence of program expressions and machine instructions andd is either () or a machine state. The components of the machine state are referredto as the stack, environment, control and dump respectively.The transition function for the machine maps a single machine state to a set ofmachine states and is de�ned in �gure 1. Each line in the de�nition corresponds toa set of transitions created by consistently substituting values of the suitable typesfor the variables. The functional language is very austere, it can be extended byde�ning syntactic sugar which are new syntactic constructs de�ned from existingones. The sugaring and desugaring is described (?).The language may also be extended with builtin data types and operators overthose data types, for example integers and arithmetic over integers. The applicationof builtin operators is described by the following evaluation rule:(v : f : s; e;@ : c; d) 7�! (f(v) : s; e; c; d)providing that f(v) is de�ned elsewhere.The transition function 7�! maps from single machine states to sets of machinestates. Given a set of machine states S and a powerset operator P , then the typeof the state transition function is de�ned as 7�!: S ! P (S). We can extend 7�! tobe a function which maps sets of states to sets of states as follows:7�!: P (S)! P (S)7�! (P) = Sf7�! (s) j s 2 Pg

4The function can be extended further by the post�x operator � which generatesthe transitive closure of its argument. An evaluation function X� : E ! P (V)translates a program expression e 2 E to a set of program outcomes S 2 P (V).The environment for freely referenced identi�ers in the expression e is representedas �. The evaluation function is de�ned:X�(e) = S i� f([]; �; [e]; ())g 7�!� Q ^ S = fv j ([v]; ; ;) 2 QgThe evaluation function E de�nes the gold standard for any other evaluation strat-egy for naive programs to be measured against. Suppose that another evaluationfunction X 0� : E ! P (V 0) exists such that there is a translation � : V 0 ! V fromoutcomes to outcomes. The following diagrammust commute for the new evaluationstrategy: P (V)E �����X�@@@@RX0� P (V 0)
6��

Our claim is that the functional language is useful as the basis for speci�cationof programs which involve search and in particular the speci�cation and re�nementof Knowledge Based Systems. In order to show that this is the case we will give asimple but representative speci�cation for a Data Fusion application. Data Fusioninvolves receiving a stream of entity observations which must be fused into a globalpicture. The application causes problems for an algorithmic approach because theobserved entities are autonomous and the messages are noisy, may be duplicatedand may not occur in the same order as the events which were observed. DataFusion applications are described in (?) (?) and (?). A model for Data Fusion hasbeen analysed in the MOSES document (?).The model for Data Fusion calculations which we wish to use as a speci�cationis as follows. Each type of entity is described as a non-deterministic �nite statemachine. At each instant in time, all possible entities perform one of their possiblestate transitions. Each observation which is received may contain errors and there-fore is non-deterministically selected from a set of possible correct observations.When an observation is received, we assume that it is correct and describes anentity in the current global picture. If no matching entity exists, then the globalpicture is deleted.A simple implementation of a Data Fusion system is shown in �gure 2. The maindata values are vehicles, messages and states. A vehicle is (i; x; y) where i is aunique identi�er for the vehicle and (x; y) is the current position of the vehicle. Amessage is (t; f) where t is an integer representing the time at which the message

5let move(i; x; y) =let delta = (1+) � I � (�1)in (i; delta x; delta y)let at vehicle vehicles = if member vehicle vehicles then vehicles else faillet trans state =case state of(vs; t;m (t0;) : ms)) (map move vs; t+ 1; m : ms) when t0 > t(vs; t; (t0; f) : ms)) (f vs; t;ms) when t = t0end Fig. 2. A Simple Data Fusion System
was received and f is a guard function which is applied to the current global picturewhen the message is received. A guard function is applied to a value and either actsas if it were the identity function when the value satis�es the guard or acts as ifit were fail otherwise. A state is (vs; t;ms) where vs is the current global picturewhich is a list of vehicles, t is the current time and ms is a list of incoming messages.The function trans performs a single state transition for the current Data Fusionstate. If the next message is in the future then all the vehicles are moved and if amessage is received then it is handled by using the information to check the currentglobal picture. Moving a vehicle is performed using the function move which appliesa non-deterministic function delta to the x and y co-ordinates of the vehicle's currentposition.The function at constructs a simple guard function when applied to a vehicle.The resulting guard function ensures that the vehicle is present in the current globalpicture. If it is not then the guard function performs fail which causes the currentcalculation to die and therefore discard the current global picture.There are a number of simplifying assumptions made about Data Fusion in thesystem shown in �gure 2. These are: messages are always assumed to be correct i.e.they are not noisy, messages are always received in time order and all observableentities are known at the outset. These assumptions are revisited at the end of thepaper.The Data Fusion system described in �gure 2 uses non-deterministic choice todescribe all the possible behaviours of observable entities. This occurs in the moveoperation which non-deterministically selects and applies (1+), I or (�1) to boththe x co-ordinate and the y co-ordinate. If the state of the system before performinga state transition is ([(i; 100; 200)]; 50; []) then the state after the move will be one

