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Abstract. OCL expressions are an essential part of UML.  The current versions 
of OCL fail to have a meta-model which means that the integration of OCL 
with the UML meta-model cannot be formally defined [1].  This can result in 
ambiguous descriptions of systems which may compromise designs. The need 
to redesign the OCL has been addressed by a number of proposals submitted to 
the OMG.  In this paper we demonstrate how a definition for OCL can be 
stamped out from a small number of templates.  Such an approach enables a 
high level of reuse and an increased confidence that the definition is correct.  
This work forms part of the 2U consortium’s efforts for the definition of UML 
2.0. 

1. Introduction 

It is useful to be able to express computational systems by the precise behaviour they 
should exhibit.  For these we take the imperative approach typified by conventional 
programming languages.  However, often it is desirable to describe systems not by 
their precise behaviour, but by declarative rules that the behaviour should conform to.  
In these cases it can be convenient to express systems using more abstract 
descriptions.  With UML, such expressions are described using the Object Constraint 
Language (OCL). 

The OCL has been part of the UML since its inception.  However, the current 
versions of OCL fails to have a meta-model which means that the integration of OCL 
with the UML meta-model cannot be formally defined [1].  This can result in 
ambiguous descriptions of systems which may compromise designs.  In order to 
address this a number of proposals have been submitted to the Object Management 
Group (OMG) to redesign OCL such that it has an underlying meta-model (see [2] for 
more details).   

In this paper we describe how we have taken a template approach to defining OCL 
within the 2U submission for UML 2.0 [3] (the definition we arrive at follows closely 
that of [1]).  Template oriented definitions are advantageous in that a high level of 
reuse is promoted.  Critically, the OCL definition has been implemented in our meta-



modelling tool (MMT) [4] and we have built models using the definition, increasing 
our confidence of its correctness.  A further contribution of this paper is to briefly 
illustrate how our definition of OCL expressions can be generalised to computational 
expressions (e.g. arithmetic operators), and integrated with an action definition in 
order to describe computations. 

2. Background 

The work described in this paper forms part of the 2U Consortiums efforts to define a 
submission for UML 2.0 [5].  The approach taken by the group is characterised by a 
number of strategies.  In this section these are described. 

2.1 Unambigious yet understandable 

A definition of UML must be precise so that there is no ambiguity about what models 
built using the language mean.  This involves separating those aspects of the 
definition that deal with representation (abstract syntax) with those that deal with 
meaning (semantics) [6].  The traditional approach to ensuring precision in languages 
such as UML is to define their meaning using formal (mathematical) abstractions (for 
example in [7] Statecharts are defined using Z [8]).  While there is no question that 
these approaches offer the required level of precision, their highly abstract 
mathematical nature also makes them difficult to interpret. 

The approach adopted by 2U is to model the syntax and semantics of UML 2.0 
using precise UML class diagrams which are augmented with OCL constraints.  This 
reflexive approach to language engineering is a powerful means of defining more 
complex languages from simpler ones.  The precision of class diagrams means that 
they are unambiguous and the visual nature of the diagrams, and their wide spread 
adoption, enables these to be easily interpreted.  The 2U approach uses both a visual 
and textual version of constrained class diagrams, the textual version is understood by 
MMT (discussed in section 2.3). 

2.2 Promotion of reuse 

Reuse is a core strategy for designing and building software.  Within that context, the 
focus has been on how abstractions can be reused using mechanisms such as objects 
and inheritance.  A weakness of this style of approach is that complete solutions are 
reused, and often it is the case that it is the structure of a solution rather than the 
details that have a high level of reusability. 

The 2U approach has identified that much of the definition for UML 2.0 can be 
constructed from a small number of recurring structures (often referred to as patterns 
[9]).  For instance, a commonly found structure is the container relationship where 
one element (conceptually) contains another.  These reusable structures are 
encapsulated into templates which can be instantiated with data abstractions.  The 
class diagram for the container template is shown in figure 1 (a).  Templates are 



instantiated by substituting the place-holders (enclosed by << >>).  The template of 
figure 1 (a) might be instantiated using Class_ and Attribute_ parameters to define 
that a single class contains many attributes1.  This is illustrated in figure 1 (b).   

