Middlesex
University
London

Middlesex University Research Repository

An open access repository of

Middlesex University research

http:/leprints.mdx.ac.uk

Clark, Tony (1997) Metaclasses and reflection in smalltalk. Technical
Report. University of Bradford.

Available from Middlesex University’s Research Repository at
http://eprints.mdx.ac.uk/6181/

Copyright:
Middlesex University Research Repository makes the University’s research available electronically.

Copyright and moral rights to this thesis/research project are retained by the author and/or
other copyright owners. The work is supplied on the understanding that any use for
commercial gain is strictly forbidden. A copy may be downloaded for personal,
non-commercial, research or study without prior permission and without charge. Any use of
the thesis/research project for private study or research must be properly acknowledged with
reference to the work’s full bibliographic details.

This thesis/research project may not be reproduced in any format or medium, or extensive
quotations taken from it, or its content changed in any way, without first obtaining permission
in writing from the copyright holder(s).

If you believe that any material held in the repository infringes copyright law, please contact
the Repository Team at Middlesex University via the following email address:

eprints@madx.ac.uk

The item will be removed from the repository while any claim is being investigated.

http://eprints.mdx.ac.uk/
mailto:eprints@mdx.ac.uk

Metaclasses and Reflection in Smalltalk

A. N. Clark, Department of Computing, University of Bradford
Bradford, West Yorkshire, BD7 1DP, UK
e-mail: A.N.Clark@comp.brad.ac.uk, tel.: (0274) 385133
September 18, 1997

Keywords: object-oriented, metaobjects, reflection, inheritance, message passing.

1 Abstract

Many Object-Oriented Programming Languages provide reflective features which may be used
to control the interpretive mechanism of the language. Often, these features are defined with
respect to a golden braid consisting of objects, classes and metaclasses. This paper describes
the Smalltalk golden braid and generalize it for multiple inheritance. Multiple inheritance
leads to choices between many different inheritance strategies. The reflective features of
Smalltalk cannot affect the basic mechanisms of inheritance and so an arbitrary choice must
be made for multiple inheritance. A language is described in which the reflective features of
Smalltalk are extended so as to allow programmer defined inheritance strategies.

2 Introduction

The evaluation of a programming language expression e in a given context ¢ may be described
by the evaluation of a program p which takes a representation of e and ¢ as input. e is termed
an object-level construct whilst p and the representations of e and ¢ are termed meta-level
constructs. For illustration we use an operator M which maps object-level constructs to
meta-level constructs. If the languages which are used for both the object- and meta-levels
are the same and causally connected, then the language is reflective [27].

Object-Oriented Programming Languages (OOPLs) have interpretive mechanisms which
are based upon classes, object creation, message passing and inheritance. Classes typically
define the local state and operations for objects which are their instances. When a message
is passed to an object, the operation with the message name is invoked with respect to
the local state. A class inherits from another class by including all the inherited storage
and operation definitions along with its own. The meta-level of an OOPL describes how to
perform inheritance, message passing, instance creation etc. If the OOPL is reflective then
these mechanisms are described in terms of messages which are sent to objects at the meta-
level. Consider the objects at some base level B, the objects and messages which describe how
to perform creation of objects at B, message passing at B etc. are defined at level M(B); these
objects are called classes. A class at level M(B) is characterized by controlling the creation
and subsequent behaviour of a collection of objects at level B. The objects (which are classes)
at level M(B) are created and controlled by objects at level M?(B); these objects are called
metaclasses. A metaclass at level M?(B) is characterized by controlling the creation and
subsequent behaviour of classes at level M(B).

[4] coined the term golden braid to describe the relationship between objects, classes and
metaclasses. Of course since classes are objects then we can view the golden braid starting at

M(B) and ending at M?(B) which reinterprets the metaclasses at level M?(B) as classes.

A feature of an OOPL is builtin at all levels when its behaviour is the same for M",n > 0.
Such features cannot be extended and may be said to be intransigent. An OOPL can be
reflective whilst still having intransigent features; an OOPL which has no intransigent features
may be said to be fully reflective.

Reflective OOPLs include Smalltalk [19], Loops [4], CLOS [3] [24], KRS [34], ObjVLisp [13]
[5] [6]. These languages differ in terms of the ways in which the golden braid is implemented
and the extent to which it may be used to affect the basic interpretive mechanisms of the
respective languages.

This paper describes the reflective power of Smalltalk, identifies an intransigent language
feature (send) and proposes a language extension which increases the reflective power by
including the feature into the meta-level. §3 describes a simple functional language which will
be used to implement three reflective object-oriented systems which differ with respect to how
expressive their reflective features are. §4 describes a system called Abstract Smalltalk (AS)
which is an implementation of the relevant features of the language Smalltalk. AS exhibits
single inheritance which is generalised to multiple inheritance in the system AS with Multiple
Inheritance (ASMI) described in §5. Both AS and ASMI have intransigent language features
including object representation and message passing which means that it is difficult to have
multiple types of inheritance mechanism co-existsing in the same system. This is particularly
a drawback when the system exhibits multiple inheritance because there are many orthogonal
multiple inheritance schemes. ASMI with Reflective Send (ASMIRS), described in §6, makes
both object representation and message passing a reflective feature of the system. This is
shown to support different types of multiple inheritance strategy within the same system.

3 Functional Representation

The systems AS, ASMI and ASMIRS, are constructed using a simple functional language
which, following [26], has been enriched with data values, operators and evaluation rules
which are characteristic of object-oriented programming languages. The language has a call-
by-value semantics [32] and enriches the evaluation rules for the A-calculus with pattern
matching, currying, first class environments and updateable locations. The syntax of the
language is divided into two: the kernel syntax which is given a semantics using a state
transition system based on the SECD machine [25], and the sugared syntax which is given
a semantics by translating into the kernel. For more information about functional languages
see [16] and [2]. The sugared syntax is given below:

T:=let D

Du=I=FE|F

FueI P*—FE | meth [Pt =E | F|F

Pasl| | (P, P) | KP | N|S

Eu=1|N|S | \P*E | EE | EOE | if E then E else E | (E,....E) | (E) | E;E
[E,...,E] | E where D" | let D" in E | case FE of A end | open E in E

A:=P=FE | AA

A program is a sequence of top level recursive definitions ¢ € T' and expressions e € K. D
is the syntax of declarations which may be a simple value such as ¢ = 10 or a functional
declaration f € F such as add(z,y) = = + y. Functional declarations may be overloaded and

may include methods, both of which are described in appendix A. Patterns p € P are used
in binding positions to limit the domain of a function and to decompose the value which is
supplied as an argument to the function by extracting sub-components and binding them to
identifiers. A pattern may be an identifier ¢ in which case the supplied value is bound to i;
a wildcard _ in which case the supplied value is ignored; a tuple (pi,...,p,) in which case
the supplied value must be a tuple of the same length and the corresponding sub-components
must match against the sub-patterns; a constructor k£ € K applied to a pattern p in which
case the supplied value must be constructed using k, e.g. k(v), and v must match p; or a
constant number n € N or string s € S in which case the supplied value must be the constant.