6of the following: ([(i; 101; 201); 50; [])([(i; 101; 200); 50; [])([(i; 101; 199); 50; [])([(i; 100; 201); 50; [])([(i; 101; 200); 50; [])([(i; 101; 199); 50; [])([(i; 99; 201); 50; [])([(i; 99; 200); 50; [])([(i; 99; 199); 50; [])The operational semantics of the functional language performs non-deterministicchoice by splitting the machine into two. Each new machine is the same as the origi-nal except that the non-deterministic expression at the head of the control has beenreplaced with one or other of the sub-expressions. Given an interpretation strategywhich treats all machines fairly, this will develop all the possible global picturesconcurrently and therefore guarantee to contain the picture which corresponds toreality.Unfortunately, such an interpretation strategy will perform many equivalent com-putations more than once. Each machine which is created by performing non-deterministic choice in the Data Fusion system di�ers from the others with re-spect to a few simple data values (i.e. the x and y co-ordinates). Many expressions,such as those which test whether the next message should be handled, will behaveidentically on all machines.Another undesirable result of duplicating machines each time non-deterministicchoice is performed is that all the possible choices and values which depend uponthose choices become separated. For example, if after starting with a state ([(i,100,200)],50,ms)and performing several transitions, a message arrives which states that the entitywith identi�er i is in an area identi�ed by x > 120 and y > 215 then many di�erentmachines will have performed computation in vain since their proposed positionsfor the entity do not fall within the speci�ed area.A solution for the �rst problem could be to extend the interpretation strategywith memoizing features which remember the results of performing program ex-pressions. This would allow machines to take advantage of previously evaluatedexpressions. A problem with this improvement is that the evaluation of a programexpression depends upon the current context, di�erent machines will have di�erentcontexts and it may be di�cult to compare contexts. Another objection with thisapproach is that it does not improve the second problem since information is stilldecentralized.Before describing a proposed solution to these problems (in x3) we give someperformance results for two simple non-deterministic programs. Figure 3 shows asimple non-deterministic program and the output, in this font, which is pro-duced when it is executed. The non-determinism arises in the list l where the �rstelement is either 1 or 10 and the second is either 2 or 20. The operator counter isused to simulate some arbitrary computation which is performed by the program,

7let member [] = falsemember x (x :) = truemember x (: l) = member x lcounter n n = ncounter n m = counter (n� 1) ml = [1 � 10; 2 � 20]in member (counter 1002 2) lThe following values were produced after 80390 transitions:1 : true2 : trueThere are incomplete computations, continue? yThe following values were produced after 80422 transitions:3 : false4 : falseNo further values were produced.Fig. 3. Results from program no. 1let member = as in �gure 3counter = as in �gure 3f n1 n2 l = if (member n1 l) & (member n2 l) then l else []l = [1 � 10; 2 � 20]in f (counter 1002 2) (counter 1001 1) lThe following values were produced after 160606 transitions:1: []2: []There are incomplete computations, continue? yThe following values were produced after 160623 transitions:3: [1,2]There are incomplete computations, continue? yThe following values were produced after 160670 transitions:4: []No further values were produced.Fig. 4. Results from program no. 2it takes two positive integer arguments n and m and loops, subtracting 1 from nuntil it is equal to m. The program determines whether or not 2 is a member ofthe list l. Since l stands for four di�erent lists there are four di�erent outcomesfrom the program. The �rst two outcomes correspond to the cases where l is [1; 2]or [10; 2] and the second two outcomes correspond to the cases where l is [1; 20] or[10; 20]. As the output shows, the execution took between 80390 and 80422 machinetransitions to execute.Figure 4 shows a slightly di�erent program and its execution. In this case theoperator f is applied to two integers n1 and n2 and a list l. If both integers aremembers of l then f returns l otherwise it returns the empty list. The executionshows that there are four outcomes and only one of the possible values for l containsboth 1 and 2.The expression counter 1000 0 is performed in 20030 machine transitions. The