 

<<Container>> <<Contained>>
<<Container>> <<Contained>>s

1 *

Contains(Container,Contained)

Class_ Attribute
Class_ Attributes

1 *

Contains(Class_,Attribute_)

(a)

(b)
 

Fig. 1.  A template describing the contains relationship 

2.3 Correctness 

An unambiguous and understandable definition ensures that the definition can be 
accurately interpreted with ease.  The promotion of reuse using templates enables the 
definition to be rapidly constructed from components.  However, neither of these 
strategies ensures that a definition meets its requirements.  The only way this can be 
achieved reliably is by extensive testing.  In the case of UML, this involves building 
models using the definition to determine the strengths and weaknesses of the 
definition in view of the requirements. 

The meta-modelling tool (MMT) has been designed and constructed to support the 
2U consortiums definition and testing of UML 2.0.  MMT is a virtual machine that 
understands the textual version of constrained class diagrams and the construction of 
languages using templates.  MMT supports the testing of language definitions at a 
number of levels.  At a simple level it is able to check the definition to ensure it is 
syntactically correct (the importance of this in a definition the size of UML 2 should 
not be underestimated).  MMT is also able to check that constraints hold within the 
definition to ensure that models are well formed.  Most importantly, MMT is reflexive 

                                                           
1 the underscore is used when naming abstractions to avoid conflict with the pre defined 

abstractions of MMT 



which enables the building of new languages described using existing languages.  
Consequently, MMT can be used to build UML 2 models and check that our 
understanding of UML2 (encapsulated in the definition) is correctly defined. 

3. OCL Definition 

Part of a typical OCL expression may look like the following: 

bank. hasMoney and bank. hasSt af f  

This expression specifies that the and statement is true if both the slot hasMoney 
owned by bank and the slot hasStaff also owned by bank are true.  This example 
illustrates two fundamental characteristics of expressions: 
 
1. Expressions can contain expressions as operands.  In the case of the above example 

the and expression has a dot expressions as its left and right operands (similarly, 
the dot expressions themselves have two operands).  This means, that specific 
expressions (e.g. and) must be generalised from some common abstract expression 
type in order to support polymorphism. 

 
2. Expressions have a type which they evaluate to.  In the above example the and 

expression evaluates to a boolean type. Associated with the type is a value, in the 
case of a boolean expression this value is true or false. 

 
This essence of expressions is captured in the template illustrated in figure 2.  In this 
the syntax of a concrete expression is specialized from an abstract expression and has 
a type.  The semantic domain specifies that a concrete expression evaluation is 
generalized from an abstract expression and has a value which it evaluates to.  The 
semantic mapping characterises that a concrete expression can have many evaluation 
instances. 

The value of an expression evaluation should be valid in view of its type.  For 
instance, a boolean expression should only evaluate to true or false.  The template 
shown in figure 2 is therefore augmented with the following well formedness 
constraint: 

 
cont ext  Expr essi on: : Semant i cMappi ng: : <<Eval uat i on>> 

i nv:  <<Eval uat i on>>Val ueCommut es 

  sel f . of _. t ype = sel f . val ue. of _ 

  f ai l  <<Expr essi on>>+” Eval uat i on val ue f ai l ed t o commut e”  

end 



Expression_

<<Type>>
1

<<Expression>>

AbstractSyntax

Expression_
Evaluation

<<Value>>
1

<<Evaluation>>

SemanticDomain

Expression

SemanticMapping

Expression_

<<Type>>
1

<<Expression>>

Expression_
Evaluation

<<Value>>
1

<<Evaluation>>

*of_

 

Fig. 2. Basic expressions template 

Although the basic expressions template captures the essence of expressions it fails 
to specify how expressions can have operands which are themselves expressions.  
There are two broad classes of expressions, those with one operand (unary 
expressions) and those with two operands (binary expressions).  The three template of 
figure 2 (abstract syntax, semantic domain and semantic mapping) can be used as a 
basis for deriving (stamping out) further templates which deal with the respective 
domain for each class of expressions (unary and binary).  Figure 3 shows a binary 
expressions semantic mapping templates which is achieved by adding two operands to 
the result of stamping out figure 2.  Note that from now on we will show only the 
semantic mapping of templates and definitions for brevity of presentation.   
 

