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A pattern based approach to defining the dynamic 
infrastructure of UML 2.0  

 
Biju K. Appukuttan1, Tony Clark2, Andy Evans3, Girish Maskeri4, Paul Sammut3,  

Laurence Tratt2 and James S. Willans3 
 

Abstract.  The 2U Consortium has recently submitted a proposal for the definition of the UML 2.0 
infrastructure.  This uses an innovative technique of rapidly “stamping out” the definition using a small 
number of patterns commonly found in software architecture.  The patterns, their instantiation, and any 
further language details are described using precise class diagrams and OCL, this enables the definition 
to be easily understood.  The main focus of the 2U approach is on the static part of the definition.  A 
further concern when modelling software, using languages such as the UML, is describing the dynamic 
behaviour of the system over time.  The contribution of this paper is to provide a template that can be 
used to “stamp out” the dynamic part of the UML 2.0 infrastructure.  We argue for the suitability of the 
dynamic template because it makes little commitment to concrete abstractions and can, therefore, be used 
to support a broad spectrum of behavioural languages.  

1. Introduction 
 

The power of designing software independent of an implementation has become well established in 
recent years with the development of modelling notations such as the Unified Modelling Language 
(UML) [1]. The UML enables the designer of a system to reify requirement-oriented descriptions 
of a system to an implementation through a number of models. Consequently there can be increased 
certainty that the implementation accurately reflects the requirements. Despite this, the lack of 
precision within the current version of the UML semantics can compromise this certainty and result 
in a flawed implementation. This need for precision has been recognised by the Object 
Management Group’s requests for proposals (RFPs) for the next major revision of UML (version 
2.0). The RFPs require that a precise infrastructure be defined for UML 2.0.  The intention is that 
all UML modelling notations will be built upon the infrastructure such that there can be no 
ambiguity concerning the meaning of the notations and their relationship to each other. 
 
Work by the 2U consortium has been successful in developing an unambiguous infrastructure 
model for UML [2]. A novel part of this submission has been the use of patterns to generate the 
definition. Patterns help in promoting reuse as well as reducing the complexity of the modelling 
activity.  However, the consortium has mainly focused on the static aspects of the submission. 
Clearly, a further concern when defining UML is the ability to model runtime behaviour.  This 
should provide the ability to capture the complete behaviour of the system. The static definition 
may then be viewed as a snapshot (view of the state of the system at a given instant of time) of the 
dynamic behaviour. The ability to capture dynamic behaviour provides a number of desirable 
benefits: 
 

�� Execution modelling capability 
�� Simulation of execution 
�� Code generation capabilities 
�� Additional validation capability 
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�� Possibility of further tool support 
 
The contribution of this paper is to extend the 2U approach of defining the static component of 
languages using patterns, to the dynamic component.  This is achieved by introducing a pattern for 
dynamic behaviour and using this to “stamp out” the dynamic component of the infrastructure. 

2. Describing behaviour 
 
In order for a modelling infrastructure to be useful, it must anticipate and accommodate features of 
models that are likely to be contained in the super structure. Numerous existing UML dynamic 
models exist such as use-case diagrams, sequence diagrams and Statecharts [3].  These models 
describe how actions (often called events) transform the state of the system being specified. This 
characteristic is common to all behavioural modelling notations including more formal notations 
such as CSP [4] and Petri-nets [5]. Consequently, behavioural models can be equivalently 
represented by (being reduced to) a set of ordered actions that are linked to descriptions of the 
system before and after each action is applied (pre and post states).  What cannot be commonly 
factored from behavioural models is the granularity of abstraction with which actions and system 
states are described.  For instance within a use case model, an action might be “close file” where 
the pre condition is “file saved” and the post condition is “file closed”. The same action might be 
described as “let file = null” in a state diagram with “isSaved (file)” as the pre condition and “file 
== null” as the post condition. 
 
Therefore, the lowest common denominator in describing behaviour is the notion of actions 
transforming the state of the system.  However, it is necessary to be able to describe this without 
committing to particular action and system state abstractions.  
 