8 (s; e; i : c; d) 7�! f(e(i) : s; e; c; d)g(s; e; �i:b : c; d) 7�! f(<i; e; b> : s; e; c; d)g(s; e; (e1e2) : c; d) 7�! f(s; e; e1 : e2 : @ : c; d)g(v1 : v2 : s; e;@ : c; d) 7�! � f([]; e0(i 7! v); [b]; (s; e; c; d))g when v2 = <i; e0; b>f(v2@v1 : s; e; c; d)g otherwise(v : ; ; []; (s; e; c; d)) 7�! f(v : s; e; c; d)g(s; e; (e1; : : : ; en) : c; d) 7�! f(s; e; en : : : : : e1 : [n] : c; d)g(v1 : : : : : vn : s; e; [n] : c; d) 7�! f((v1; : : : ; vn) : s; e; c; d)g(s; e; if e1 then e2 else e3 : c; d) 7�! f(s; e; e1 : [e2; e3] : c; d)g(true : s; e; [e1; e2] : c; d) 7�! f(s; e; e1 : c; d)g(false : s; e; [e1; e2] : c; d) 7�! f(s; e; e2 : c; d)g(s; e; e1 � e2 : c; d) 7�! f(<e; e1>+<e; e2> : s; e; c; d)g(; ; fail : ;) 7�! ;Fig. 5. The Semantics of A Lazily ND-Functional Languagefour di�erent possibilities for l in �gure 3 leads to 4 � 20030 = 80120 � 80422. In�gure 4 the count is performed twice, 4 � 2 � 20030 = 160240 � 160670.3 Delaying Non-Deterministic SelectionTwo problems have been identi�ed with the interpretive strategy of the languagedescribed in x2: evaluation of expressions is unnecessarily duplicated and usefulinformation becomes decentralized. This section describes a modi�cation to thefunctional language which addresses these issues. The solution is to allow non-deterministic choice to be delayed until it is forced by primitive machine operations.This allows information to be localized and removes the requirement for unneces-sary machine duplication. Unfortunately, this solution does not maintain referentialtransparency.The syntax of the functional language is unchanged. There are three new typesof computational value: thunks, nd-values and delayed applications. A thunk is adelayed expression and is represented as <e; b> where e is an environment andb 2 E is a program expression. A thunk contains enough information to evaluatean expression at some later date. An nd-value has the form v1 + v2 and representsa delayed non-deterministic choice between values v1 and v2. A delayed applicationhas the form v1@v2 and represents the delayed application of the operator v1 tothe operand v2.The modi�ed operational semantics for the language has two parts: evaluation ofprogram expressions and forcing of delayed values. Program expression evaluationis shown in �gure 5 and is the same as the machine de�ned by �gure 1 exceptfor the the following. The rule for non-builtin operator application must be ex-tended to deal with the case when the operator is either an nd-value, a thunk ora delayed application. In this case a delayed application is constructed. The rulefor non-deterministic choice is changed so that an nd-value is constructed. Thesub-expressions of a non-deterministic choice expression are themselves expressionswhose evaluation is delayed by creating an nd-value consisting of two thunks.