An expression e is an identifier, number or string; a function Apips...p,.e which may
be curried and have patterns in the binding positions; a prefix application ejes; an infix
application e; @ ey where O defines a collection of infix operators; a conditional expression; a
tuple; a parenthesized expression; a sequenced expression eg; es which is used to control side
effects; a list expression [eq,...,e,] where [e] constructs singleton lists and [] is the empty
list; a where or let expression both of which may have a sequence of declarations which
are established in parallel; a case expression case e in p; = e;...p, = e, end where e
is evaluated and tested against the patterns in turn, the first pattern which matches will
deconstruct the value of e, possibly bind some identifiers, and evaluate the corresponding
expression; an open expression open e; in e, where e; produces an environment binding
identifiers to values which is added to the current environment for the scope of the evaluation
of expression es.

Environments are collections of associations (bindings) between keys and values. The
operational semantics of programming languages often uses environments which bind names
to values in order to describe the identifiers which may be legally referenced at any point in
the program execution and their respective values. Environments are a convenient represen-
tation for objects and the functional language provides builtin operators for constructing and
manipulating environments as data values. The empty environment which binds no keys to
values is the value {}, a singleton environment binding the key k to the value v is constructed
using an infix operator £k — v, a pair of environments are concatenated using an infix op-
erator e; @ ey. The value associated with a key in an environment is “looked up” using an
infix operator e e k, where the environment e binds k& more than once, the rightmost value is
returned. When e does not bind k, the distinguished value € is returned.

Functions are associated with environments which define the values for the identifiers
which are freely referenced in the function bodies. The environment which is associated with a
function (or closure) is returned using the reification operator R. The environment associated
with a function is updated (producing a new function) using the installation operator I, which
is applied to a pair (e, f). Using environment primitives R and I, the infix operator _ < _ is
defined which extends the environment of a function on the right:

let e — f=I((R(f)) ®e,f)

The systems AS, ASMI and ASMIRS, implement objects using side effects. The builtin
operator _:= _ evaluates its left hand operand to produce an updateable location (i.e. the
address of the value in the state machine) which is shared with many other values in the
program state. The contents of the location are updated to by the value of the right hand
operand. All values in environments are updateable locations.

Cyclic data values are constructed using the paradoxical operator Y which finds the fixed

point of a function:
Y(f) = f(Y(f))

Lists are built using the constructors [|, _:: _ and _4+ _, list homomorphisms are constructed
using the operators \; and \, which are defined as follows:

\r (@) () (@) (01 22 (02 32 (i (v 22 (1)) = f(01) @ (f(v2) @ .. @ (f(0n) ®)
\(@)(F) (W) (o1 2 (02 (s (on 2 [])))) = (0@ f01)) © f(02) @ -..) ® f(vn)

Environments are built using the constructors {}, - — _and _® _, environment homomor-
phisms are constructed using using the operator /, for example:

[(@)(@)(v) (k1 = v1) @ {} & (k2 = v2)) = (k1 O v1) ®v® (kg ® vg)

Sets are used to implement objects in both ASMI and ASMIRS. The empty set is ¢, {_}
constructs singleton sets, _U _ is the set union operator and _— _ is the set difference operator.
The functional language supports set comprehensions, it is beyond the scope of this paper
to describe how such comprehensions are implemented in functional languages — see [35] for
more details.

The operator splitlistl will map a pair (v,1) to a pair ({1 ++[v], l2) such that | = I +[v] ++ 2
and v occurs only once in [. The operator splitlistr is similiar except the result is (11, [v] ++ l2).
The operator find is applied to a predicate p, a value v and a list [and will return the first
value in [which satisfies the predicate p or v otherwise.

The semantics of the functional language is described by a translation to the kernel lan-
guage in appendix A.

4 Abstract Smalltalk

Smalltalk implements a golden braid with both classes and metaclasses treated as proper
objects. The metaclasses are used in a slightly restricted way such that a metaclass has
only one instance. Smalltalk is not fully reflective since the representation of objects and the
semantics of message passing are intransigent language features. This section describes the
Smalltalk golden braid in terms of a system called Abstract Smalltalk (AS). §4.1 describes
the basic classes necessary to support the Smalltalk interpretive mechanism, §4.2 describes
how AS is represented using the language of §3, §4.3 describes the main AS operations of
object creation and message passing and §4.4 gives a meta-circular definition of AS.

4.1 Basic Classes

An AS object is a data value which contains two environments: an instance variable environ-
ment and a method environment. The method environment binds names to functions each of
which can be invoked by “sending the object a message” containing the name (referred to as
the message selector) and the actual parameter. The instance variable environment provides
bindings for identifiers which may be referenced in the body of the methods, but otherwise
cannot be accessed.

Each object is created by instantiating a class which defines the method environment and
the names which will be bound in the instance variable environment. The instantiation process
supplies values for each of the instance variable names. A class is created as a subclass of

another class which is referred to as its superclass, the new class will contain all of the instance
variable names and method definitions from its superclass — this is termed inheritance.

In AS, all classes are also objects. A class is distinuished from an ordinary object because
its method environment contains a function which can create new objects and its instance
variable environment contains the methods and instance variable names which all instances
of the class will contain.

Classes are instances of classes which are termed metaclasses. A metaclass is distinguished
from an ordinary class because its instance variable environment contains definitions of the
instance variables and methods which are necessary to be a class. As is shown in §4.4, it
is not necessary to define the term metametaclass because metaclasses can be conveniently
defined in terms of themselves.

AS is defined as a collection of basic classes each of which has an instance variable envi-
ronment and a method environment:

WL W,

ienv = (“wars” — [“2”, “y"]) & (“menv” — (“init” — pointinit))
menv = (“new” — cdnew) & (“init” — cdinit)

which is the instance variable and method environments for a class which creates two dimen-
sional points. Each instance of this class will have two instance variables, namely z and y,
which are initialised using the method named init, implemented as the function pointinit. An
instance is created by sending the class a new message which is implemented by the function
cdnew. The class itself was initialised using the method named init which is implemented
using the function cdinit. An instance of this class is the following:

ienv = (“z” — 10) @ (“y” — 100)
menv = (“init” — pointinit)

The basic classes which are necessary to support the AS system are shown in figure 1 they
are: object, which all other classes inherit from, described in §4.1.1; cd, which is a metaclass
describing the minimum amount of information necessary to be a class, described in §4.1.2;
mc, which is a metaclass describing the minimum amound of information necessary to be
a metaclass, described in §4.1.3; finally, class which is a metaclass describing the minimum
amount of information necessary to be a non-metaclass class, described in §4.1.4.

