
Defining OCL expressions using templates

James S. Willans1, Paul Sammut1, Girish Maskeri1,
Andy Evans1 and Tony Clark2

1
Department of Computer Science, University of York,

York, England, YO10 5DD
{ j wi l l ans| paul s| gi r i shmr | andye} @cs. yor k. ac. uk

2
Department of Computer Science, Kings College,

London, England, WC2R 2LS
ancl ar k@dcs. kcl . ac. uk

Abstract. OCL expressions are an essential part of UML. The current versions
of OCL fail to have a meta-model which means that the integration of OCL
with the UML meta-model cannot be formally defined [1]. This can result in
ambiguous descriptions of systems which may compromise designs. The need
to redesign the OCL has been addressed by a number of proposals submitted to
the OMG. In this paper we demonstrate how a definition for OCL can be
stamped out from a small number of templates. Such an approach enables a
high level of reuse and an increased confidence that the definition is correct.
This work forms part of the 2U consortium’s efforts for the definition of UML
2.0.

1. Introduction

It is useful to be able to express computational systems by the precise behaviour they
should exhibit. For these we take the imperative approach typified by conventional
programming languages. However, often it is desirable to describe systems not by
their precise behaviour, but by declarative rules that the behaviour should conform to.
In these cases it can be convenient to express systems using more abstract
descriptions. With UML, such expressions are described using the Object Constraint
Language (OCL).

The OCL has been part of the UML since its inception. However, the current
versions of OCL fails to have a meta-model which means that the integration of OCL
with the UML meta-model cannot be formally defined [1]. This can result in
ambiguous descriptions of systems which may compromise designs. In order to
address this a number of proposals have been submitted to the Object Management
Group (OMG) to redesign OCL such that it has an underlying meta-model (see [2] for
more details).

In this paper we describe how we have taken a template approach to defining OCL
within the 2U submission for UML 2.0 [3] (the definition we arrive at follows closely
that of [1]). Template oriented definitions are advantageous in that a high level of
reuse is promoted. Critically, the OCL definition has been implemented in our meta-

modelling tool (MMT) [4] and we have built models using the definition, increasing
our confidence of its correctness. A further contribution of this paper is to briefly
illustrate how our definition of OCL expressions can be generalised to computational
expressions (e.g. arithmetic operators), and integrated with an action definition in
order to describe computations.

2. Background

The work described in this paper forms part of the 2U Consortiums efforts to define a
submission for UML 2.0 [5]. The approach taken by the group is characterised by a
number of strategies. In this section these are described.

2.1 Unambigious yet understandable

A definition of UML must be precise so that there is no ambiguity about what models
built using the language mean. This involves separating those aspects of the
definition that deal with representation (abstract syntax) with those that deal with
meaning (semantics) [6]. The traditional approach to ensuring precision in languages
such as UML is to define their meaning using formal (mathematical) abstractions (for
example in [7] Statecharts are defined using Z [8]). While there is no question that
these approaches offer the required level of precision, their highly abstract
mathematical nature also makes them difficult to interpret.

The approach adopted by 2U is to model the syntax and semantics of UML 2.0
using precise UML class diagrams which are augmented with OCL constraints. This
reflexive approach to language engineering is a powerful means of defining more
complex languages from simpler ones. The precision of class diagrams means that
they are unambiguous and the visual nature of the diagrams, and their wide spread
adoption, enables these to be easily interpreted. The 2U approach uses both a visual
and textual version of constrained class diagrams, the textual version is understood by
MMT (discussed in section 2.3).

2.2 Promotion of reuse

Reuse is a core strategy for designing and building software. Within that context, the
focus has been on how abstractions can be reused using mechanisms such as objects
and inheritance. A weakness of this style of approach is that complete solutions are
reused, and often it is the case that it is the structure of a solution rather than the
details that have a high level of reusability.