9(s; e; <i; e0; b> : c; d) 7�! f(s; e; e0 : fi; bg : c; d)g(e0 : s; e; fi; bg : c; d) 7�! f(<i; e0; b> : s; e; c; d)g(s; e; �(v) : c; d) 7�! f(s; e; v : � : c; d)g(v : s; e; � : c; d) 7�! f(�(v) : s; e; c; d)g(s; e; (v1; : : : ; vn) : c; d) 7�! f(s; e; vn : : : : : v1 : [n] : c; d)g(s; e; v1 + v2 : c; d) 7�! f(v1 : s; e; c; d); (v2 : s; e; c; d)g(s; e; <e0; b> : c; d) 7�! f([]; e0; [b]; (s; e; c; d))g(s; e; v1@v2 : c; d) 7�! f(v2 : s; e; v1 : @ : c; d)gFig. 6. The Semantics of Forcing Data ValuesForcing a value means that the most recently delayed evaluation will be per-formed. In the case of nd-values, this will cause the machine to split into two. Inthe case of thunks this will mean that the body of the thunk will be evaluated withrespect to the thunk's environment. In the case of a delayed application this willmean that the operator will be forced and re-applied to its operand.A value is forced by placing it at the head of the control stack. The machinetransitions for forcing a value are shown in �gure 6. There are two new machineinstructions. The �rst is fi; bg where i 2 I and b 2 E which expects an environmenton the head of the stack and replaces the environment with a closure. The second isa data constructor � which expects a value v at the head of the stack and replacesit with the data value constructed by applying � to v. This simple rule covers manydi�erent algebraic data types such as lists and environments.The builtin operators must be updated in order to deal with lazy non-determinism.Each operator must be categorized either as strict or non-strict with respect to non-determinism. If an operator is non-strict then it may be applied to a data valuewithout ensuring that the value is forced. An example of a non-strict operator is :which builds cons pairs. The rule for such a builtin operator is left unchanged.If an operator is strict with respect to non-determinism then an operand must beforced before it is possible to apply the operator. Examples of strict operators are+ and hd. The rule for applying such an operator must be changed, for example:(+ : v1 : v2 : s; e;@ : @ : c; d) 7�! �(v1 + v2 : s; e; c; d) when v1 2 N & v2 2 N(s; e; v2 : v1 : + : @ : @ : c; d) otherwisewhich describes the application of the builtin operator for integer addition. If bothvalues are integers then the builtin operator is applied, otherwise they are bothforced and the operator is re-applied. In the case of + it may be necessary to forcethe values many times before they are reduced to a ground value. Some operatorsare partially strict in the sense that values do not need to be ground before theycan be applied. For example:(v : hd : s; e;@ : c; d) 7�! �(v0 : s; e; c; d) when v = v0 :(hd : s; e; v : @ : c; d) otherwisewhere a value v is continually forced until a cons pair is produced. The head andtail of the cons pair need not be ground in order to return the head.The extensions to the state transition machine meet the two objectives since

10 let member [] = falsemember x (x :) = truemember x (: l) = member x lcounter n n = ncounter n m = counter (n� 1) ml = [1 � 10; 2 � 20]in member (counter 1002 2) lThe following values were produced after 20186 transitions:1 : true2 : trueThere are incomplete computations, continue? yThe following values were produced after 20218 transitions:3 : false4 : falseNo further values were produced.Fig. 7. Results from program no. 1 using nd-valuesnon-determinism is delayed until it is forced by the underlying machine primitives.The number of repeated evaluations for the same expression is reduced and theinformation relating to non-deterministic choice is localized. The following exampleshows how these objectives have been met.Figure 7 shows the evaluation of the same program as shown in �gure 3 exceptthat the non-deterministic choice operator constructs nd-values. There is a signi�-cant saving on the amount of computation which is performed since the machinesare not duplicated and the loops are performed once.Although the objectives have been met, the proposed solution has a serious aw:it does not preserve referential transparency. This property states that equals canalways be substituted for equals and that in particular the value of an identi�ercan always be used instead of a reference to the identi�er. For example consider thefollowing program: let twice(x) = x+ x in twice(10 � 20)If the choice is made before the function twice is applied then the program isequivalent to twice(10) � twice(20)in which case the outcome of the program is either 20 or 40. On the other hand,if the choice is made at the point at which x + x is evaluated then the program isequivalent to (10 � 20) + (10 � 20)in which case the outcome of the program is either 20, 30 or 40.By delaying non-deterministic choice the outcome of the program is counter-intuitive. If the choice is made at the point at which it is expressed then the resultof the program seems correct but the e�ciency gains which are produced by beinglazy are lost.Figure 8 shows the evaluation of the same program as shown in �gure 4 except

11let member = as in �gure 3counter = as in �gure 3f n1 n2 l = if (member n1 l) & (member n2 l) then l else []l = [1 � 10; 2 � 20]in f (counter 1002 2) (counter 1001 1) lThe following values were produced after 40312 transitions:1: []2: []There are incomplete computations, continue? yThe following values were produced after 40422 transitions:3: [1,2]4: [10,2]5: [1,20]6: [10,20]7: [1,2]8: [10,2]9: [1,20]10: [10,20]There are incomplete computations, continue? yThe following values were produced after 40560 transitions:11: []12: []13: []14: []No further values were produced.Fig. 8. Results from program no. 2 using nd-valuesthat nd-values are constructed. Although there is a signi�cant computational savingcompared to the original, the semantics of evaluation causes the outcomes to beincorrect. This occurs due to the duplication of an nd-value in the body of theoperator f . When the antecedent of the if-expression in f is true the value l isreturned; but l is an nd-value which represents all of the alternative lists, eventhose for which the antecedent will fail. As the outcomes of the program show, allthe alternative list values are produced. Values are produced more than once as aresult of the way that nd-values are forced on the machine.IfX 0 is the evaluation function for the modi�ed machine and � forces all outcomesthen it is easy to see that the following diagram does not commute:P (V)E �����X�@@@@RX0� P (V 0)
6��

12i.e. the nd-evaluation mechanism is not consistent with the evaluation mechanismwhich is described in x2.4 Linear Logic and Non-DeterminismWe wish to ensure that a program behaves as though non-deterministic choiceoccurs or appears to occur where it is expressed in the program. This has a majorimplication: �-reduction cannot be applied to applications where the operand isnon-deterministic, unless it can be guaranteed that the operand will never be copiedin the process. This allows non-deterministic choice to be delayed without producingcounter intuitive results. For example we wish to outlaw the following program:let dup(x) = (x; x) in dup(1 � 2)whereas the following program is legal (for deterministic x values):let �lter(l) = if x 2 l then x else fail in �lter([1; 2; 3] � [4; 5; 6])The restrictions force formal parameters in �-expressions to be referenced at mostonce in the function body when there is the possibility of an nd-value being suppliedas the actual parameter. This is very restrictive since it may not be known inadvance whether or not an nd-value will be supplied. The syntax of the functionalprogramming language is extended with �-expressions:E ::= I j �I:E j �I:E j EE j (E; : : : ; E) j if E then E else E j E �E j failA �-expression behaves like a �-expression except that when it is applied, it ensuresthat any actual parameter is forced to completion before it is bound to the formalparameter. A �-closure is a new type of computational value which is represented as[i; e; b] where the components are the same as those for a �-closure. The operationalrules for �-expression evaluation and application are as follows:(s; e; �i:b : c; d) 7�! ([i; e; b] : s; e; c; d)([i; e0; b] : v : s; e;@ : c; d) 7�! � ([]; e0 � (i 7! v); [b]; (s; e; c; d)) when !(v)([i; e0; b] : s; e; v : @ : c; d) otherwisewhere ! is a predicate which is true of all d-values and false otherwise. Using �-expressions, the function dup can be de�ned:let dup = �x:(x; x) in dup(1 � 2)The rules which de�ne a legal program must show that no �-function which refersto its formal parameter more than once is applied to an nd-value. In order to dothis we employ techniques from linear logic (?). Firstly we will de�ne some terms.A program value may be either an nd-value when it has been constructed usingthe � operator or a d-value otherwise. The process of transforming an nd-value intoa collection of d-values is referred to as making the nd-value ground. A function isa data value which can be applied to a value. The meaning of function applicationis de�ned by the evaluation X in x2. The process by which functions are actuallyapplied is de�ned to be safe when the outcome is consistent with the evaluation as

13described in x2 otherwise it is unsafe. A function is nd-safe when it does not copyits formal parameter, otherwise it is nd-unsafe. A function may be an nd-valuein which case it is an nd-function otherwise it is a d-function. For the proposedfunction language the following table describes application safety:nd-value d-valuend-safe safe safend-unsafe unsafe safewhere columns represent operand types, rows represent operator types and theentries de�ne whether or not the application of the operator to the operand is safeor unsafe.A program type is described by the following syntax de�nition:T ::= B j B̂ j T !L T j T)L TB ::= int j bool j : : :L ::= (T;D)D ::= t j fT is the syntactic category of program types, B are basic types, L are function typelabels and D describe whether a function is deterministic or not. A program typedenotes a collection of values. Each program expression has a type which describeswhich collection of values the outcome of performing the expression falls into. Theoutcome of performing a program expression may be one of the following: a basicvalue such as an integer or a boolean denoted by b 2 B; an nd-value which iscomposed only of basic values denoted b̂; or a function which is denoted t1 !l t1or t1)l t2 depending on various properties of the function. In both cases t1 is thetype of the arguments of the function and t2 is the type of the result of the function.As noted above, a function may be nd-safe or nd-unsafe. These terms refer towhether or not a function may be safely applied to an nd-value. A function is itselfmay be an nd-value or a d-value which determines whether or not it may safelybe passed as an argument and whether or not the result of the application is annd-value. The type of an nd-safe function is denoted by t1)l t2 and an nd-unsafefunction is denoted by t1 !l t2. The label on a function type describes whetherthe value may be an nd-value or not. A label (; t) means that the value of anexpression with this type is an nd-function and a label (; f) means that the valueis a d-function. Finally, an nd-function can be made ground in which case its typeis t contained in the label: l = (t;); a d-function may also be made ground in whichcase the type of the resulting value is the �rst component of the label, but this willbe the same as the type i.e. t = t1 !(t;d) t2 and t = t1)(t;d) t2 for all d-functions.