Figure 1 can be interpreted by “chasing links”. In order to find out what instance variables
and methods an object has, first follow the instance link to the class which was used to create
the object. This class will define a collection of instance variable names which are bound to
values in the ienv component of the object and a collection of methods which form part of
the menv component of the object. Next, follow the superclass link to a class which defines
further variable names and methods which are found in the ienv and menv components of
the object respectively. Continue this process until object is reached. All superclass links
eventually lead to object which is referred to as the root of the AS object inheritance tree.
All classes form the root of an inheritance tree which identifies a collection of objects which
contain the variable names and methods defined by the class.

""""" = superclass

—= instance

Figure 1: Initial AS class configuration

4.1.1 Object

ienv = (“super” — nullclass) @ menv = (“new” — cdnew) @
(“wars” — [“class”]) & (“init” v~ cdinit) @
(“menv” — (“init” — objinit) P (“subclass” — classsub) &
(“dnu” — objdnu)) & (“dnu” +— objdnu)

(“class” — oc)

The class object is the root of the AS inheritance tree and as such defines the minimum
instance variable names and methods in order to be an object. The superclass of object is
the pseudo class nullclass which is necessary to allow all classes to uniformly inherit from
somewhere. object defines a single instance variable named class which is inherited by all AS
classes and therefore will occur in the ienv component of all AS objects. The value of this
variable in each object will be the class which was used to create the object. object defines
two methods which will be inherited by all AS classes and therefore will occur in the menw
component of all AS objects (unless shadowed by a subclass definition). The method named
init is implemented using the function objinit and is used to initialise the object after it is
created. The single purpose of obnjinit is to set the class variable. The method named dnu
is implemented using the function objdnu and is invoked when a message is sent to an object
for which there is no menv component.

The menv component of object contains the methods which define the behaviour of object.
This is the standard class behaviour: new is used to create an instance of the class, init is used
to initialise the class after it is created, subclass is used to create a class which is a subclass of
object and dnu is invoked if object is ever sent a message whose name is not bound in menw.

4.1.2 Class Description

ienv = (“super” — object) @ menv = (“new” — cdnew) @
(“dvars” — [“super”, “ivars”, “menv’]) & (“init” — cdinit) @
(“menty” — (“new” — cdnew) @ (“subclass” — classsub) @
(“init” — cdinit)) @ (“dnu” — objdnu)

(“class” — cdc)

The class cd is the root of the AS class inheritance tree and as such defines the minimum
instance variable names and methods in order to be a class. The superclass of cd is object,
so cd inherits the instance variable names (i.e. class) and the methods (i.e. init and dnu)
from object. The minimum instance variables which are necessary to be a class are: super
whose value must be a class whose instance variable names and methods are inherited; ivars
whose value must be a list of instance variable names; and menv whose value must be an
environment binding method names to functions. Notice that all the classes described in
this section have ienv components which bind variables super, ivars, menv and class which
originate from cd (class being inherited from object).

4.1.3 Metaclass

ienv = (“super” — cd) & menv = (“new” — cdnew) @
(“iwars” — []) @ (“init” — cdinit) &
(“menv” — (“subclass” — metasub)) (“subclass” — classsub) @
(“class” — mcc) (“dnu” — objdnu)

The class mc is the root of the AS metaclass inheritance tree and as such it defines
the minimum instance variable names and methods in order to be a metaclass. Each time
a class is constructed, an instance of mc is also constructed as its unique metaclass. The
metaclass will define the methods for its sole instance which are extensions to the standard
class behaviour as defined by cd. Furthermore, when a class is sent a message telling it to
create a subclass of itself, its metaclass is also sent a subclass message, so the metaclass
inheritance tree corresponds exactly to the class inheritance tree. This is seen in figure 1
where the classes object, mc, cd and class are instances of the metaclasses oc, mcc, cdc and cc
where the inheritance between the metaclasses follows exactly that between the corresponding
classes.

The class mc defines a method subclass which is used to create a subclass of a given
metaclass. The method is implemented using the function metasub which will create an
instance of mc and initialise this to have the receiver of the message as its superclass.

4.1.4 Class
ienv = (“super” — cd) @ menv = (“new” — cdnew) @
(“vars” — []) & (“init” — cdinit) @
(“meny” — (“subclass” — classsub)) & (“subclass” — classsub) &
(“class” — cc) (“dnu” — objdnu)

The class class is the root of the AS class (non-metaclass) inheritance tree and as such
defined the minimum instance variable names and methods in order to be a (non-metaclass)
class. class defines a method subclass which is used to create a subclass of the receiver. This
method deals with constructing a new metaclass by sending a subclass message to the class

of the receiver and then creating an instance of this metaclass. subclass is implemented by
the function classsub.
A subclass message is sent to a receiver ¢ as follows:

send(cy, “subclass”, (e1,1, e3))

where e; is an environment of methods which are termed “class methods” and which will
form part of the menv component of the result; [and ey are a list of names and a method
environment which are the instance variables and methods defined by the new subclass.
Assuming that ¢; is a non-metaclass, then the send expression is equivalent to the following:

send(send(ca, “subclass”, e1), “new”, [c1,1, es])

where ¢, is the class of ¢1. Since ¢9 is a metaclass it will handle the subclass message differently
from c¢;. Upon receiving a subclass message, co will create an instance of me, supplying the
value of the superclass, instance variable names and method environment as ¢y, [| and e;
respectively:

send(send(mc, “new”, [co,[], €1]), “new”, [c1,1, e2])

The result of this expression is a class:

“super” = c1) & menv=-¢e; B

ienv = (
(“ivars” —1) @ (“new” — cdnew) @
(“menv” — ey) B (“init” — cdinit)
(“class” — c3) (“subclass” — classsub) &
(“dnu” — objdnu)

where the class c3 is:

“super” — c3) & menv = (“new” — cdnew) &

((
(“wars” — []) @ (“init” — cdinit) &
(“meny” — e1) @ (“subclass” — metasub) @
(“class” — mc) (“dnu” — objdnu)

1eny =

4.2 Representation

An object is either null, which corresponds to an instance of the superclass of object, or a
basic object which corresponds to an instance of anything else. Classes are layered like onions
where the outermost layer corresponds to the most recent subclass, the next inner layer to its
superclass, the next inner layer to its supersuperclass etc. The heart of the onion is the value
nullclass which is the pseudo superclass of object. An object mirrors the onion-like structure
of its class with each layer containing the instance variables and methods declared by the
corresponding layer of the class. Each layer of an object has an additional value which is
the entire object and is referred to as self. The heart of an object-onion o is the null object,
nullobj(o), which is a pseudo instance of nullclass.

An object is represented as obj(eq, e2,01,02) where e; is an environment associating in-
stance variable names with locations containing their values (ienv), es is an environment
associating method names with methods (menv), o7 is an object which is the next innermost
layer of the object-onion referred to as super and oy is the whole object-onion referred to as
self.

4.3 Basic Operations

The AS system is defined as a collection of basic classes whose methods are implemented
using functions objdnu, cdnew, etc., and a message passing operator send. The functions
which implement the class methods are defined in terms of a single operator whose job is
to construct objects in a particular format. This operator, mkobj, is defined in §4.3.1. The
operator send implements the message delivery service which searches an object for a named
method and then invokes it. send is defined in §4.3.2.