The 2U approach has identified that much of the definition for UML 2.0 can be
constructed from a small number of recurring structures (often referred to as patterns
[9]). For instance, a commonly found structure is the container relationship where
one element (conceptually) contains another. These reusable structures are
encapsulated into templates which can be instantiated with data abstractions. The
class diagram for the container template is shown in figure 1 (a). Templates are

instantiated by substituting the place-holders (enclosed by << >>). The template of
figure 1 (a) might be instantiated using Class_ and Attribute_ parameters to define
that a single class contains many attributes1. This is illustrated in figure 1 (b).

<<Container>> <<Contained>>
<<Container>> <<Contained>>s

1 *

Contains(Container,Contained)

Class_ Attribute
Class_ Attributes

1 *

Contains(Class_,Attribute_)

(a)

(b)

Fig. 1. A template describing the contains relationship

2.3 Correctness

An unambiguous and understandable definition ensures that the definition can be
accurately interpreted with ease. The promotion of reuse using templates enables the
definition to be rapidly constructed from components. However, neither of these
strategies ensures that a definition meets its requirements. The only way this can be
achieved reliably is by extensive testing. In the case of UML, this involves building
models using the definition to determine the strengths and weaknesses of the
definition in view of the requirements.

The meta-modelling tool (MMT) has been designed and constructed to support the
2U consortiums definition and testing of UML 2.0. MMT is a virtual machine that
understands the textual version of constrained class diagrams and the construction of
languages using templates. MMT supports the testing of language definitions at a
number of levels. At a simple level it is able to check the definition to ensure it is
syntactically correct (the importance of this in a definition the size of UML 2 should
not be underestimated). MMT is also able to check that constraints hold within the
definition to ensure that models are well formed. Most importantly, MMT is reflexive

1 the underscore is used when naming abstractions to avoid conflict with the pre defined

abstractions of MMT

which enables the building of new languages described using existing languages.
Consequently, MMT can be used to build UML 2 models and check that our
understanding of UML2 (encapsulated in the definition) is correctly defined.

3. OCL Definition

Part of a typical OCL expression may look like the following:

bank. hasMoney and bank. hasSt af f

This expression specifies that the and statement is true if both the slot hasMoney
owned by bank and the slot hasStaff also owned by bank are true. This example
illustrates two fundamental characteristics of expressions:

1. Expressions can contain expressions as operands. In the case of the above example

the and expression has a dot expressions as its left and right operands (similarly,
the dot expressions themselves have two operands). This means, that specific
expressions (e.g. and) must be generalised from some common abstract expression
type in order to support polymorphism.

2. Expressions have a type which they evaluate to. In the above example the and

expression evaluates to a boolean type. Associated with the type is a value, in the
case of a boolean expression this value is true or false.

This essence of expressions is captured in the template illustrated in figure 2. In this
the syntax of a concrete expression is specialized from an abstract expression and has
a type. The semantic domain specifies that a concrete expression evaluation is
generalized from an abstract expression and has a value which it evaluates to. The
semantic mapping characterises that a concrete expression can have many evaluation
instances.

The value of an expression evaluation should be valid in view of its type. For
instance, a boolean expression should only evaluate to true or false. The template
shown in figure 2 is therefore augmented with the following well formedness
constraint:

cont ext Expr essi on: : Semant i cMappi ng: : <<Eval uat i on>>

i nv: <<Eval uat i on>>Val ueCommut es

 sel f . of _. t ype = sel f . val ue. of _

 f ai l <<Expr essi on>>+” Eval uat i on val ue f ai l ed t o commut e”