14 G(�̂) = �G(!(�;)) = �G()(�;)) = �G(�) = (�)D(̂) = fD(!(;d)) = dD()(;d)) = dD() = tD(<>) = tD(< 7! � >) = D(�)D(A1; A2) = D(A1)&D(A2)N(�̂) = �̂N(�1 !(�;) �2) = �1 !(�;t) �2N(�1)(�;) �2) = �1)(�;t) �2N(�) = �̂Fig. 9. Typechecking OperatorsFigure 9 de�nes operators which are used to test and transform types. The opera-tors are as follows: G is used to transform a type to a ground type, i.e. a type whichdenotes possibly nd-values to a type which denotes only d-values; D is a predicatedetermines whether or not a type, or a bag of type assumptions (see below) denotesnd-values; �nally, N transforms a type which denotes possibly d-values to a typewhich denotes de�nately nd-values.A relation ` is de�ned which associates a type with all nd-safe programs, i.e.all those programs which do not apply an nd-unsafe function to an nd-value. Therelation is de�ned using a collection of rules each of which is of the form:a1a2: : :anc xwhich de�nes that statement c holds providing that all the statements ai hold; x isa label for the rule.The relation is a set of 3-tuples (A; e; t) and is written A ` e : t when (A; e; t) 2`.The components of each tuple are: A a collection of type assumptions; e a programexpression; and t a type. The type assumptions contain associations between iden-ti�ers and types which freely occur in e and an element of the relation A ` e : tshould be read as stating that program expression e has type t when all the freelyreferenced identi�ers in e have types assigned by A.A collection of assumptions contains mappings between program identi�ers andtypes, i 7! t. The value A is a bag of such mappings where <> is the empty bag,<v> is a singleton bag containing the value v and A1; A2 is `bag concatenation'.Type systems for ordinary programming languages use relationships of the formS ` e : t where S is a set of identi�er/type mappings. In such languages the

15assumptions which are contained in S may be used as many times as is required,i.e. identi�ers in S may be referenced an arbitrary number of times. For programsinvolving nd-values, this is not the case: we wish to control the number of times anidenti�er is referenced. Bags of type assumptions allow us to do this.The rules which de�ne the type relation are described below. Type equality isde�ned by adding in the necessary information to either of the types in order thatthey are both ground or non-ground. For example int and ^int are equal by adding a^ to int. This rule allows types to be equal when they di�er only in the ground-nessof the values which they denote and also ensures that non-ground-ness is preservedwhen comparing types. Constants k are typed by rule (a):<> ` k : b (a)where b 2 B is the type of constant k. An identi�er i is typed by (b):<i 7! t> ` i : t (b)Notice that the type assumptions must contain exactly one mapping which is forthe required identi�er. Nd-safe functions are typed by (c):Ani; <i 7! t1> ` e : t2G(A)ni; <i 7! t1> ` e : t3t = t1)(t;t) t3A ` �i:e : t1)(t;D(Ani)) t2 (c)The rule (c) de�nes that the type of i need be added at most once to the typeassumptions in order to type the body of the function. This means that the valueof the identi�er i is never copied during the execution of the function. Nd-unsafefunctions are typed by rule (d):A;< i 7! t1 >+ ` e : t2G(A); < i 7! t1 >+ ` e : t3t = t1 !(t;t) t3A ` �i:e : t1 !(t;D(A)) t2 (d)The rule (d) de�nes that the type of i needs to be added more than once to thetype assumptions, i.e. the value of i might be copied during the execution of thebody e. The type of �-functions is given by rule (e):A;< i 7! G(t1) >+ ` e : t2G(A); < i 7! G(t1) >+ ` e : t3t = t1)(t;D(A)) t3A ` �i:e : t1)(t;D(A)) t2 (e)Rule (e) adds the type of i to the assumptions as many times as is required. Thetype of i is made ground using G, this is because the application of a �-functiongrounds its argument as described above. The type of nd-unsafe function application

