
A pattern based approach to defining the dynamic
infrastructure of UML 2.0.

APPUKUTTAN, Biju K, CLARK, Anthony <http://orcid.org/0000-0003-3167-
0739>, EVANS, Andy, MASKERI, Girish, SAMMUT, Paul, TRATT, Laurence
and WILLANS, James

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/11898/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

APPUKUTTAN, Biju K, CLARK, Anthony, EVANS, Andy, MASKERI, Girish,
SAMMUT, Paul, TRATT, Laurence and WILLANS, James (2002). A pattern based
approach to defining the dynamic infrastructure of UML 2.0. In: Fourth Workshop on
Rigorous Object Oriented Methods, University College, London, March 2002. N/A.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

 1

A pattern based approach to defining the dynamic
infrastructure of UML 2.0

Biju K. Appukuttan1, Tony Clark2, Andy Evans3, Girish Maskeri4, Paul Sammut3,

Laurence Tratt2 and James S. Willans3

Abstract. The 2U Consortium has recently submitted a proposal for the definition of the UML 2.0
infrastructure. This uses an innovative technique of rapidly “stamping out” the definition using a small
number of patterns commonly found in software architecture. The patterns, their instantiation, and any
further language details are described using precise class diagrams and OCL, this enables the definition
to be easily understood. The main focus of the 2U approach is on the static part of the definition. A
further concern when modelling software, using languages such as the UML, is describing the dynamic
behaviour of the system over time. The contribution of this paper is to provide a template that can be
used to “stamp out” the dynamic part of the UML 2.0 infrastructure. We argue for the suitability of the
dynamic template because it makes little commitment to concrete abstractions and can, therefore, be used
to support a broad spectrum of behavioural languages.

1. Introduction

The power of designing software independent of an implementation has become well established in
recent years with the development of modelling notations such as the Unified Modelling Language
(UML) [1]. The UML enables the designer of a system to reify requirement-oriented descriptions
of a system to an implementation through a number of models. Consequently there can be increased
certainty that the implementation accurately reflects the requirements. Despite this, the lack of
precision within the current version of the UML semantics can compromise this certainty and result
in a flawed implementation. This need for precision has been recognised by the Object
Management Group’s requests for proposals (RFPs) for the next major revision of UML (version
2.0). The RFPs require that a precise infrastructure be defined for UML 2.0. The intention is that
all UML modelling notations will be built upon the infrastructure such that there can be no
ambiguity concerning the meaning of the notations and their relationship to each other.

Work by the 2U consortium has been successful in developing an unambiguous infrastructure
model for UML [2]. A novel part of this submission has been the use of patterns to generate the
definition. Patterns help in promoting reuse as well as reducing the complexity of the modelling
activity. However, the consortium has mainly focused on the static aspects of the submission.
Clearly, a further concern when defining UML is the ability to model runtime behaviour. This
should provide the ability to capture the complete behaviour of the system. The static definition
may then be viewed as a snapshot (view of the state of the system at a given instant of time) of the
dynamic behaviour. The ability to capture dynamic behaviour provides a number of desirable
benefits:

�� Execution modelling capability
�� Simulation of execution
�� Code generation capabilities
�� Additional validation capability

1. Department of Computer Science, King’s College, London, England. (On deputation from Tata Consultancy Services, India.)

biju@dcs.kcl.ac.uk
2. Department of Computer Science, King’s College, London, England. {anclark | laurie}@dcs.kcl.ac.uk
3. Department of Computer Science, University of York, York, England. {andye | pauls | jwillans}@cs.york.ac.uk
4. Department of Computer Science, University of York, York, England. (On deputation from Tata Consultancy Services, India.)

girishmr@cs.york.ac.uk

 2

�� Possibility of further tool support

The contribution of this paper is to extend the 2U approach of defining the static component of
languages using patterns, to the dynamic component. This is achieved by introducing a pattern for
dynamic behaviour and using this to “stamp out” the dynamic component of the infrastructure.

2. Describing behaviour

In order for a modelling infrastructure to be useful, it must anticipate and accommodate features of
models that are likely to be contained in the super structure. Numerous existing UML dynamic
models exist such as use-case diagrams, sequence diagrams and Statecharts [3]. These models
describe how actions (often called events) transform the state of the system being specified. This
characteristic is common to all behavioural modelling notations including more formal notations
such as CSP [4] and Petri-nets [5]. Consequently, behavioural models can be equivalently
represented by (being reduced to) a set of ordered actions that are linked to descriptions of the
system before and after each action is applied (pre and post states). What cannot be commonly
factored from behavioural models is the granularity of abstraction with which actions and system
states are described. For instance within a use case model, an action might be “close file” where
the pre condition is “file saved” and the post condition is “file closed”. The same action might be
described as “let file = null” in a state diagram with “isSaved (file)” as the pre condition and “file
== null” as the post condition.