end

Expression_

<<Type>>
1

<<Expression>>

AbstractSyntax

Expression_
Evaluation

<<Value>>
1

<<Evaluation>>

SemanticDomain

Expression

SemanticMapping

Expression_

<<Type>>
1

<<Expression>>

Expression_
Evaluation

<<Value>>
1

<<Evaluation>>

*of_

Fig. 2. Basic expressions template

Although the basic expressions template captures the essence of expressions it fails
to specify how expressions can have operands which are themselves expressions.
There are two broad classes of expressions, those with one operand (unary
expressions) and those with two operands (binary expressions). The three template of
figure 2 (abstract syntax, semantic domain and semantic mapping) can be used as a
basis for deriving (stamping out) further templates which deal with the respective
domain for each class of expressions (unary and binary). Figure 3 shows a binary
expressions semantic mapping templates which is achieved by adding two operands to
the result of stamping out figure 2. Note that from now on we will show only the
semantic mapping of templates and definitions for brevity of presentation.

BinaryExpression::SemanticMapping

Expression_

<<Type>>
1

<<Expression>>

Expression_
Evaluation

<<Value>>
1

<<Evaluation>>

*of_

left right left right

Fig. 3. Binary expression template

Given the binary and unary expressions templates, we are now in a position to be
able to stamp out concrete expressions. For instance, illustrated in figure 4 is an and
expression, with a boolean type and value, which is stamped out using the template of
figure 3. Within an and expression, both operands should be also of type boolean:

cont ext AndExpr essi on: : Abst r act Synt ax: : And_

i nv: oper andsAr eBool ean

 sel f . l ef t . t ype. i sKi ndOf (Abst r act Synt ax: : Bool ean_) and

 sel f . r i ght . t ype. i sKi ndOf (Abst r act Synt ax: : Bool ean_)

 f ai l : “ And_ oper ands shoul d be of t ype Bool ean_”

end

AndExpression::SemanticMapping

Expression_

Boolean_
1

And_

Expression_
Evaluation

Boolean_
Evaluation

1
And_Evaluation

*of_

left right left right

Fig. 4. And expression

The result of evaluating an and expression (its value) should be the conjunction of

its two operands:

cont ext AndExpr essi on: : Semant i cMappi ng: : And_Eval uat i on

i nv: i sAndOf Lef t AndRi ght Oper ands

 sel f . val ue = sel f . l ef t . val ue and sel f . r i ght . val ue

 f ai l : “ Val ue of And_ eval uat i on i s not conj unct i on of i t s

 oper ands”

end

Using the unary and binary expression templates we are able to define a number of
OCL expression constructs in the same manner as and. When this definition is used
to describe non-trivial OCL constraints, the resulting instance model will visually
look like a tree of expressions and sub-expressions (akin to programming language
expression trees). At the bottom level of expression trees are values, variables
holding values or query methods that return values (we collectively refer to these as
variable references). We have not yet defined how these are described within our
definition of OCL.

In the example at the beginning of this section, examples of variable references are
bank.hasMoney and bank.hasStaff. When referring to variables that exist in the same
object as the expression, the dot expression is omitted and the statement is more
simply cast as hasMoney and hasStaff. However, since this is a short hand for
self.hasMoney and self.hasStaff, variable references can be seen as always residing on
the right hand side of a dot expression. We call the right hand side of a dot expression
a property call. A property call has a reference to abstractions which are of type
property (variables, query methods and association ends). The left hand side of a dot
expression may be another dot expression or a special variable called self which binds
every object to itself. The abstract syntax of variable expression and its relation to
the other part of the OCL definition is shown in figure 5. To exemplify this
definition, an instance model of the following expression:

sel f . dog. cat . mouse

is shown in figure 6.

Expression_

etc ...