16 let member = as in �gure 3counter = as in �gure 3f n1 n2 = �l: if (member n1 l) & (member n2 l) then l else []l = [1 � 10; 2 � 20]in f (counter 1002 2) (counter 1001 1) lThe following values were produced after 40469 transitions:1: []2: []There are incomplete computations, continue? yThe following values were produced after 40486 transitions:3: [1,2]There are incomplete computations, continue? yThe following values were produced after 40533 transitions:4: []No further values were produced.Fig. 10. Results from program no. 2 using nd-values and a �-functionis described by rule (f): A1 ` e1 : t1 !(;t) t2A2 ` e2 : t1D(t1)A1; A2 ` e1e2 : t2 (f)Rule (f) de�nes that nd-unsafe function application is well typed when the type ofthe argument agrees with the type of the function domain and the argument typeis deterministic. The type of nd-safe function application is described by rule (g):A1 ` e1 : t1)(;t) t2A2 ` e2 : t1A1; A2 ` e1e2 : t2 (g)Rule (g) de�nes that nd-safe function application is well typed when the argumenttype is the same as the function domain type. There is no requirement that theargument type is deterministic. Finally, rule (h) describes the type of a choiceexpression: A1 ` e1 : t1A2 ` e2 : t1A1; A2 ` e1 � e2 : N(t1) (h)Rule (h) uses the operator N to transform a possibly ground type to a non-deterministic type.Figure 10 shows program 2 which has been changed to introduce a �-function toprotect the repeated references to the identi�er l in the body of f . The repeatedevaluation of program expressions which is necessary due to non-determinism is lo-calized within the body of f . Notice, however that once an nd-value has been forced,the evaluation strategy causes subsequent program expressions to be performed for

17let member = as in �gure 3counter = as in �gure 3f n = �l: if (member n1 l) then hd l else faill = [1 � 10; 2 � 20]in counter 1001 (f 0 (counter 1001 1) l)The following values were produced after 60184 transitions:1: 12: 1No further values were produced.Fig. 11. Results from program no. 3 using nd-values and a �-functioneach outcome of the force; in other words: forcing a value splits computation andthere is no way of joining it back together again.Suppose that : E ! F is a translation from naive syntax to nd-syntax whichinserts �-functions in order that the program is well typed. Then we claim that thefollowing diagram commutes: E? P (V)-X�
F P (V 0)6��-X0�which shows that the nd-evaluation mechanism is consistent with the d-evaluationmechanism after nd-unsafe function application has been removed by introducing�-functions. 5 Desugaring �-functionsA �-function can be used to localize the duplication of expression evaluation. Un-fortunately, as soon as an nd-value is forced by applying a �-function to it there isno way of joining the split computation back together again. For example, �gure 11shows a program which involves applying a �-function to an nd-value. The calcula-tion proceeds as follows. The identi�er l is bound to an nd-value, a counter countsup to 1000, l is passed to f causing computation to split into four, two of the listscontain 1 and both of these computations return 1 as the head of the list, since twooutcomes are produced from f the expression which counts to 1000 is performedtwice. The number of transitions is therefore: 20030+ (2 � 20030) = 60090 � 60184.Although the nd-value must be forced when f is called, the results from the callof f can be re-composed as an nd-value. If this is done, then the �nal countingexpression will be performed only once. Furthermore, the outcomes of the programshown in �gure 11 are both identical. Once an nd-value has been forced, there isno way of knowing whether information is being duplicated.In order to address these problems we propose two new operators: I and R whichare pronounced install and reify respectively. The operator R is applied to a valuewhich is possibly an nd-value and returns all the alternatives which it represents

18 let member = as in �gure 3counter = as in �gure 3map [] = []map f (x : l) = (f(x)) : (map f l)append [] l = lappend (x : l1) l2 = x : (append l1 l2)atten [] = []atten (x : l) = append x (atten l)remdups [] = []remdups (x : l) = remdups l when member x lremdups (x : l) = x : (remdups l)f n l = if member n l then [hd l] else []f 0 n1 n2 l = I(remdups(map(f n1 n2))(R(l)))l = [1 � 10; 2 � 20]in counter 1001 (f 0 (counter 1001 1) l)The following values were produced after 40527 transitions:1: 1No further values were produced.Fig. 12. A desugared �-function.as a list of d-values. The operator I is applied to a list of d-values and returns annd-value which contains the members of the list as alternatives. Using I and R, the�-function notation may be viewed as sugar:�i:e = �i:I(map(�i:e)(R(i)))where the value of i is forced using R, each alternative is processed separately using�i:e and the result is packaged up as a single value using I . If more informationis known about the �-function, then more e�cient desugarings are possible, forexample: �l:if p(l) then f(l) else failcan be desugared asI(atten(map(�l:if p(l) then [f(l)] else [])(R(l))))where atten is an operator which attens a list of lists. Furthermore, if remdupis an operator which removes duplicates from a list of values then the following isevent more e�cient:I(remdup(atten(map(�l:if p(l) then [f(l)] else [])(R(l)))))These transformations are used in �gure 12 which is an equivalent program to thatshown in �gure 11. The counting expressions are evaluated once only in each caseand only one outcome is produced, since duplicate outcomes have been removed.6 Applying ND Technology to Data FusionThe Data Fusion example which is de�ned in x2 uses non-determinism to advancethe entities in the current global picture. The non-determinism is required because