Therefore, the lowest common denominator in describing behaviour is the notion of actions
transforming the state of the system. However, it is necessary to be able to describe this without
committing to particular action and system state abstractions.

3. The 2U approach

The 2U approach to defining UML 2.0 infrastructure combines a number of strategies [2]. In this
section we discuss these strategies and demonstrate them using examples. These examples will be
later utilised in the definition of a template for dynamic behaviour.

3.1 Underlying philosophy

Separation of syntax and semantics

The syntax of models and their semantics are described as distinct entities related by a mapping
(semantic mapping). In the infra structure definition, the syntax is described as abstract, the
abstract syntax will be mapped to a concrete syntax within the super structure (i.e. boxes and lines).

Modular development approach

The development of a language should be done in a modular fashion. Hence the methodology is
oriented towards supporting modular development and also towards making use of the benefits that
come along with it. Component/ package level modules are also definable. These steps provide the
possibility of reuse of models at different levels of abstractions.

 3

Reuse of language patterns

It is generally considered that good software architectures exhibit recurring structural patterns [6].
The 2U approach identifies common patterns, and encapsulates these into building blocks that can
be rapidly reused. The use of patterns also makes the process of building languages less complex
and error prone because they describe (partial) solutions that are known to work.

3.2 Technology used to support the 2U methodology

Templates

The patterns identified are encapsulated into a reusable form called package templates. Templates
can be instantiated with particular data abstractions. Templates, the instantiation of templates, and
non-template language definition are described using the meta-modelling language (MML) [2] that
has a visual and textual form. The visual form is described using class diagrams and OCL
constraints. Illustrated in figure 1 is the template for the container package (taken from [2]).
Shown in figure 2 (taken from [2]) is the template for a package that maps syntax to semantics
definitions. Both these templates have no OCL constraints.

<Container> <Contained>
<Container> <Contained>s

1 *

Contains(Container,Contained)

Figure 1: Container template

<Model Element>
<Instance
Element>

<Model Element>
<Instance
Element>

AbstractSyntax SemanticDomain

SemanticMapping

Semantics(ModelElement,InstanceElement)

Figure 2: Semantics template

 4

Templates can also be used for “stamping out” new templates. An example of this can be seen in
figure 3 (taken from [2]) where the Contains template package (figure 1) and the semantics
template package (figure 2) have been used multiple times to define the syntax, semantics and
semantic mapping of a contains package. The dotted arcs linking the templates describe how
parameters are substituted during the “stamping out” process to arrive at new languages.

The textual form of MML can be used in conjunction with the meta-modelling tool (MMT) in order
to build models and ensure that models satisfy constraints.

<Container>

<Container>
<Container
Instance>

AbstractSyntax SemanticDomain

SemanticMapping

ContainerSemantics(Container,Contained,
ContainerInstance,ContainedInstance)

<Contained>

<Container>

<Contained>s

1

*

<Contained
Instance>

<Contained
Instance>

<Container
Instance>

<Contained
Instance>s

1

<Contained> <Contained
Instance>

of instance

1 *

of instance

1 *

Container() Semantics()

[<ContainerInstance>/Container,
<ContainedInstance>/Contained]

[AbstractSyntax,<Container>/AbstractSyntax.ModelClass,
SemanticDomain,<ContainerInstance>/SemanticDomain.InstanceClass]

[AbstractSyntax,<Contained>/AbstractSyntax.ModelClass,
SemanticDomain,<ContainedInstance>/SemanticDomain.InstanceClass]

*

InstanceContentsCommute:
context class <ContainerInstance> inv:
 self.of.<Contained>s = self.<ContainedInstance>s ->
 iterate(element S = Set{} | S->union(Set{element.of}))

Figure 3: Container semantics template

 5

4. Behavioural template

A template for describing behaviour is shown in figure 4 “stamped out” using the container
semantics template (figure 3), the textual form of this template (parsed and verified by MMT) is
given in appendix A (note that the template is incomplete in terms of constraints). The template
addresses the issues highlighted in the section 2 by characterising an understanding of behaviour as
some action (<Element>Action) causing a transformation (<ElementInstance>Step) described as a
pre system state and a post state (<Element Instance>) without being concrete about what these
might be. Furthermore, the template captures an understanding of collections of transformations as
forming valid executions (or traces) of the system (<ElementInstance>Filmstrip).