VariableExp_

SelfVar_ DotExp_

left:Expression_
right:Expression_

And_

PropertyCall_

propCall

operand

Property

prop

Fig. 5. Abstract syntax of template defined OCL expressions

mouse:
PropertyCall_

:DotExp_

:DotExp_

:DotExp_
cat:

PropertyCall_

dog:
PropertyCall_

:SelfVar_

Fig. 6. sel f . dog. cat . mouse variable expression

An OCL invariant must always evaluate to true. At the top level of an OCL
expression is an invariant abstraction (Invariant_) that is not an expression but
contains an expression. Many invariants can be contained by a class (Class_) as
described in the syntax definition of figure 7. An invariant’s expression must always
be of boolean type:

cont ext I nvar i ant : : Semant i cMappi ng: : I nvar i ant _

i nv: expr essi onI sBool ean

 sel f . r oot Exp. t ype. i sKi ndOf (Abst r act Synt ax: : Bool ean_)

 f ai l : “ An i nvar i ant ’ s expr essi on must be of Bool ean_ t ype”

and evaluate to true (i.e. the constraint must always hold):

cont ext I nvar i ant : : Semant i cMappi ng: : I nvar i ant _Eval uat i on

i nv: eval uat esBool eanTr ue

 sel f . r oot Exp. val ue = t r ue

 f ai l : “ An i nvar i ant must eval uat e t o t r ue”

end

Class_

Invariant_

Expression_

*invariants

1rootExp

Fig. 7. A class contains many invariant and each invariant has an expression

4. Example

In the previous section we have described and illustrated our approach to defining
OCL expressions. We have found that most of the OCL can be stamped out from the
small number of templates described, however there are exceptions such as those
expressions that deal with iterates (forall and collect, for example). These require a

little bit more work beyond the standard templates described in the previous section,
however we refrain from detailing that here.

Our confidence in the templates is augmented by the fact we have built models
using the stamped out OCL within MMT. To illustrate this, consider once again the
constraint we described at the beginning of section 3:

bank. hasMoney and bank. hasSt af f

A (syntax) instance model which includes this constraint is shown in figure 8. This
describes that a bank class owns two attributes called hasMoney and hasStaff. The
bank class also owns a constraint (inv) whose value must always be true. The
constraint has an and expression (andExp) which has two sub-dot expressions called
dotX and dotY. Each of these dot expressions has a right operand linked to a property
call (xcall,ycall) these property calls link back to the hasMoney and the hasStaff
attributes. The left operand of the dot expressions (xcall,ycall) are linked to the self
variable selfVar which is linked back to the bank class.

5. Using expressions with actions

In the previous sections we have described our approach to defining OCL expressions
and exemplified the definition with a small example. Within that discussion, we have
focused on the use of OCL expressions in the context of invariants that specify some
axiom. However, expressions are also used to describe how non-state changing (in
terms of objects and slots) computations take place. For instance, the behaviour of
arithmetic operators: (2+(3* 4)) / 2. In that context it is important to understand
the interaction between expressions and state changing computations that are
described using actions. For example, the following model combines a slot update
action (=) and an expression tree:

i nt x = (2+(3* 4)) / 2

Our definition of the expression/action simply states that actions can contain
expressions or actions as their sub-actions, but expressions can only contain further
expressions. This is more concretely illustrated in figure 9. The expressions
templates (figures 2 and 3) are augmented to include an abstract behaviour type (to
enable polymorphism), from which the abstract expression type is generalized. This
abstract behaviour type can be viewed as a plug in point for actions. The templates
which are used to stamp out the action language (which we refrain from giving here
but which are detailed in [10])2 also have an abstract behaviour type. Actions are
defined as having actions of type behaviour, and thus can be either expressions or
actions. However, expressions are only able to have further expressions as their
operands.