3. The 2U approach 
 

The 2U approach to defining UML 2.0 infrastructure combines a number of strategies [2]. In this 
section we discuss these strategies and demonstrate them using examples.  These examples will be 
later utilised in the definition of a template for dynamic behaviour. 

3.1 Underlying philosophy 

Separation of syntax and semantics 
 
The syntax of models and their semantics are described as distinct entities related by a mapping 
(semantic mapping).  In the infra structure definition, the syntax is described as abstract, the 
abstract syntax will be mapped to a concrete syntax within the super structure (i.e. boxes and lines).   

Modular development approach 
 
The development of a language should be done in a modular fashion. Hence the methodology is 
oriented towards supporting modular development and also towards making use of the benefits that 
come along with it. Component/ package level modules are also definable. These steps provide the 
possibility of reuse of models at different levels of abstractions. 
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Reuse of language patterns 
 
It is generally considered that good software architectures exhibit recurring structural patterns [6].  
The 2U approach identifies common patterns, and encapsulates these into building blocks that can 
be rapidly reused.  The use of patterns also makes the process of building languages less complex 
and error prone because they describe (partial) solutions that are known to work. 
 

3.2 Technology used to support the 2U methodology 
 
Templates 
 
The patterns identified are encapsulated into a reusable form called package templates. Templates 
can be instantiated with particular data abstractions. Templates, the instantiation of templates, and 
non-template language definition are described using the meta-modelling language (MML) [2] that 
has a visual and textual form.  The visual form is described using class diagrams and OCL 
constraints.  Illustrated in figure 1 is the template for the container package (taken from [2]).  
Shown in figure 2 (taken from [2]) is the template for a package that maps syntax to semantics 
definitions.  Both these templates have no OCL constraints. 
 

<Container> <Contained>
<Container> <Contained>s

1 *

Contains(Container,Contained)

 
 

Figure 1: Container template 
 

<Model Element>
<Instance
Element>

<Model Element>
<Instance
Element>

AbstractSyntax SemanticDomain

SemanticMapping

Semantics(ModelElement,InstanceElement)

 
 

Figure 2: Semantics template 
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Templates can also be used for “stamping out” new templates.  An example of this can be seen in 
figure 3 (taken from [2]) where the Contains template package (figure 1) and the semantics 
template package (figure 2) have been used multiple times to define the syntax, semantics and 
semantic mapping of a contains package.  The dotted arcs linking the templates describe how 
parameters are substituted during the “stamping out” process to arrive at new languages. 
 
The textual form of MML can be used in conjunction with the meta-modelling tool (MMT) in order 
to build models and ensure that models satisfy constraints.  
 

<Container>

<Container>
<Container
Instance>

AbstractSyntax SemanticDomain

SemanticMapping

ContainerSemantics(Container,Contained,
ContainerInstance,ContainedInstance)

<Contained>

<Container>

<Contained>s

1

*

<Contained
Instance>

<Contained
Instance>

<Container
Instance>

<Contained
Instance>s

1

<Contained> <Contained
Instance>

of instance

1 *

of instance

1 *

Container() Semantics()

[<ContainerInstance>/Container,
<ContainedInstance>/Contained]

[AbstractSyntax,<Container>/AbstractSyntax.ModelClass,
SemanticDomain,<ContainerInstance>/SemanticDomain.InstanceClass]

[AbstractSyntax,<Contained>/AbstractSyntax.ModelClass,
SemanticDomain,<ContainedInstance>/SemanticDomain.InstanceClass]

*

 
 

InstanceContentsCommute: 
context class <ContainerInstance> inv: 
    self.of.<Contained>s = self.<ContainedInstance>s -> 
    iterate(element S = Set{} | S->union(Set{element.of})) 
 

Figure 3: Container semantics template 
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4. Behavioural template 
 
A template for describing behaviour is shown in figure 4 “stamped out” using the container 
semantics template (figure 3), the textual form of this template (parsed and verified by MMT) is 
given in appendix A (note that the template is incomplete in terms of constraints).  The template 
addresses the issues highlighted in the section 2 by characterising an understanding of behaviour as 
some action (<Element>Action) causing a transformation (<ElementInstance>Step) described as a 
pre system state and a post state (<Element Instance>) without being concrete about what these 
might be.  Furthermore, the template captures an understanding of collections of transformations as 
forming valid executions (or traces) of the system (<ElementInstance>Filmstrip). 
 
