
A model driven approach to model transformations.

APPUKUTTAN, Biju K, CLARK, Anthony <http://orcid.org/0000-0003-3167-
0739>, REDDY, Sreedhar, TRATT, Laurence and VENKATESH, R

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/11893/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

APPUKUTTAN, Biju K, CLARK, Anthony, REDDY, Sreedhar, TRATT, Laurence and
VENKATESH, R (2003). A model driven approach to model transformations. In:
Workshop in Software Model Engineering (WiSME) 2003, San Francisco, October
2003. Springer Berlin Heidelberg.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

A model driven approach to building

implementable model transformations

Biju Appukuttan1 biju@dcs.kcl.ac.uk

Tony Clark2 anclark@dcs.kcl.ac.uk

Sreedhar Reddy3 sreedharr@pune.tcs.co.in

Laurence Tratt2 laurie@tratt.net

R. Venkatesh3 rvenky@pune.tcs.co.in

1 Tata Consultancy Services, Pune, India. On deputation to Kings College
London.

2 Department of Computer Science, King’s College London, Strand, London,
WC2R 2LS, United Kingdom.

3 Tata Consultancy Services, Pune, India.

Abstract

The OMG’s Model Driven Architecture (MDA) initiative has been the focus of
much attention in both academia and industry, due to its promise of more rapid
and consistent software development through the increased use of models. In order
for MDA to reach its full potential, the ability to manipulate and transform mod-
els – most obviously from the Platform Independent Model (PIM) to the Platform
Specific Models (PSM) – is vital. Recognizing this need, the OMG issued a Request
For Proposals (RFP) largely concerned with finding a suitable mechanism for trans-
forming models. This paper outlines the relevant background material, summarizes
the approach taken by the QVT-Partners (to whom the authors belong), presents
a non-trivial example using the QVT-Partners approach, and finally sketches out
what the future holds for model transformations.

1 Introduction - Transformations and MDA

The OMG Queries/Views/Transformations (QVT) RFP [1] defines the MDA vision thus:

MDA defines an approach to IT system specification that separates the specification of
system functionality from the specification of the implementation of that functionality on
a specific technology platform, and provides a set of guidelines for structuring specifica-
tions expressed as models.

The MDA approach and the standards that support it allow the same model specifying
system functionality to be realized on multiple platforms through auxiliary mapping

standards... and allows different applications to be integrated by explicitly relating their
models.

In less technical terms, MDA aims to allow developers to create systems entirely with
models 1 . Furthermore, MDA envisages systems being comprised of many small, manageable
models rather than one gigantic monolithic model. Finally, MDA allows systems to be
designed independently of the eventual technologies they will be deployed on; a PIM can
then be transformed into a PSM in order to run on a specific platform.

���

������

��������	
�����

� �� ��	� �
� � 	�

��������	
�����

� �� ��	� �
� � 	�

� ��� ���� � 	� �� ��

��������	� � � ���� � �� �

� �� ��	� �� � �

� � � �� ����� � 	� �� ��

Fig. 1. Transformations and MDA

Figure 1 – based partly on a D’Souza example [2] – shows an overview of a typical usage of
MDA. It shows a company horizontally split into multiple departments, each of which has
a model of its system. These models can be considered to be views on an overall system
PIM. The PIM can be converted into a PSM. In order to realize this vision, there has to be
some way to specify the changes that models such as that in figure 1 undergo. The enabling
technology is transformations. In figure 1 a transformation T1 integrates the company’s
horizontal definitions into an overall PIM, and a transformation T2 converts the overall
PIM into PSMs, one for each deployment platform.

The following are some representative MDA related uses where transformations are, or could
be, involved:

• Integrating the components of a horizontal direction in a federated model. This is the
example used in figure 1

• Converting a model ‘left to right’ and/or ‘right to left’. This is a very common operation
in tools, for example saving a UML model to XML and reading it back in again.

• Abstracting a model. Abstracting away unimportant details, and presenting to the user
only the salient points of the model, is a vital part of MDA.

• Reverse engineering. For example, a tool which recovers Java source code from class files.
• Technology migration. This is similar to reverse engineering, but whereas reverse engineer-

ing is simply trying to recover lost information, technology migration is effectively trying
to convert outdated systems into current systems. For example, a tool which migrates
legacy COBOL code to Java.

1 This does not mean that everything must be specified fully or even semi-graphically –
the definition of model allows one to drill down right to source code level.

2

Transformations are undoubtedly the key technology in the realization of the MDA vision.
They are present explicitly – as in the transformation of a PIM to a PSM – and implicitly
– the integration of different system views – throughout MDA.

2 QVT

In order for MDA to reach its full potential, the ability to manipulate and transform mod-
els is vital. Although there has been much discussion [3,4] of the problem area, as well as
attempts at filling this gap in the past [5–8], little practical progress has been made. Recog-
nizing the need for a practical solution for transformations, the OMG issued a Request For
Proposals (RFP) [1] largely concerned with finding a suitable mechanism for transforming
models. This paper is based on the QVT-Partners 2 revised submission [9] to the QVT RFP.