Both object creation and message passing are defined in terms of the concatenation of
the instance variable environments which are contained in an object. The operator getallenw,
defined below, is used to construct this environment:

let getallenv(nullobj(_)) = {} |
getallenv(obj(e, _,0,_)) = e ® (getallenv(o))

4.3.1 Object Creation

The operator mkobj defined below:

let mkobj(nullclass)(o) = nullobj(o) |

mkobj(c)(0) = open getallenv(c) in obj(\,(®)(— v)({})(ivars), menv, mkobj(super)(o), o)

This operator is the primitive AS object creation operator. The argument ¢ is a class which
is to be instantiated and o is an object which will be the self component of the resulting
instance. A class will bind the variables super, ivars and menv in its ienv component. A
new instance is created layer by layer. Each layer has the format obj(eq, ez, 0',0) where e;
binds the instance variable names from the corresponding layer of the class ¢ to the null value
v, ey is the method environment from the corresponding layer of ¢ and o' is the result of
instantiating the superclass of c.

4.3.2 Message Passing

The operator send defined below:

let send(nullobj(o),n,v) = send(o, “dnu”, (n,v)) |
send(obj(eq, ea,01,02),n,0) =
if n € dom(ez)
then (eg e n)(02,01,e1 ® (getallenv(oy)))(v)
else send(o1,n,v)

performs AS message passing. The operator has three parameters which correspond to the
receiver of the message, the selector of the message and the actual parameter of the message.
The operation of send can be described in terms of the object-onion model (described in
§4.2). When a message is sent to an object, the methods defined by the outermost layer are
searched for a method whose selector matches. If such a method is found then it is activated,
by applying it to objects o2 and 07, an environment e; @ (getallenv(o1)) and value v. 09 is the
whole object-onion no matter which particular layer contains the matching method; o7 is the
object-onion constructed by stripping away the layer which contains the matching method — if
a message is sent to 0; it will continue the search where send left off; e; @ (getallenv(o1)) is the
concatenation of all instance variable environments in all layers from that which contained the

matching method to the heart of the object-onion; v is the actual parameter of the message.
If no method matches then the process continues with the next innermost onion-layer. If the
process encounters the heart of the onion then no method was defined for the selector and
“dnu” is sent to o09.

4.4 Definition

AS is defined as an initial collection of classes and a delivery service, send. The classes define
methods which are implemented using the functions which are given below:

let meth objinit(c) = class := ¢; self

let meth objdnu(m) = error(“message” ++ str(m) + “not understood”)

let meth cdinit([c,l, €]+ v) = super := c¢; ivars := [; menv := e; send(next, “init”,v)
let meth cdnew(v) = send(Y(mkobj(self)), “zmt”,v—l—l—[se(}‘])

let meth metasub(e) = send(me, “new”, (self,], e))

let meth classsub(ey,l,ey) = eend(eend((’laes “subclass”, e1), “new”, [self, 1, es])

Collections of methods and instance variable names are predefined for convenience!':
let om = (“init” — objinit) & (“dnu” — objdnu)
let cdm = (“new” — basicnew) & (“init” — classinit)
let cdv = [“super”, “ivars”, “menv’|
mm = “subclass metasu
let “subclass” — metasub
let cm = “subclass” — classsub

The definitions of the AS classes are given below:

let object = send(oc, “new”, [nullclass, [“class”], om])
oc = send(mc, “new”, [class, [], {}])
cd = send(object, “subclass”, ({}, cdv, cdm))
mc = send(cd, “subclass”, ({}, [], mm))
class = send(cd, “subclass”, ({},[], cm))

These definitions are meta-circular, i.e. the classes are assumed to exist for the process of
their own definition. It is necessary to “bootstrap” AS by providing initial values for the
classes which can be used to construct themselves. Using the description of chasing links
given in §4.1, it is possible to determine the outcome of the meta-circular definitions. For
example, it is possible to replace all messages with the selector “subclass” with a selector
“new” by observing that all the receivers in question will inherit the method from class where
it is implemented using classsub. The definitions have been partially expanded by chasing

'"We should be careful about sharing and side effects here since the locations which are created in the
predefined environments will occur more than once in the final system. A complete discussion of the issues
of sharing is outside the scope of this paper and we define that no location is ever implicitly copied i.e. all
occurrences of bindings will share and be affected by a single side effect.

10

links in the following definitions:

let object = obj({},{}, 01, object)
where o1 = obj({}, “subclass” — classsub, o2, object)
where o0y = obj(e, cdm, 03, object)
where e = (“super” — nullclass) @ (“ivars” — [“class”]) & (“menv” — om)
03 = obj(“class” — oc, om, nullobj(object), object)
oc = obj({}, mem, 01, oc)
where o0 = obj(e, cdm, 0y, oc)
where e = (“super” — cdc) @ (“iwars” — cdv) @ (“menv” — cdm)
09 = obj(“class” — me, om, nullobj(oc), oc)
cd = send(object, “subclass”, ({}, cdv, cdm))
mc = send(cd, “subclass”, ({},[], mem))
class = send(cd, “subclass”, ({},[], cm))

5 AS with Multiple Inheritance

The AS system described in §4 provides single inheritance which means that each class is
allowed only one superclass whose state variable declarations and method definitions are
inherited. This leads to a tree structure of classes with object as the root of the tree and
new classes being added as leaves. This section will generalize AS to produce ASMI which is
Abstract Smalltalk with Multiple Inheritance. Multiple inheritance allows each class to have
more than one superclass from which it will inherit state variable declarations and method
definitions. This leads to a graph structure of classes with the constraint that the graph must
not contain cycles (i.e. a class cannot inherit from itself).

When classes are tree structured, as in AS, inheritance of variable declarations and meth-
ods is straightforward because there is no choice as to the order in which information from
superclasses will be inherited. When classes are graph structured, as in ASMI, inheritance
becomes more complex because there may be more than one route from one class to another.
For example, since all classes inherit from object, any class which inherits from more than one
superclass will construct at least two different inheritance paths from itself, though respective
superclasses leading to object. Will the information from object be inherited twice? What
happens when an object sends a message to nezt? Different programming languages offer
different solutions to this problem, these include:

e Information is inherited as many times as it is reachable from the inheritor. This will
lead to multiple copies of instance variable locations but has the advantage of being
modular [33].

e Information is inherited only once. The graph is traversed from an inheritor, such that
each node is encountered exactly once. This will cause no problems provided that the
names of the methods are distinct. If they are not then a question arises with respect to
which method will shadow the other and therefore which method will be executed when
its selector is part of a message to super. One strategy is a left to right traversal of the
inheritance graph, omitting a superclass if it has already been visited. Another strategy
is a left to right traversal of the inheritance graph omitting a superclass if it will be
visited later. Both strategies have the disadvantage that the shape of the inheritance
graph is distorted with respect to inherited classes.

11

e Language facilities are provided so that all ambiguities which should arise are eliminated
under programmer control [28].