 

Container
Semantics()

<Element>
Action

<Element>

<Element
Instance>
Filmstrip

<Element
Instance>

Step

<Element
Instance>

before after

*

*

*

1

1

1 of

of

instances

instances

DynamicElement(Element,ElementInstance)

(<Element>/Container,
<Element>Action/Contained,

<ElementInstance>/ContainerInstance,
<ElementInstance>Step/ContainedInstance)

Semantic mapping

<Element
Instance>
Filmstrip

<Element
Instance>

Step

<Element
Instance>

before after

*

<Element>
Action

<Element>

SemanticDomainAbstractSyntax

*

*

*
*

*

*

 
 

Figure 4: DynamicElement template 
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Illustrated in figure 5 is the dynamic template instantiated for a class and object. 

Class_ Action

Class

Object_Filmstrip

Object_Step

Object

before after

*

*

*

1

1

1 of

of

instances

instances

DynamicElement(Class_,Object_)

Semantic mapping

Object_Filmstrip

Object_Step

Object

before

*

Class_ Action

Class_

SemanticDomainAbstractSyntax

*

*

*
*

after

*

 
 

Figure 5: Dynamic element template instantiated for Class/Object 
 

5. Example  
 
The template, described in the previous section, is intended to be used to “stamp out” the 
behavioural infra structure of UML 2.0.  Superstructure modelling languages, such as sequence 
diagrams and statecharts, will be defined on top of this, each with their own action semantics 
describing a customised extension of the dynamic behaviour.  These languages will also have a 
concrete syntax which enables the designer to model systems in the “conventional” (often 
diagrammatic) UML form.  In this section we illustrate how the dynamic template “stamped out” 
for class/object in the previous section (figure 5) can be specialised by simple action semantics.  
Using a trivial example we demonstrate how behaviour can be specified using this action semantic.  
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Illustrated in figure 6 is a trivial action semantics which extends the dynamic template with five 
actions: callMethod, readVar, writeVar and seq2.  The final action supports the sequential execution 
of the other three actions. 
 

 

Class_Action

callMethod
Action

readVar
Action

writeVar
Action

seq
Action

Object_Step

callMethod
Execution

readVar
Execution

writeVar
Execution

seq
Execution

Object_Step

callMethod
Execution

readVar
Execution

writeVar
Execution

seq
Execution

Class_Action

callMethod
Action

readVar
Action

writeVar
Action

seq
Action

1 *1 1 1 * * *

SemanticDomainAbstractSyntax

SemanticMapping

SimpleActionLanguage

seqseq

seq seq

 
 

validExecutions: 
context class callMethodExecution inv: 
  self.pre == self.post  // does not change the state of the system 
context class readVarExecution inv: 
  self.pre != self.post // does change the state of the system 
context class writeVarExecution 
  self.pre != self.post // does change the state of the system 
context class seqExecution 
  actionSequence->forall(i | i.pre == actionSequence.head() || 
  i.pre == actionSequence.at(actionSequence.count(i)-1).post) 
// all sequenced actions are either the first action (head) or their pre condition is equal to the 
preceding indexed action’s post condition       
     

Figure 6: A simple action semantics 

                                                 
2 Although this example has not been “stamped out” this could be achieved in the same manner as the other examples 
described in this paper. 
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In order to illustrate the use of the action semantics we demonstrate its use in modelling the trivial 
binary file transfer program shown in figure 7.  The program enables bits to be written to a 
sequence (file) by a writeBit method, and bits to be read (and removed) from a sequence using a 
readBit method. 
 