2 However the architecture of figure 9 does allude to our definition of actions by indicating that

actions are characterised by pre and post states in addition to the value of their computations
(as with expressions).

leftOperand rightOperand

bank
:Class_

xCall:PropertyCall_ yCall:PropertyCall_

typetype

leftOperand rightOperandleftOperandrightOperand

expr

ownedAttribute_ ownedAttribute_

ownedInvariant_

type

selfBound:SelfVar_

inv:Invariant_hasMoney
:Attribute

hasStaff
:Attribute

andExp:And_

dotX:DotExp dotY:DotExp

Fig. 8. Example (syntax) snapshot of a constraint

Behaviour
Evaluation

Pre:Instance_
Value:Object_
Post:Instance_

Action
Evaluation

<<Action
Evaluation>>

Value: Object_

Expression
Evaluation

<<Expression
Evaluation>>

subaction
evaluation(s)

operand(s)

Fig. 9. Overview of a (semantic domain) architecture to support the interaction of expressions
and actions

6. Related work

Other work has explored providing a definition for the meta-model of OCL. Most
notable is the work presented in [1]. Although our resulting definition closely mirrors
that work, the important characteristic of our approach is the use of templates to arrive
at the definition. We have found that once the templates have been developed, then it
was a relatively small step to defining OCL.
 The work described in [11] is an early attempt at providing a meta-model for OCL.
Unlike our work, this definition does not provide a separation between the syntax and
the semantics of the definition. The well formedness rules are also described
informally which compromises the precision of the definition.

7. Conclusion

In this paper we have introduced an approach to rigorously defining the OCL
component of UML 2.0. The novelty of our approach lies in the use of templates to
arrive at the definition. Our experience of using templates both within the context of
the work presented here, and within the wider scope of defining the 2U submission
for UML 2.0, suggests that they are formidable approach to developing complex
languages from simple manageable units. Confidence in the approach is augmented
by the use of MMT which supports the building of models. Further to our definition
of OCL expressions for describing constraints, we have briefly outlined the
interaction between computational OCL expressions and actions. We are currently in

the process of building an action language using our action definition. This will
enable us to verify that our definition of actions meets the requirements and also to
understand better the interaction of actions with expressions.

Acknowledgments

This research was generously funded in part by TATA consultancy services (India).

References

1. Boldsoft, Rational Software Corporation and IONA , Response to the UML 2.0
OCL RFP (ad/2000-09-03), 2000.

2. Object Management Group , OCL Request for proposals, Available from
http://cgi.omg.org/cgi-bin/doc?ad/00-09-03, 2000.

3. T. Clark, A. Evans and S. Kent , Unambigious UML (2U) Revised Submission to
UML 2 RFP, Available from: http://www.2uworks.org, 2002.

4. T. Clark, A. Evans and S. Kent , A programmers guide to MMT, Available from:
http://www.dcs.kcl.ac.uk/staff/tony/docs/ProgrammersGuideToMMT.pdf,
2002.

5. 2U Consortium , http://www.2uworks.org.
6. D. Harel and R. Bernhard , Modeling Languages: Syntax, Semantics and All That

Stuff, The Weizmann Institute of Science, Rehovot, Israel, 2000.
7. E. Mikk, Y. Lakhench, C. Petersohn and M. Siegel , On formal semantics of

statecharts as supported by STATEMATE, Springer-Verlag, 1997.
8. J. M. Spivey , Z Notation, Second ed., Prentice Hall, 1992.
9. E. Gamma, R. Helm, R. Johnson and J. Vlissides , Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1995.
10. B. K. Appukuttan, T. Clark, A. Evans, G. Maskeri, P. Sammut, L. Tratt and J. S.

Willans , A pattern based approach to defining the dynamic infrastructure of
UML 2.0, Kings College, London, 2001.

11. M. Richters and M. Gogolla, A metamodel for OCL, in Second International
Conference on the Unified Modeling Language: UML'99, R. B. France and B.
Rumpe, Eds., Springer, 1999, Vol. LNCS 1723.

Defining OCL expressions using templates.

WILLANS, James, SAMMUT, Paul, MASKERI, Girish, EVANS, Andy and CLARK, Anthony
<http://orcid.org/0000-0003-3167-0739>

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/11919/

Copyright and re-use policy

Please visit http://shura.shu.ac.uk/11919/ and
http://shura.shu.ac.uk/information.html for further details about copyright
and re-use permissions.