It is not the purpose of this paper to discuss in depth the merits of various MI strategies
(for more information see [7] [14] and [30]), for ASMI we will arbitrarily choose a left to right
graph traversal which defers a superclass to its final occurence. ASMI and AS are compared
in §5.1, the ASMI basic classes are described in §5.2, the representation of ASMI objects is
defined in §5.3, the ASMI basic operations are defined in §5.4 and finally ASMI is defined in
§5.5.

5.1 Comparison with AS

ASMTI is a version of AS with multiple inheritance. The inheritance strategy which is adopted
is that of a left to right graph traversal which defers shared superclasses to their final oc-
currence. Where each AS class has a single class as the value of its state variable “super”,
each ASMI class has a corresponding state variable called “supers” whose value is a list of
classes. The empty list is used for the superclass of object, which delivers us from the irksome
nullclass.

Each class forms the root of an acyclic directed graph where the nodes are classes and
the edges represent inheritance links. In AS when a class is instantiated, the onion structure
of the classes is translated to an identical onion structure for the instance in which all the
instance variables are bound to initial values. In ASMI, when a class is instantiated, the
graph structure of the classes is translated to an identical graph structure for the instance in
which all the instance variables have been allocated new storage locations.

When an AS message is sent to an object, the search will progress through successive
object layers until a method with the required selector is found. A subsequent message sent
to next will continue the search until the heart of the onion structure is found. When an
ASMI message is sent to an object, the search will perform a left to right depth first graph
traversal until a method with the required selector is found. A subsequent message sent to
next will continue the search until the final node in the graph is encountered.

In AS, a class is constructed by sending a subclass message to a class ¢ which will become
the superclass of the new class. The class is created by sending a subclass message to the
class of ¢, which creates a metaclass which is instantiated by sending it a new message. In
ASMI, classes have multiple superclasses, so it is not possible to send a single subclass message
without giving one of the superclasses an artificial status as the receiver of the message and
all other superclasses lesser merit by supplying them as the argument. In ASMI, a class is
created by sending a metaclass a message with the selector “new”; the superclasses of the
new class are supplied as a list in the message argument. If a new metaclass is required, for
example to define the class methods, then it must be created explicitly.

5.2 Basic Classes

Figure 2 shows the initial ASMI configuration of classes. Following ObjVLisp [13] it is not
necessary for each class to have a single unique metaclass; the AS model whereby each class
has a single unique metaclass (used to define the class methods) can be built from the general
model upon which ASMI is based. In ASMI there are only two initial classes: object and
class, all classes will have object as their ultimate superclass and all metaclasses will have
class as their penultimate superclass. object describes the state variables and methods which

12

obj 7Ct — - instance

———————— > subclass

class

Figure 2: Initial ASMI class configuration

are common to all classes and class describes the state variables and methods which are
common to all metaclasses. class is an instance of itself and therefore represents the fixed
point of the M operator discussed in §2. ASMI classes object and class are described in §5.2.1
and §5.2.2 respectively.

5.2.1 Object

ienv = (“supers” — [|) & menv = (“new” — classnew) &
(“dvars” — [“class”]) & (“init” — classinit) @
(“menv” — (“init” — objinit) @ (“dnu” — objdnu)

(“gc” — objgc) &
(“dnu” — objdnu)) &
(“class” — class)

object defines no superclasses, a single instance variable class, and three methods which
initialise an object by setting the class instance variable, get the class of an object and handle
the case when an object does not understand a message.

5.2.2 Class
ienv = (“supers” — [object]) & menv = (“new” — classnew) @
(“dvars” — [“supers”, “ivars”, “menv’]) & (“init” — classinit) @
(“ment” — (“init” — classinit) @& (“dnu” — objdnu)

(“new” — classnew))
(“class” — class)

class defines the instance variables supers, ivars and menv. These correspond to those of cd
in AS except that for a given class, supers is a list of classes rather than a single class. class
defines methods new and init which will instantiate and initialize the receiver repectively.

5.3 Representation

An ASMI object is a graph whose nodes contain instance variable and method environments
and whose links represent inheritance. The representation of a graph is as follows:

g(e1, S1,e2,e3,57)

13

where e is an environment mapping node addresses to nodes, S is a set of edges, es is an
environment mapping edges to their source node address, e3 is an environment mapping edges
to their target node address and Sy is a partial ordering on the nodes. A node is represented
as

n(er, es)

where ¢ is an instance variable environment and eg is a method environment. The functions
getenv and getmenwv extract the instance variable and method environments from a node.

5.4 Basic Operations

Like AS, ASMI is defined in terms of a collection of basic classes, the functions which im-
plement their methods and a message delivery service. In addition, objects are implemented
as graphs and operations are provided which can be used to traverse graphs in various ways.
§5.4.1 describes the operations for graph traversal, §5.4.2 describes basic object creation and
§5.4.3 describes the ASMI message delivery service.

5.4.1 Graph Traversal

The basic operations which are used to traverse object graphs are defined as follows:

let nullgraph = g({}, ¢, {}.{}. ¢)

let gm(f)(g(e1, S1,e2,e3,92)) = g(/(®)(—= o(I x f))({})(e1), S1, €2, €3, 52)

let gmerge(g(ey, S1,ea,e3,52), g(eq, S3,e5,€6,51)) = gler D eq, S1 U S3,e9 D e, e3 ® eg, S2 U Sy)
let r00t(g(e1, S, 0 e5,) = {er o (eree) | e €S, {e! | ¢ ey =ecoes} =}

let targetnodes(n)(g(er, S, ea,es,) = fe1 e (czoe) | € € S,er e (epoe) = n)

let walk(n)(g) = n = (\r(++) (walk)(](sort(targetnodes(n)(g))(ord(g))))

let traverse(g) = walk(n)(g) where {n} = root(g)

The operator gm is used to construct graph morphisms where f is a function to be applied
to all the nodes in the graph. The operator gmerge will merge two object graphs to produce
a new object graph. targetnodes(n)(g) produces the set of all nodes which are reachable from
the node n by traversing one edge in g. root(g) is the set of all nodes which have no edges
incident upon them (such sets will be singletons for properly formed objects). traverse(g)
is the sequence of nodes which are visited stating with the root of g and visiting each node
reachable from the root in an order which is consistent with both the ordering imposed by
the edges of g and the partial ordering component of g. sort(S7)(S2) is the sequence of S,
elements whose ordering is consistent with the partial ordering Ss.