 

class fileTransfer 
{ 
  file : seq 
 
  writeBit(bit:binary) 
  { 
    file.append(bit) 
  } 
 
  binary readBit() 
  { 
    return file.remove() 
  } 
} 

 
Figure 7: A binary file transfer program 

    
 

 

fileTransfer:
Class

fileTransfer:
Object

: seqAction

: seqExecution file<1>: postfile<>: pre

writeBit(bit:binary):
callMethodAction

file.append(bit)
: writeVarAction

file<>:
pre

file<>:
post

file<>:
pre

file<1>:
post

writeBit(1) :
callMethodExecution

file.append(1) :
writeVarExecution

: seqAction

: seqExecution file<>: postfile<1>: pre

binary readBit():
callMethodAction

file.remove()
: writeVarAction

 file<1>:
pre

 file<1>:
post

 file<1>:
pre

file<>:
post

binary readBit()::
callMethodExecution

file.remove():
writeVarExecution

: Object_
Filmstrip

 
Figure 8: Snapshot of the file transfer program 
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Shown in figure 8 is a model of the file transfer program described using the action extensions 
(figure 6) to the dynamic template. The object filmstrip describes that the write and read steps can 
be executed in sequence.  The filmstrip represents the states of the file as the steps are executed. In 
the example shown, the write action is executed first resulting in a bit being added to the file. The 
write action is further subdivided into a writeBit action followed by a file append action. The write 
action results in a bit being added to the file. Similarly the read action has a readBit followed by a 
remove action which removes the bit that was read previously. Thus the execution of the read 
action results in a bit being removed from the file.  
 
Because we have not defined a concrete syntax for the simple action semantics, the model shown in 
figure 7 is particularly verbose even for this simple example.  Furthermore, for clarity of 
presentation, we have omitted some of the associations describing how a file transfer class owns all 
its actions, and the instance of that class (example) owns all its steps.  However, this example does 
serve to illustrate the flexibility of the proposed dynamic semantics template and its use in 
associated with a less abstract action semantics.  Using the MMT tool we are able to ensure that 
behaviours defined in this model are valid executions (i.e. that the action semantics OCL 
constraints of figure 7 hold for the model). 

6. Discussion 
 
The major strength of the dynamic template described in the previous section is that it can be 
“stamped out” using any data abstractions.  When the template is stamped out on a contained 
element (i.e. packages) and a container element (i.e. classes), there is coherency between 
behaviours actions executed at the contained and container level.  An example of the dynamic 
template “stamped out” for packages and classes is shown in figure 9 (although only the semantic 
domain).  
 
In the previous section we illustrated the use of the dynamic template using a simple action 
language.  The template is intended to be generic such that many different action languages can be 
built upon it.  For instance, there will be an action language to support state machines and a 
different language to support sequence diagrams.  This contrasts with other approaches to dynamic 
behaviour definition (such as [7-10]) that attempt to define a single action language to support all 
behaviours.  Such approaches result in an action language that is verbose and unwieldy and may 
not be able to support all behavioural modelling languages. 
 
Having a semantic domain is very important for tooling and enables us to design test cases against 
the semantics.  For instance, we might perform actions and check that these result in valid 
executions of the system as described by the semantic domain.  Without the semantic domain, it is 
impossible to develop generic tools that perform tests across a wide range of UML models.  This 
contrasts with the approach described in [9] which has no (formally described) semantics. 
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Class_ Action

Class

Object_Filmstrip

Object_Step

Object

before after

*

*

*

*

1

1

1 of

of

instances

instances

Semantic mapping

**

Package_ Action

Package

Snapshot_Filmstrip

Snapshot_Step

Snapshot

before after

*

*

*

1

1

1

of

of

instances

instances

*

*

*

*

 
 

Figure 9: The dynamic template “stamped out” for packages and classes 
 

8. Future work 
 
The example of figure 8 aptly demonstrates the complexity of defining models using abstract, 
rather than concrete, syntax.  A fairly immediate step we are taking is to provide a concrete syntax 
for an action semantics so that we can experiment with larger examples.  Regarding the dynamic 
template itself, there are a number of dimensions for future work.  Most significantly, the 
introduction of refinement and an understanding of time.  Refinement will be addressed by a 
mapping mechanism that enables state and data, described at differing levels of granularity, to be 
navigated.  An important issue is ensuring that refinements are correct; we will draw upon theories 
of refinement in order to do this [11].  Using such refinement mechanisms, a designer will be able 
to reify abstract behavioural designs towards a more concrete form.   
 