Container
Semantics()

<Element>
Action

<Element>

<Element
Instance>
Filmstrip

<Element
Instance>

Step

<Element
Instance>

before after

*

*

*

1

1

1 of

of

instances

instances

DynamicElement(Element,ElementInstance)

(<Element>/Container,
<Element>Action/Contained,

<ElementInstance>/ContainerInstance,
<ElementInstance>Step/ContainedInstance)

Semantic mapping

<Element
Instance>
Filmstrip

<Element
Instance>

Step

<Element
Instance>

before after

*

<Element>
Action

<Element>

SemanticDomainAbstractSyntax

*

*

*
*

*

*

Figure 4: DynamicElement template

 6

Illustrated in figure 5 is the dynamic template instantiated for a class and object.

Class_ Action

Class

Object_Filmstrip

Object_Step

Object

before after

*

*

*

1

1

1 of

of

instances

instances

DynamicElement(Class_,Object_)

Semantic mapping

Object_Filmstrip

Object_Step

Object

before

*

Class_ Action

Class_

SemanticDomainAbstractSyntax

*

*

*
*

after

*

Figure 5: Dynamic element template instantiated for Class/Object

5. Example

The template, described in the previous section, is intended to be used to “stamp out” the
behavioural infra structure of UML 2.0. Superstructure modelling languages, such as sequence
diagrams and statecharts, will be defined on top of this, each with their own action semantics
describing a customised extension of the dynamic behaviour. These languages will also have a
concrete syntax which enables the designer to model systems in the “conventional” (often
diagrammatic) UML form. In this section we illustrate how the dynamic template “stamped out”
for class/object in the previous section (figure 5) can be specialised by simple action semantics.
Using a trivial example we demonstrate how behaviour can be specified using this action semantic.

 7

Illustrated in figure 6 is a trivial action semantics which extends the dynamic template with five
actions: callMethod, readVar, writeVar and seq2. The final action supports the sequential execution
of the other three actions.

Class_Action

callMethod
Action

readVar
Action

writeVar
Action

seq
Action

Object_Step

callMethod
Execution

readVar
Execution

writeVar
Execution

seq
Execution

Object_Step

callMethod
Execution

readVar
Execution

writeVar
Execution

seq
Execution

Class_Action

callMethod
Action

readVar
Action

writeVar
Action

seq
Action

1 *1 1 1 * * *

SemanticDomainAbstractSyntax

SemanticMapping

SimpleActionLanguage

seqseq

seq seq

validExecutions:
context class callMethodExecution inv:
 self.pre == self.post // does not change the state of the system
context class readVarExecution inv:
 self.pre != self.post // does change the state of the system
context class writeVarExecution
 self.pre != self.post // does change the state of the system
context class seqExecution
 actionSequence->forall(i | i.pre == actionSequence.head() ||
 i.pre == actionSequence.at(actionSequence.count(i)-1).post)
// all sequenced actions are either the first action (head) or their pre condition is equal to the
preceding indexed action’s post condition

Figure 6: A simple action semantics

2 Although this example has not been “stamped out” this could be achieved in the same manner as the other examples
described in this paper.

 8

In order to illustrate the use of the action semantics we demonstrate its use in modelling the trivial
binary file transfer program shown in figure 7. The program enables bits to be written to a
sequence (file) by a writeBit method, and bits to be read (and removed) from a sequence using a
readBit method.

class fileTransfer
{
 file : seq

 writeBit(bit:binary)
 {
 file.append(bit)
 }

 binary readBit()
 {
 return file.remove()
 }
}

Figure 7: A binary file transfer program

fileTransfer:
Class

fileTransfer:
Object

: seqAction

: seqExecution file<1>: postfile<>: pre

writeBit(bit:binary):
callMethodAction

file.append(bit)
: writeVarAction

file<>:
pre

file<>:
post

file<>:
pre

file<1>:
post

writeBit(1) :
callMethodExecution

file.append(1) :
writeVarExecution

: seqAction

: seqExecution file<>: postfile<1>: pre

binary readBit():
callMethodAction

file.remove()
: writeVarAction

 file<1>:
pre

 file<1>:
post

 file<1>:
pre

file<>:
post

binary readBit()::
callMethodExecution

file.remove():
writeVarExecution

: Object_
Filmstrip

Figure 8: Snapshot of the file transfer program

 9

Shown in figure 8 is a model of the file transfer program described using the action extensions
(figure 6) to the dynamic template. The object filmstrip describes that the write and read steps can
be executed in sequence. The filmstrip represents the states of the file as the steps are executed. In
the example shown, the write action is executed first resulting in a bit being added to the file. The
write action is further subdivided into a writeBit action followed by a file append action. The write
action results in a bit being added to the file. Similarly the read action has a readBit followed by a
remove action which removes the bit that was read previously. Thus the execution of the read
action results in a bit being removed from the file.