The operator traverse will visit a node more than once if it is reachable using two or
more paths from the root of a graph. ASMI will visit each node once when searching for a
method in an object graph. The question arises as to which of the many paths to a node
will be chosen. The two operators defined below, onr and onl, will order the nodes of an
object graph so that nodes which can be encountered more than once are visited last and first

14

respectively in a manner which is consistent with the ordering imposed by the graph edges
and partial ordering. The operator removeifmarked will delete any nodes which have been
marked in a special way and is explained in §5.4.3.

let [®@n=if n€l then [else n:: 1 |
n®l=if n €l then [else | ++(n]

let onr = removeifmarked o (\,(®)(I)[]) o traverse
let onl = removeifmarked o (\;(®)(I)[]) o traverse

The instance variable environment of an object is extracted using the operator getallenv:

let getallenv(o) =\, (®)(getenv)({})(onr(o))

5.4.2 Object Creation

A class may be viewed as two different graphs. The first is as an object graph since all classes
are objects, where the nodes contain instance variable and method environments and the edges
represent the inheritance of variables and methods. The second is as a class graph where the
nodes contain instance variable names and method definitions relating to the instances of the
class and edges represent inheritance of names and methods from the superclasses. Given a
class graph and some initialisation values for the instance variables, instantiation is a simple
graph morphism which retains the class graph structure and associates the values with the
variable names in each node. The function cg defined below

let cg(g) =
let e = getallenv(g) in

let n = n(ee “wars’,ee “meny”’) in
let g = \,(gmerge)(cg)(nullgraph)(e ® “supers”) in
in addnode(n, g)

translates a class, represented as an object graph, to a class graph. addnode(n,g) will add
the node n to the graph g by allocating a new address for n and will link n to each node in
root(g) by allocating a new edge. The function addnode is not defined in this paper.

5.4.3 Message Passing

ASMI message passing is similar to AS message passing since the object is traversed to find a
method with the given selector, but differs because the object representation is a graph and
not a tree. ASMI methods have the same representation as AS methods, i.e. they have three
hidden parameters for self, next and the instance variable environment. The value of the first
parameter is the entire object graph. The value of the second parameter is the entire object
graph, but the nodes which were traversed in order to find the method have been marked so
that if a message is ever sent to nezt the marked nodes are ignored. Marking and unmarking
of object graphs is performed by the following two functions:

let mark(g(n, e, 5,1,0))(n') = g((n — {n'}) U {mark(n)}, ¢, 5,1,0)
let unmark = gm(f) where f(n(ei,e2) = n(er,e2) | f(mark(n)) =n

15

ASMI message delivery is performed by the function send which is defined below:

let send(o,n,v) =
let = = find(p)(€)(onr(o)) where p(node) = n € dom(getmeths(node))
in if x = e then send(unmark(o), “dnu”, (n,v))
else let o; = \;(mark)(I)(o)(1st(splitlisti(x, onr(0))))
09 = unmark(o)
e = \r(®)(getenv)({})(2nd(splitlistr(z, onr(0))))
in ((getmeths(xz)) @ n)(09,01,€)(v)

The behaviour of send is as follows: onr is used to order the nodes in the object graph o
and z is a node with a method environment containing the selector n. If no such z is in o
then the message dnu is sent to o after it is unmarked. Otherwise, 01 is an object which will
continue searching from node z when it is sent a message. In order to continue from z, o0y is
produced by marking all of the nodes which have been traversed from the root node up to
and including x. o2 is an object which start searching from the original root node of o, so
all marks are removed. e is the environment constructed by concatenating all of the instance
variable environments in the nodes which are traversed starting with = and continuing on
through the rest of 0. Finally the method is applied to the hidden parameters 0q, 0; and e
and the actual parameter, v, of the message.

5.5 Definition

ASMI is defined as an initial collection of classes and a delivery service send. The classes
define methods which are implemented using the functions given below:

let meth objgc() = class

let instantiate(c) = gm(A(n(l, €)). n(\,(®)(—= 7)({})({1),e))(cg(c))
let meth classnew(v) = send(instantiate(self), “init”, v ++[self])

The collections of object methods and class methods are predefined for convenience:

let om = (“init” — objinit) ® (“dnu” — objdnu) @ (“g9c¢” — objgc)
let ¢cm = (“init” — classinit) & (“new” — classnew)

The meta-circular definition of the ASMI classes is given below:

let object = send(class, “new”,[[],[“class”], om])
class = send(class, “new”, [[object], edv, cm])

The classes are “bootstrapped” using the same reasoning as is discussed in §4.4, except ASMI
is significantly simpler since it consists of two classes and not eight. Even though there are
fewer classes, ASMI does not represent a reduction in expressive power, since AS can be
implemented by defining a method and a pair of classes:

let asnew(ey,ly,ls, e9) = send(send(class, “new”, [\, (::)(f)([])(11),][], €1]), “new”,[l1,12, e3])
where f(c) = send(c, “gc”,())

let asm = send(class, “new”, [[class], [], “new” — asnew))

let asc = send(asm, “new”, [[asm],[], {}])

16

6 ASMI with Reflective Send

85 defines an OOPL called ASMI with multiple inheritance; this is a generalisation of AS which
only supports single inheritance. It is not possible to define ASMI using the reflective facilities
of AS since the inheritance strategy of AS depends upon send which is an intransigent language
feature. This section defines the language Abstract Smalltalk with Multiple Inheritance and
Reflective Send (ASMIRS) which extends the reflective power of ASMI by making send a
method which is implemented at the meta-level. Since send is a method, it may be extended
or redefined; this allows for programmer control of the inheritance strategy at the meta-level.
Infinite regress is prevented because the language ASMIRS is meta-circular and the fixed
point of M causes message passing to “bottom out”.

§6.1 compares ASMIRS with ASMI and AS, §6.2 describes the ASMIRS basic classes, §6.3
extends the object representation from ASMI so that it becomes a reflective language feature,
§6.4 describes message passing and §6.5 gives the meta-circular definition of ASMIRS.

6.1 Comparison with ASMI

ASMI represents objects as graphs where the nodes are instance variable and method envi-
ronments and the multiple edges leading from a node arise due to multiple inheritance. The
object creation and message delivery service require intimate knowledge of an object graph
in order to construct them and extract methods with a given selector. There is no scope for
representing objects in any other way or for making the message delivery service dependent
upon the type of an object. Object representation and message delivery are intransigent lan-
guage features in ASMI which means that there is only one possible object-graph traversal
scheme when delivering a message.

ASMIRS allows the representation and message delivery service of an object to depend
upon its type. Object creation is performed by sending a new message to a class. Message
delivery is performed by sending a send message to the class of the receiver. Multiple object
representations and message delivery services can co-exist within ASMIRS. ASMI is easily
implemented in ASMIRS which will also allow different variations of the ASMI object-graph
traversal scheme.

6.2 Basic Classes

ASMIRS is defined as a basic collection of classes whose initial configuration is shown in figure
2. §6.2.1 describes object and §6.2.2 describes class.

6.2.1 Object

ienv = (“supers” —[]) @ menv = (“new” — classnew) &
(“4vars” — [“class”]) & (“init” — classinit) @
(“menv” — (“init” — objinit) @ (“on” — classon) @
(“dnu” — objdnu)) @ (“send” — classsend) @
(“class” — class) (“dnu” — objdnu)

object defines a single instance variable class whose value in any object is the class which
was instantiated to produce the object and two methods for initialisation and handling un-
known messages. object is an instance of class.