19if no information is received to the contrary we must assume all the possible movesfor an entity have taken place. At any future time, messages may be received whichrule out many of the possible moves. The model of Data Fusion shows a very simpletype of message which reports a de�nate observation of an entity at a particularposition.The Data Fusion example was executed with the following initial state:([(1; 0; 0); (2; 10; 20)]; 0; [(2; at(1; 0; 0)); (2; at(2; 10; 21))])which describes two entities with identi�ers 1 and 2 and positions (0; 0) and (10; 20)respectively, a current time of 0 and two messages. Both messages occur at time 2and are de�nate sightings of entities. The �rst sighting is for entity 1 at position(0; 0) and the second sighting is for entity 2 at position (10; 21).When the functional language with the naive operational semantics described inx2 was used for the Data Fusion application, the result was never produced, evenfor this small example. The combinatorial explosion of machines caused the systemto run out of space. When using the technology described in x5 the result was asfollows:The following values were produced after 76113 transitions:1: ([(1,0,0),(2,10,21)],2,[])The reasonable performance is due to the rei�cation and installation of nd-values.7 Conclusion and Further WorkNaive systems are a useful approach to the development of computer applicationswhich involve search. This includes many branches of Arti�cial Intelligence softwareincluding Knowledge Based Systems. A problem with naive systems is that theyare di�cult to use as initial prototypes because their obvious operational seman-tics leads to a combinatorial explosion. This paper has described the problem andidenti�ed a potential solution.The proposed solution is not complete. The following areas of work remain:1. The typechecking system has not been implemented. As it stands it is not asgeneral as it might be, for example application of nd-functions is not allowed.2. The introduction of �-functions has not been automated. This should berelatively easy.3. The desugaring of �-functions has not been automated. It should be possibleto translate �-functions to combinations of list, R and I expressions.4. The Data Fusion example is very simple. There are many other areas of suchan application where non-determinism can be used. For example messagesmay include noise, may be out of time order and new entities may be observed.These areas would be useful application drivers for the technology proposedin this paper.

20 ReferencesClark, A. N. 1994 Pattern Recognition of Noisy Sequences of Behavioural Events UsingFunctional Combinators. Computer Journal 37. 5.Clark, A. N. 1996 A Formal Basis for the Re�nement of Rule Based Transition Systems.The Journal of Functional Programming to appear March 1996.Field, A. J. & Harrison, P. G. 1989 Functional Programming Addison-Wesley.GEC CTR MOSES phase III.GEC CTR MOSES phase IV.Haugh, J. An Overview of M2, a Data Fusion Expert System. Admiralty Research Estab-lishment, Technical Memorandum AXT87005.Lakin, W. L. & Miles, J. A. H. 1985 IKBS in Multi-Sensor Data Fusion. in Proc. 1st IEEInt. Conf. Advances in C3 Systems, Bournemouth.Landin, P. J. 1964 The mechanical evaluation of expressions. The Computer Journal, 6.Pecora, V. J. 1984 EXPRS A Prototype Expert System Using Prolog for Data Fusion.The AI Magazine, Summer.Peyton Jones, S. L. 1987 The Implementation of Functional Programming LanguagesPrentice-Hall International Series in Computer Science.Wadler, P. 1990 Linear types can save the world! IFIP TC 2 Working Conference omProgramming Concepts and Methods. North Holland.

A lazy non-deterministic functional language.

CLARK, Anthony <http://orcid.org/0000-0003-3167-0739>

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/11929/

Copyright and re-use policy

Please visit http://shura.shu.ac.uk/11929/ and
http://shura.shu.ac.uk/information.html for further details about copyright
and re-use permissions.