Because we have not defined a concrete syntax for the simple action semantics, the model shown in
figure 7 is particularly verbose even for this simple example. Furthermore, for clarity of
presentation, we have omitted some of the associations describing how a file transfer class owns all
its actions, and the instance of that class (example) owns all its steps. However, this example does
serve to illustrate the flexibility of the proposed dynamic semantics template and its use in
associated with a less abstract action semantics. Using the MMT tool we are able to ensure that
behaviours defined in this model are valid executions (i.e. that the action semantics OCL
constraints of figure 7 hold for the model).

6. Discussion

The major strength of the dynamic template described in the previous section is that it can be
“stamped out” using any data abstractions. When the template is stamped out on a contained
element (i.e. packages) and a container element (i.e. classes), there is coherency between
behaviours actions executed at the contained and container level. An example of the dynamic
template “stamped out” for packages and classes is shown in figure 9 (although only the semantic
domain).

In the previous section we illustrated the use of the dynamic template using a simple action
language. The template is intended to be generic such that many different action languages can be
built upon it. For instance, there will be an action language to support state machines and a
different language to support sequence diagrams. This contrasts with other approaches to dynamic
behaviour definition (such as [7-10]) that attempt to define a single action language to support all
behaviours. Such approaches result in an action language that is verbose and unwieldy and may
not be able to support all behavioural modelling languages.

Having a semantic domain is very important for tooling and enables us to design test cases against
the semantics. For instance, we might perform actions and check that these result in valid
executions of the system as described by the semantic domain. Without the semantic domain, it is
impossible to develop generic tools that perform tests across a wide range of UML models. This
contrasts with the approach described in [9] which has no (formally described) semantics.

 10

Class_ Action

Class

Object_Filmstrip

Object_Step

Object

before after

*

*

*

*

1

1

1 of

of

instances

instances

Semantic mapping

**

Package_ Action

Package

Snapshot_Filmstrip

Snapshot_Step

Snapshot

before after

*

*

*

1

1

1

of

of

instances

instances

*

*

*

*

Figure 9: The dynamic template “stamped out” for packages and classes

8. Future work

The example of figure 8 aptly demonstrates the complexity of defining models using abstract,
rather than concrete, syntax. A fairly immediate step we are taking is to provide a concrete syntax
for an action semantics so that we can experiment with larger examples. Regarding the dynamic
template itself, there are a number of dimensions for future work. Most significantly, the
introduction of refinement and an understanding of time. Refinement will be addressed by a
mapping mechanism that enables state and data, described at differing levels of granularity, to be
navigated. An important issue is ensuring that refinements are correct; we will draw upon theories
of refinement in order to do this [11]. Using such refinement mechanisms, a designer will be able
to reify abstract behavioural designs towards a more concrete form.

The timing issue will be initially addressed by the inclusion of a simple clock that can be used to
mark time durations between the pre and post states of actions. This would enable the mapping of
super structural modelling languages that support the specification of time such as HRT-HOOD
[12], and also reasoning about temporal properties of designs.

The presence of the complete behavioural traces in the model enables its simulation and validation.
We intend to explore to what extent this can be supported in the MMT tool and also build facilities
for automatic code generation from models of behaviour translation of the model into code.

 11

9. Conclusion

In this paper we have motivated the need for a precise infrastructure core for UML 2.0 and outlined
the efforts of the 2U to achieving this. Although the 2U consortium have made good progress with
identifying the technology that should be used to define the infrastructure, their focus has initially
been on the static parts of the definition. We have claimed that the dynamic part of the definition
must also be considered and argued that the essence of this definition must describe the
transformation of system state without committing to the abstractions that describe the
transformation or the state. To realise this definition we have presented a dynamic template and
illustrated its use as a foundation for a simple action semantics. In order to give a flavour of the
flexibility of the dynamic template, we have shown it can be used to model the behaviour of a
trivial file transfer system.