17

6.2.2 Class

ienv = (“supers” — [object]) & menv = (“new” — classnew) @
(“dvars” — [“supers”, “ivars”, “menv’]) & (“init” — classinit) &
(“meny” — (“init” — classinit) & (“on” — classon) @
(“new” — classnew) & (“send” — classsend) @
(“on” — classon) @ (“dnu” — objdnu)

(“send” — classsend)
(“class” — class)

class defines three instance variables supers, iwars and menv. It defines four methods: new
which is used to create objects and is implemented using classnew which represents objects
as ASMI graphs, init which is used to initialise classes and is implemented by classinit, on
which is used to order the nodes in an object-graph and is implemented by classon, and send
which is the message delivery service for objects which are implemented as ASMI graphs and
is implemented by classsend.

6.3 Representation

An ASMIRS object is represented as a value
obj(c,v)

where c¢ is the class which was instantiated to produce the object and v is a value which
is the objects internal representation. The functions classof and repof extract the class and
representation from an object respectively.

An object is usually created by sending a class ¢ a new message. The class will respond
to this message by constructing a representation for the object which is appropriate to the
way that the class implements its message handling service, i.e. the method send. In this
way, all objects have a uniform representation containing a class and a value but the value is
manipulated at the meta-level by methods which are implemented by the class.

6.4 Message Passing

A message is sent to an object using the ASMIRS send primitive:
send(o,m,v)

The message is delivered to the object (and executed) by the delivery service which is imple-
mented by the class of 0. A delivery service is implemented by a method send and performed
by sending the message:

send(classof(0), “send”, (0,n,v))

Since classof(o) is itself an object, the send message is performed by the delivery service which
is implemented by its class:

send(classof(classof(0)), “send”, (classof(c), “send”, (0,n,v)))

When does this regression terminate? ASMIRS has an initial class configuration which is the
same as that for ASMI shown in figure 2. Any (direct) instance of class will have a delivery
service which is implemented by classsend. This knowledge is built into the basic message

18

sending primitive. For any well-formed configuration of ASMIRS objects, a chain of classof
calls will eventually lead to an instance of class, whose delivery service is known. The message
delivery primitive is defined below:

let send(o,n,v) =

if classof(o) = class

then case n of
“on” = classon(e, €, €,v)
“send’ = classsend(e, €, €,v)
_= send(classof(0), “send”, (0,n,v))

end
else send(classof(o), “send”, (0,n,v))

It “knows” about very little of the ASMIRS system other than the minimal knowledge of how
class is implemented. Other than this, all messages are delivered by the particular service
depending upon the type of the receiver.

6.5 Definition

ASMIRS is defined as an initial collection of classes and a delivery service send. The classes
define methods which are implemented using the functions given below:

let meth classon(o) = onr(repof(o))
let meth classnew(c,v) = send(obj(c, instantiate(repof(c))), “init”, (c,v))

let meth classsend(o,n,v) =
let = = find(p)(e)(send(classof(o), “on”,0)) where p(z) =n € dom(getmeths(x))
in if r=¢
then send(obj(classof(o), unmark(repof(0))), “dnu”, (n,v))
else let o = \;(mark)(I)(1st(splitlistl(z, send(classof(o), “on”,0))))
09 = obj(classof(o), unmark(repof(0)))
e =\, (®)(getmeths)({})(2nd(splitlistr(z, send(classof(o), “on”, 0))))
in ((getmeths(z)) @ n)(o9,01,¢€)(v)

The methods defined by class are defined to be cm:

let cm = (“on” — classon) & (“new” — classnew) @
(“send” — classsend) @ (“init” — classinit)

The meta-circular definition of ASMIRS classes is given below:

let object = send(class, “new”,[[],[“class”], om])

class = send(class, “new”, [[object], [“supers”, “ivars”, “menv”], cm))

The following class, ¢ is an example of the reflective power of ASMIRS at work. ¢ implements
objects as ASMI graphs but uses onl to order the nodes rather than onr.

let meth con(o) = onl(repof(0))

let ¢ = send(class, “new”,[[class], [], “on” — con])

19

7 Conclusion, Further and Related Work

This paper has described three object-oriented systems of increasing reflective power: AS,
ASMI and ASMIRS. The initial system is based on the initial configuration of Smalltalk
classes. AS implements single inheritance which is generalised to multiple inheritance in
ASMI. There are a wide variety of multiple inheritance implementation strategies which can-
not co-exist within ASMI since the object representation and message delivery service are
intransigent language features. These restrictions are lifted in ASMIRS which allows multiple
object implementations and message delivery services to co-exist within the same language
by lifting them to the meta-level. The semantics of AS, ASMI amd ASMIRS is made precise
by implementing them in a functional language which has been specifically designed with
primitive features for object-oriented languages.

This work is closely related to the ideas of the ObjVLisp community [13] [5] [6] which
greatly simplified the representation of reflective object-oriented programming features. See
[20] [15] and [17] for more recent work on particlar aspects of metaclasses in object-oriented
programming languages. The use of first class identifier binding environments as a basis for
objects and related programming language features is described in [23] [1] [18] [11] [12] [22]
and [29]. There is a collection of literature describing elegant record (environment) calculi
used as the basis of object oriented programming language semantics including [8] [9] [10] and
[21].

The issues of reflection in object-oriented programming languages has been developed from
an abstract (although executable) point of view. ASMIRS is a simple but precise specification
of an object-oriented programming language which has a very expressive reflective capability.
ASMIRS can be used as the basis of experimentation for new reflective mechanisms. Further
work is necessary to find efficient implementation techniques for the features which have
been described in this paper. The reflective features which have been described are strongly
related to a particular type of programming language, namely class based object-oriented
languages. A functional programming language whose semantics is described in terms of a
state transition system (such as the SECD machine) is particularly amenable to the reification
of computational entities (such as environments) which are necessary to describe reflective
features and allow a program to control its own execution. It would be interesting to see other
reflective mechanisms could be designed using simple extensions to the underlying language.

References

[1] Agha, G. The Structure and Semantics of Actor Languages. In Foundations of Object-
Oriented Languages LNCS 489 (1990) 1 59.

[2] Bird, R. & Wadler P. Introduction to Functional Programming. Prentice Hall Interna-
tional Series in Computer Science. (1988)

[3] Bobrow D. et al. Common Lisp Object System Specification. Lisp and Symbolic Compu-
tation 1, 3/4. (Jan. 1989)

[4] Bobrow D. & Stefik M. The Loops Manual. Intelligent Systems Laboratory, Xerox PARC.
(1983)

20

[10]

[11]

[12]

[13]

[14]

[15]

[20]
21]
22]

Briot J-P. & Cointe P. The ObjVLisp Model: Definition of a Uniform, Reflexive and
Extensible object Oriented Language. ECAT (1986)

Briot J-P. & Cointe P. A Uniform Model for object Oriented Languages Using the class
Abstraction. TJCAT (1987)

Cardelli L. The Semantics of Multiple Inheritance. Proceedings of the Conference on the
Semantics of Data Types. Springer-Verlag LNCS (June 1984) 51 66.