3 Fundamental concepts

It is our view that to provide a complete solution to the problem of a practical definition
of transformations, the following complimentary parts are necessary:

(1) The ability to express both specifications and implementations of transformations.
(2) A mechanism for composing transformations.
(3) Standard pattern matching languages which can be used with declarative and imper-

ative transformations.
(4) A complete semantics, which are defined in terms of existing OMG standards.

The solution outlined in this paper can be seen to be chiefly concerned with solving two
overarching problems: the need to provide a framework into which different uses of trans-
formations can be accommodated, and the need to provide a standard set of languages
for expressing transformations. In solving these needs, the solutions to other fundamental
requirements as mentioned earlier in this section follow fairly automatically.

4 A definition of transformations

This section outlines the points of our definition of transformations that are most relevant
to this paper.

4.1 Framework

We define an overall framework for transformations that allows one to use a variety of dif-
ferent transformation styles. This framework also transparently allows transformations to
change style throughout the lifetime of a system. Such transparency is enabled by identifi-
cation of two distinct sub-types of transformations: relations and mappings.

Relations are multi-directional transformation specifications. Relations are not executable
in the sense that they are unable to create or alter a model: they can however check two
or more models for consistency against one another. Typically relations are used in the
specification stages of system development, or for checking the validity of a mapping.

2 http://qvtp.org/

3

Mappings are transformation implementations. Unlike relations, mappings are potentially
uni-directional and can return values. Mappings can refine any number relations, in which
case the mapping must be consistent with the relations it refines.

�

� � 	

 � �

�

�

��������

����� � � � ��� �����

	 �

 ���

Fig. 2. A high level relation being refined by a directed mapping

Figure 2 shows a relation R relating two domains. There is also a mapping M which refines
relation R; since M is directed, it transforms model elements from the right hand domain
into the left hand domain.

Transformation

MappingRelation

Fig. 3. Transformations, relations and mappings in the MOF hierarchy

Figure 3 shows how transformations, relations and mappings are placed within the MOF
[10] hierarchy. As Transformation is a super-type of Relation and Mapping, when we talk
about a transformation we effectively mean either a relation or a mapping, we don’t mind
which one. When we talk about a mapping, we specifically mean a mapping and only a
mapping and similarly for relations.

The identification and separation of transformation specifications and implementations, as
relations and mappings respectively, gives several benefits to the modeller. These include
giving the modeller the ability to:

• use relations in the initial stages of system development when implementation details may
not have been fully decided upon. This allows transformations to be concretely discussed
without an over-commitment to implementation details.

• write multiple mappings, possibly in completely different programming languages, which
refine a single relation.

• construct a relation from a pre-existing mapping to tease out details which would other-
wise be lost in the melange.

We also propose a standard language (MTL - Model Transformation Language) for relations
and mappings. MTL utilizes pattern matching as one of the key factors in allowing powerful
transformations to be created. Providing a single language for relations and mappingsis
advantageous for several reasons, but most noticeably for lowering the entry barrier to
transformation use. MTL comes in both graphical and textual forms, the graphical form
being most useful (as with most diagrams) when used as an abstraction of the textual form.

4

4.2 Pattern Languages

In order to facilitate transformations we define powerful a pattern matching language which
is utilized by MTL. Pattern matching is a proven concept within transformation systems
such as XSLT [W3C99] and textual regular expressions ‘a la Perl. The essential idea behind
pattern matching is to allow the succinct expression of complex constraints on an input
data type; data which matches the pattern is then picked out and returned to the invoker.
MTL allows model fragments to be matched against meta-model patterns and used in
transformations. Pattern languages are inherently a compromise between expressivity on
the one hand, and brevity and legibility on the other. As is the case with most pattern
languages, the pattern language we propose is not always the best way of expressing aspects
of a particular transformation. To that end, domains in our standard relations and mappings
languages are comprised of patterns and conditions. By utilizing conditions, arbitrarily
complicated expressions can be specified to augment patterns. Furthermore, a separate
condition is scoped over all domains which allows domains to be related to one another in
a natural way. The general form of a relation when written in textual form is thus:

relation R { domain { pattern-1 when condition-1 }

...

domain {pattern-n when condition-n }

when { condition }

}

The final condition is effectively a global condition which scopes over all domains. A relation
is called with a number of arguments corresponding to its number of domains; each argument
is either a single element, or it is a choice. A choice is a data set which contains zero or more
objects, each of which may be tested to see if some combination of candidates satisifies the
transformation choices come in both unordered and prioritised forms. The relation is only
satisfied when all domains are satisfied. This is more complex than it may initially seem as
there can be constraints which hold across more than one domain. Thus an arbitrary object
o may satisfy one domain but cause another to fail; the semantics of MTL ensure that all
domains must be satisfied, which means that a runtime engine may have to try different
combinations to ensure the relation is satisfied.