Acknowledgments

This work has been generously funded by the TCS (Tata Consultancy Services), India.

Appendix A: MML Dynamic template definition

open Packages ;
open Associations ;

package TemplateLibrary
 package Contains(Container,Contained)
 class <<Container>>
 end

 class <<Contained>>
 end

 association <<Container + "Contains" + Contained>>
 <<Container>> : Contains::<<Container>> mult: 1;
 <<Contained + "s">> : Contains::<<Contained>> mult: * ;
 end
 end

 package Semantics(ModelElement, InstanceElement)
 package AbstractSyntax
 class <<ModelElement>>
 end
 end

 package SemanticDomain
 class <<InstanceElement>>
 end
 end

 package SemanticMapping
 association <<ModelElement + "X" + InstanceElement>>
 of : Semantics::AbstractSyntax::<<ModelElement>> mult: 1;
 instances : Semantics::SemanticDomain::<<InstanceElement>> mult: *;
 end
 end
 end

 package ContainerSemantics(Container,ContainerInstance,Contained,ContainedInstance)
 extends (TemplateLibrary::Semantics)(Container, ContainerInstance),
 (TemplateLibrary::Semantics)(Contained, ContainedInstance)
 package AbstractSyntax
 extends (TemplateLibrary::Contains)(Container,Contained)
 end

 package SemanticDomain
 extends (TemplateLibrary::Contains)(ContainerInstance,ContainedInstance)
 end

 package SemanticMapping

 12

 class <<ContainerInstance>>
 inv InstanceContentsCommute
 self.of.<<Contained + "s">> =
 self.<<ContainedInstance + "s">> -> iterate(p s = Set{} | s->union(Set{p.of}))
 fail: "My " + <<ContainedInstance + "s">>
 + " don't commute with the contents of my " + <<Container>>
 end
 end
 end
 end

 package DynamicElement(Element,ElementInstance)
 extends (TemplateLibrary::ContainerSemantics)
 (Element,<<Element+"Action">>,ElementInstance,<<ElementInstance+"Step">>)
 package AbstractSyntax
 end

 package SemanticDomain
 class <<Element>>
 filmstrips : Set(DynamicElement::<<ElementInstance + "Filmstrip">>);
 end

 class <<ElementInstance + "Filmstrip">>
 steps : Set(DynamicElement::<<ElementInstance + "Step">>);
 end

 class <<ElementInstance + "Step">>
 before : DynamicElement::<<ElementInstance>> ;
 after : DynamicElement::<<ElementInstance>>;
 end

 class <<Element + "Action">>
 end
 end

 package SemanticMapping
 extends DynamicElement::AbstractSyntax, DynamicElement::SemanticDomain
 end
 end
end

References

1. Rumbaugh, J., I. Jacobson, and G. Booch, The Unified Modelling Language Reference Manual, . 1999,
Addison Wesley.

2. 2U Consortium, Initial Submission to OMG RFP's: ad/00-09-01 (UML 2.0 Infrastructure) and ad/00-09-03
(UML 2.0 OCL). 2001.

3. Harel, D., Statecharts: A visual formalism for complex systems. Science of Computer Programming, 1987. 8:
p. 231-274.

4. Hoare, C.A.R., Communicating Sequential Processes. Communications of the ACM, 1978. 28(8): p. 666-677.
5. Petri, C.A., Kommunikation mit automaten, . 1962, Institu fur Instrumentella Mathematic.
6. Gamma, E., et al., Design Patterns, Elements of Reusable Object-Oriented Software. Professional Computing

Series. 1995: Addison Wesley.
7. U2 Partners, Unified Modelling Language 2.0 Proposal version 0.64 (draft), . 2001.
 Available at http://www.u2-partners.org
8. Alvarez, J.M., et al., An Action Semantics for MML. Lecture notes in computer science, 2001. 2185: p. 2-18.
9. Action Semantics for the UML, OMG ad/2001-08-04, Response to OMG RFP ad/98-11-01, . 2001. Available

at http://www.umlactionsemantics.org
10. Kleppe, A. and J. Warmer, Unification of static and dynamic semantics in UML, 2001, Klasse Objecten.
11. Roever, W.-P.d. and K. Engelhardt, Data Refinement: Model-Oriented Proof Methods and their Comparison.

Cambridge Tracts in Theoretical Computer Science. 1998: Cambridge University Press.
12. Burns, A. and A. Wellings, Hard Real-Time HOOD: A Structured Design Method for Hard Real-Time Ada

Systems. 1995: Elsevier.