Cardelli L. A Semantics of Multiple Inheritance. LNCS 173 The Semantics of Data Types.
(1984)

Cardelli L. & Mitchell J. Operations in Records. Math. Struct. In Comp. Science 1 (1991)
3 48

Cardelli L. & Wegner P. On Understanding Types, Data Abstraction and Polymorphism.
Computing Surveys 17, 4 (1985)

Clark, A. N. Semantic primitives for OOPLS. Forthcoming PhD Thesis, QMW College,
London University.

Clark, A. N. A Layered Object-Oriented Programming Language. To appear early 1995
in The GEC Journal of Research. Also submitted (in a greatly extended form) to ACM
TOPLAS, Oct. 1994.

Cointe P. Metaclasses are First Class: The ObjVLisp Model. OOPSLA (1987)

Ducournau R. et al. Monotonic Conflict Resoloution Mechanisms for Inheritance. OOP-
SLA (1992) 16 24

Ferber J. Computational Reflection in Class based Object-Oriented Languages. OOPSLA
(1989) 317 — 326

Field, A. J. & Harrison P. G. Functional Programming. Addison Wesley International
Computer Science Series. (1988)

Foote B. & Johnson R. E. Reflective Facilities in Smalltalk-80. OOPSLA (1989) 327
335

Gelernter D. Environments as First Class Objects. POPL 14.

Goldberg A. & Robson D. Smalltalk-80 The Language and its Implementation. Addison-
Wesley. (1983)

Graube N. Metaclass Compatibility. OOPSLA (1989) 305 — 315
Harper R. et al. A Record Calculus Based on Symmetric Concatenation. POPL 18.

Jagannathan, S. Metalevel Building Blocks for Modular Systems. ACM TOPLAS 16 3.
(1994)

Jagannathan S. & Agha G. A Reflective Model of Inheritance. ECOOP (1992)

Kiczales G. et al. The Art of the Metaobject Protocol. MIT Press (1991)

21

[25] Landin P. The Mechanical Evaluation of Ezpressions. Computer J. 6 (1964)
[26] Landin P. The Next 700 Programming Languages. Comm. ACM 9, 3 (1966)

[27] Maes P. Reflection in an object Oriented Language. Vrije Universiteit Brussel. AT Memo
86-8. (1986)

[28] Meyer B. Eiffel The Language. Prentice Hall object Oriented Series. (1992)

[29] Miller J. & Rozas G. Free Variables and First-Class Environments. Lisp and Symbolic
Computation 4 (1991) 107 — 141

[30] Ossher H. & Harrison W. Combination of Inheritance Hierarchies. OOPSLA (1992)

[31] Peyton Jones S. The Implementation of Functional Programming Languages. Prentice
Hall International (1987)

[32] Plotkin G. Call-by-name, call-by-value and the A-calculus. Theoretical Computer Science
1. (1975)

[33] Snyder A. Encapsulation and Inheritance in Object-Oriented Programming. OOPSLA
(1986)

[34] Steels L. The KRS Concept System. Vrije Universiteit Brussel. AT Lab. Technical Report
86-1 (1986)

[35] Wadler, P. Comprehending Monads. In Proc. 19" Symp. on Lisp and Functional Pro-
gramming. Nice. ACM. (1990)

A Functional Language Semantics
The kernel language syntax allows top level recursive definitions Ty and expressions Fy:

Tg n=let I = Eg
E(] =1 | N | S ‘)\IE[] ‘ E(]E() | if EO then EO else E(] ‘ (E(],...,e()) | Eo;Eg

The semantics of the kernel language is that of a simple call-by-value functional language.
It is beyond the scope of this paper to fully describe the kenel semantics — see [11] for
a complete description which is based upon Landin’s SECD machine [25] extended with
primitive features for object-oriented programming. The semantics of the sugared language
is given as a translation to the kernel as follows: Let — be a rewrite rule which removes
the outer layer of sugar from an expression. — is defined by case analysis below and, by
repeated application to a sugared expression, will produce a kernel expression.
A curried function is translated by making all of the functions explicit

AP1D2 - . - Dp-€ — AP1-AP3. ... Apy.€

A function with a pattern parameter is translated to a function with a new parameter ¢ which
returns a distinguished value € if the supplied value does not match the pattern. A tuple

22

pattern uses isntuple to test whether the supplied vaue is a tuple of the correct length and
uses _ T _ to extract the required components from the tuple

Ap1y---ypn).e — Ni. if isntuple(i) then let p; =it 1...p,=iTn in e else ¢

A constructor pattern uses isk and stripk to test whether the supplied value is constructed
using the constructor £ and to strip the constructor to reveal the value underneath

Mkp.e — Xi. if isk(i) then let p = stripk(i) in e else e
A constant pattern tests whether or not the supplied value is the required constant
Ac.e —> M. if i = ¢ then e else ¢

An overloaded function definition is translated to a single function definition where the alter-
natives are composed using the infix operator | which is defined as follows:

(filf2)(v) =let z = fi(v) in if z =€ then fy(z) else z
Function definitions are translated using the operators name and body

f = name(f) = body(f)

The name of a collection of function definitions is only defined when the names of the functions
are all the same (note that p denotes a sequence of patterns)

name(ip =€) =1
name(meth ip =e¢) =1
name(fy | f2) = name(f,)?name(f2)

where 7 combines identifiers, returning one of the identifiers if they are both the same and
is undefined otherwise. The operator body translates a named function or method to an
anonymous function or method

body(ip = e) = Ap.e
body(meth ip = e) = meth p.e
body(fi | f2) = body(f1)lbody(f2)

A method is a function which has some hidden parameters
meth p.e — A\(self, next,i) p. open i in e

The identifiers named self and nezt are scoped over the body of the method e and are named
self and super in Smalltalk. The identifier i is bound to an instance variable environment
which is opened for the scope of the method body. It is important that this identifier does
not capture any free references to identifiers in e. In the presence of environment reification
and installation this is not achieved simply through a static analysis of the code.
All infix operators are curried

er0ez — (o(e1))(e2)

Sequences of declarations are translated to a single declaration

7}1:61 7:2:6’2 in:e’n—)(7:1,7:2,...,7:71):(61,62,...,€n)

23

Let and where expressions are translated to function applications
e1 where p =ey — (Ap.e1)(e2)

let p=-e; in ey — (Ap.es)(e)

A case expression is translated to a function application
case e of a end — af(e)
A case arm is translated to a partial function
p—e— Ap.e

aras — aq |as

An open expression is translated to use the builtin primitives for environment manipulation

open e; in ey — (ep — A().e2)()

24

Sheffield
Hallam
University

Metaclasses and reflection in smalltalk.

CLARK, Anthony <http://orcid.org/0000-0003-3167-0739>

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/11924/

Copyright and re-use policy

Please visit http://shura.shu.ac.uk/11924/ and
http://shura.shu.ac.uk/information.html for further details about copyright
and re-use permissions.