 
 

 



BinaryExpression::SemanticMapping

Expression_

<<Type>>
1

<<Expression>>

Expression_
Evaluation

<<Value>>
1

<<Evaluation>>

*of_

left right left right

 

Fig. 3. Binary expression template 

Given the binary and unary expressions templates, we are now in a position to be 
able to stamp out concrete expressions.  For instance, illustrated in figure 4 is an and 
expression, with a boolean type and value, which is stamped out using the template of 
figure 3.  Within an and expression, both operands should be also of type boolean: 

 
cont ext  AndExpr essi on: : Abst r act Synt ax: : And_ 

i nv:  oper andsAr eBool ean 

  sel f . l ef t . t ype. i sKi ndOf ( Abst r act Synt ax: : Bool ean_)  and 

  sel f . r i ght . t ype. i sKi ndOf ( Abst r act Synt ax: : Bool ean_)  

  f ai l :  “ And_ oper ands shoul d be of  t ype Bool ean_”  

end 

AndExpression::SemanticMapping

Expression_

Boolean_
1

And_

Expression_
Evaluation

Boolean_
Evaluation

1
And_Evaluation

*of_

left right left right

 

Fig. 4. And expression 

 
The result of evaluating an and expression (its value) should be the conjunction of 

its two operands: 
 
 
 
 
 
 



cont ext  AndExpr essi on: : Semant i cMappi ng: : And_Eval uat i on 

i nv:  i sAndOf Lef t AndRi ght Oper ands 

  sel f . val ue = sel f . l ef t . val ue and sel f . r i ght . val ue 

  f ai l :  “ Val ue of  And_ eval uat i on i s not  conj unct i on of  i t s  

        oper ands”  

end 

Using the unary and binary expression templates we are able to define a number of 
OCL expression constructs in the same manner as and.  When this definition is used 
to describe non-trivial OCL constraints, the resulting instance model will visually 
look like a tree of expressions and sub-expressions (akin to programming language 
expression trees).  At the bottom level of expression trees are values, variables 
holding values or query methods that return values (we collectively refer to these as 
variable references).  We have not yet defined how these are described within our 
definition of OCL. 

In the example at the beginning of this section, examples of variable references are 
bank.hasMoney and bank.hasStaff.  When referring to variables that exist in the same 
object as the expression, the dot expression is omitted and the statement is more 
simply cast as hasMoney and hasStaff.  However, since this is a short hand for 
self.hasMoney and self.hasStaff, variable references can be seen as always residing on 
the right hand side of a dot expression.  We call the right hand side of a dot expression 
a property call.  A property call has a reference to abstractions which are of type 
property  (variables, query methods and association ends).  The left hand side of a dot 
expression may be another dot expression or a special variable called self which binds 
every object to itself.   The abstract syntax of variable expression and its relation to 
the other part of the OCL definition is shown in figure 5.  To exemplify this 
definition, an instance model of the following expression: 

sel f . dog. cat . mouse 

is shown in figure 6. 
 



Expression_

etc ...

VariableExp_

SelfVar_ DotExp_

left:Expression_
right:Expression_

And_

PropertyCall_

propCall

operand

Property

prop

 

Fig. 5.  Abstract syntax of template defined OCL expressions 

mouse:
PropertyCall_

:DotExp_

:DotExp_

:DotExp_
cat:

PropertyCall_

dog:
PropertyCall_

:SelfVar_

 

Fig. 6. sel f . dog. cat . mouse variable expression 

 



An OCL invariant must always evaluate to true.  At the top level of an OCL 
expression is an invariant abstraction (Invariant_) that is not an expression but 
contains an expression.  Many invariants can be contained by a class (Class_) as 
described in the syntax definition of figure 7.  An invariant’s expression must always 
be of boolean type: 

 
cont ext  I nvar i ant : : Semant i cMappi ng: : I nvar i ant _ 

i nv:  expr essi onI sBool ean 

  sel f . r oot Exp. t ype. i sKi ndOf ( Abst r act Synt ax: : Bool ean_)  

  f ai l :  “ An i nvar i ant ’ s expr essi on must  be of  Bool ean_ t ype”  

and evaluate to true (i.e. the constraint must always hold): 
 
cont ext  I nvar i ant : : Semant i cMappi ng: : I nvar i ant _Eval uat i on 

i nv:  eval uat esBool eanTr ue 

  sel f . r oot Exp. val ue = t r ue 

  f ai l :  “ An i nvar i ant  must  eval uat e t o t r ue”  

end 

 
 
 

Class_

Invariant_

Expression_

*invariants

1rootExp

 

Fig. 7.  A class contains many invariant and each invariant has an expression 

 

4. Example 

In the previous section we have described and illustrated our approach to defining 
OCL expressions.  We have found that most of the OCL can be stamped out from the 
small number of templates described, however there are exceptions such as those 
expressions that deal with iterates (forall and collect, for example).  These require a 



little bit more work beyond the standard templates described in the previous section, 
however we refrain from detailing that here. 