The timing issue will be initially addressed by the inclusion of a simple clock that can be used to 
mark time durations between the pre and post states of actions.  This would enable the mapping of 
super structural modelling languages that support the specification of time such as HRT-HOOD 
[12], and also reasoning about temporal properties of designs.  
 
The presence of the complete behavioural traces in the model enables its simulation and validation.  
We intend to explore to what extent this can be supported in the MMT tool and also build facilities 
for automatic code generation from models of behaviour translation of the model into code.  
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9. Conclusion 
 
In this paper we have motivated the need for a precise infrastructure core for UML 2.0 and outlined 
the efforts of the 2U to achieving this.  Although the 2U consortium have made good progress with 
identifying the technology that should be used to define the infrastructure, their focus has initially 
been on the static parts of the definition.  We have claimed that the dynamic part of the definition 
must also be considered and argued that the essence of this definition must describe the 
transformation of system state without committing to the abstractions that describe the 
transformation or the state.  To realise this definition we have presented a dynamic template and 
illustrated its use as a foundation for a simple action semantics.  In order to give a flavour of the 
flexibility of the dynamic template, we have shown it can be used to model the behaviour of a 
trivial file transfer system. 
 

Acknowledgments 
 
This work has been generously funded by the TCS (Tata Consultancy Services), India. 

Appendix A: MML Dynamic template definition 
 
open Packages ; 
open Associations ; 
 
package TemplateLibrary 
  package Contains(Container,Contained)     
    class <<Container>> 
    end 
     
    class <<Contained>> 
    end 
    
    association <<Container + "Contains" + Contained>> 
      <<Container>> : Contains::<<Container>> mult: 1; 
      <<Contained + "s">> : Contains::<<Contained>> mult: * ; 
    end   
  end  
   
  package Semantics(ModelElement, InstanceElement) 
    package AbstractSyntax 
      class <<ModelElement>> 
      end 
    end 
 
    package SemanticDomain 
      class <<InstanceElement>>  
      end 
    end 
     
    package SemanticMapping 
      association <<ModelElement + "X" + InstanceElement>> 
      of : Semantics::AbstractSyntax::<<ModelElement>> mult: 1; 
      instances : Semantics::SemanticDomain::<<InstanceElement>> mult: *; 
      end 
    end 
  end 
   
  package ContainerSemantics(Container,ContainerInstance,Contained,ContainedInstance) 
  extends (TemplateLibrary::Semantics)(Container, ContainerInstance), 
          (TemplateLibrary::Semantics)(Contained, ContainedInstance) 
    package AbstractSyntax   
    extends (TemplateLibrary::Contains)(Container,Contained) 
    end 
     
    package SemanticDomain 
    extends (TemplateLibrary::Contains)(ContainerInstance,ContainedInstance) 
    end 
       
    package SemanticMapping 
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      class <<ContainerInstance>> 
        inv InstanceContentsCommute 
        self.of.<<Contained + "s">> =  
        self.<<ContainedInstance + "s">> -> iterate(p s = Set{} | s->union(Set{p.of})) 
        fail: "My " + <<ContainedInstance + "s">>  
           + " don't commute with the contents of my " + <<Container>>  
        end 
      end             
    end 
  end 
   
  package DynamicElement(Element,ElementInstance) 
    extends (TemplateLibrary::ContainerSemantics) 
            (Element,<<Element+"Action">>,ElementInstance,<<ElementInstance+"Step">>) 
    package AbstractSyntax 
    end 
         
    package SemanticDomain 
      class <<Element>> 
        filmstrips : Set(DynamicElement::<<ElementInstance + "Filmstrip">>); 
      end 
                         
      class <<ElementInstance + "Filmstrip">> 
        steps : Set(DynamicElement::<<ElementInstance + "Step">>); 
      end 
                         
      class <<ElementInstance + "Step">> 
        before : DynamicElement::<<ElementInstance>> ; 
        after : DynamicElement::<<ElementInstance>>; 
      end 
                         
      class <<Element + "Action">> 
      end 
    end 
     
    package SemanticMapping 
    extends DynamicElement::AbstractSyntax, DynamicElement::SemanticDomain 
    end 
  end 
end 
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