Our confidence in the templates is augmented by the fact we have built models 
using the stamped out OCL within MMT.  To illustrate this, consider once again the 
constraint we described at the beginning of section 3: 

 

bank. hasMoney and bank. hasSt af f  

A (syntax) instance model which includes this constraint is shown in figure 8.  This 
describes that a bank class owns two attributes called hasMoney and hasStaff.  The 
bank class also owns a constraint (inv) whose value must always be true.  The 
constraint has an and expression (andExp) which has two sub-dot expressions called 
dotX and dotY.  Each of these dot expressions has a right operand linked to a property 
call (xcall,ycall) these property calls link back to the hasMoney and the hasStaff 
attributes.  The left operand of the dot expressions (xcall,ycall) are linked to the self 
variable selfVar which is linked back to the bank class.   

5. Using expressions with actions 

In the previous sections we have described our approach to defining OCL expressions 
and exemplified the definition with a small example.  Within that discussion, we have 
focused on the use of OCL expressions in the context of invariants that specify some 
axiom.  However, expressions are also used to describe how non-state changing (in 
terms of objects and slots) computations take place.  For instance, the behaviour of 
arithmetic operators: ( 2+( 3* 4) ) / 2.  In that context it is important to understand 
the interaction between expressions and state changing computations that are 
described using actions. For example, the following model combines a slot update 
action (=) and an expression tree: 

 
i nt  x  = ( 2+( 3* 4) ) / 2 

Our definition of the expression/action simply states that actions can contain 
expressions or actions as their sub-actions, but expressions can only contain further 
expressions.  This is more concretely illustrated in figure 9.  The expressions 
templates (figures 2 and 3) are augmented to include an abstract behaviour type (to 
enable polymorphism), from which the abstract expression type is generalized.  This 
abstract behaviour type can be viewed as a plug in point for actions.  The templates 
which are used to stamp out the action language (which we refrain from giving here 
but which are detailed in [10])2 also have an abstract behaviour type.  Actions are 
defined as having actions of type behaviour, and thus can be either expressions or 
actions.  However, expressions are only able to have further expressions as their 
operands. 
                                                           
2 However the architecture of figure 9 does allude to our definition of actions by indicating that 

actions are characterised by pre and post states in addition to the value of their computations 
(as with expressions). 



 

leftOperand rightOperand

bank
:Class_

xCall:PropertyCall_ yCall:PropertyCall_

typetype

leftOperand rightOperandleftOperandrightOperand

expr

ownedAttribute_ ownedAttribute_

ownedInvariant_

type

selfBound:SelfVar_

inv:Invariant_hasMoney
:Attribute

hasStaff
:Attribute

andExp:And_

dotX:DotExp dotY:DotExp

 

Fig. 8. Example (syntax) snapshot of a constraint 

 
 



Behaviour
Evaluation

Pre:Instance_
Value:Object_
Post:Instance_

Action
Evaluation

<<Action
Evaluation>>

Value: Object_

Expression
Evaluation

<<Expression
Evaluation>>

subaction
evaluation(s)

operand(s)

 

Fig. 9. Overview of a (semantic domain) architecture to support the interaction of expressions 
and actions 

6. Related work 

Other work has explored providing a definition for the meta-model of OCL.  Most 
notable is the work presented in [1].  Although our resulting definition closely mirrors 
that work, the important characteristic of our approach is the use of templates to arrive 
at the definition.  We have found that once the templates have been developed, then it 
was a relatively small step to defining OCL. 
    The work described in  [11] is an early attempt at providing a meta-model for OCL.  
Unlike our work, this definition does not provide a separation between the syntax and 
the semantics of the definition.  The well formedness rules are also described 
informally which compromises the precision of the definition. 

7. Conclusion 

In this paper we have introduced an approach to rigorously defining the OCL 
component of UML 2.0.  The novelty of our approach lies in the use of templates to 
arrive at the definition.  Our experience of using templates both within the context of 
the work presented here, and within the wider scope of defining the 2U submission 
for UML 2.0, suggests that they are formidable approach to developing complex 
languages from simple manageable units.  Confidence in the approach is augmented 
by the use of MMT which supports the building of models.  Further to our definition 
of OCL expressions for describing constraints, we have briefly outlined the 
interaction between computational OCL expressions and actions.  We are currently in 



the process of building an action language using our action definition.  This will 
enable us to verify that our definition of actions meets the requirements and also to 
understand better the interaction of actions with expressions. 
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