A specific example involving patterns and conditions is the following:

relation IncreasingWisdom {

domain { (Person)[name = n, age = a, wisdom = w1]

when a + 1 < 13 or a + 1 > 19 }

domain {(Person)[name = n, age = a + 1, wisdom = w2] }

when { w2 > w1 }

}

Intuitively, this example checks that a birthday brings with it increased wisdom, except
during the teenaged years when this is not always the case. (Person)[name = n, age = a,
wisdom = w1] when a > 18 is an example of an object pattern, which take the general form
of:

(Class, self)[label1 = expr1, ... , labeln = exprn]

Class is the class the object must be an instance of, self is a variable which is used to refer
to the object and the object pattern consists of zero or more entries. An object pattern
will match successfully against any object which is an instance of Class and whose fields

5

all match successfully against the object patterns fields note that the object pattern can
specify a subset of the field which Class defines, although it cannot define more. The pattern
language contains many other constructs, such as set and sequence patterns, and patterns
can nest within patterns giving huge flexibility [9].

4.3 Differences between relations and mappings

Whereas a relation is a specification of a transformation which can check two models for
conformance with each other with respect to the relation, a mapping is an implementation
that can be run on an input data model to produce an output data model. Mappings take
the general form of:

mapping M {

domain { pattern-1 when condition-1 }

...

domain {pattern-n when condition-n }

when { condition }

body { expression }

}

Although a mapping may have a number of domains, as do relations, there is a fundamental
difference to the way multiple domains are used with mappings and relations. With map-
pings, all the domains are effectively input arguments to the mapping which, providing the
input data satisfies the domains, executes the body of the mapping to produce output. A
mapping can refine one or more relation, which essentially means that the mapping must
be consistent with the relations: in other words, the relations the mapping refines are effec-
tively pre and post conditions for the mapping. There is no implication that a mapping is
the only refinement of a relation multiple different mappings may refine the same relation.
Mappings which refine trivial relations often look very similar because of the intentionally
close syntactic correspondence between object expressions and patterns.

As far as possible, the standard languages for relations and mappings share the same syntax
and semantics. But by virtue of the fact that they are different concepts there are differences
between the two. The most obvious difference is that whilst a relation simply consists of
a number of domains and an overall constraint, mappings also have an action body. A
practical example is a mapping IncreasingWisdomMapping which is a refinement of the
relation IncreasingWisdom given in subsection 4.2:

mapping IncreasingWisdomMapping refines IncreasingWisdom {

domain { (Person)[name = n, age = a, wisdom = w1]

when a + 1 < 13 and a + 1 > 19 }

body {

p = new Person()

p.name = n

p.age = a + 1

p.wisdom = w1 + 5

}

}

Note how the only one of the two domains of IncreasingWisdomMapping has survived into
the mapping: the second domain is effectively replaced by the body of the mapping.

6

5 Transformations

Our definition of transformations comes in two distinct layers. Reusing terminology familiar
from the UML2 process, we name these layers infrastructure and superstructure.

The infrastructure contains what we consider to be a sensible minimum of machinery neces-
sary to support all types of transformations. The infrastructure is necessarily low-level and
not of particular importance to end users of transformations. Its use is a simple semantic
core [11].

Compared to the infrastructure, the superstructure [9] contains a much higher-level set of
transformation types and is suitable for end users.

5.1 Concrete syntax

Our solution defines a graphical concrete syntax for transformations. Figure 4 lists the most
important notations.

�������

����������	
�� � � �	
�� � �� �
�� � � � �
� � 	� 	�� � � �	� �� �
�� � � � � � �	� 	�� �
� � 	

Fig. 4. Concrete Syntax for transformations

6 Transformation Reuse

Our proposal allows two means by which transformations can be reused. They are as follows:

6.1 Transformation Composition

The submission provides various composition operators which allow complex transforma-
tions to be built up from smaller transformations. They come in both unary and binary
flavours and include operators such as and, not and or. To give a very simple example,
an and composition would require all the individual components to hold for the composite
relation to hold.

6.2 Sub-Transformation

This form of reuse involves one transformation calling another (sub) transformation. This
usage typically occurs in when condition.

7 An example

In order to illustrate the salient features of our approach, in this section we present an
example between simplified UML models and RDBMS models.

7

7.1 The example model

UML Meta Model

Classifier

Primitive
DataType

Class

Association

Attribute

Operation

src dest

attrs

*

*

operation

type

assoc

RDBMS Meta Model

Table

Column

Query

Key

ForeignKey
query

foreignkey

key

refersTo

col

col

*

*

*

*

*

fKeyOf

Fig. 5. The example meta-model

Figure 5 (left hand side) shows a very simplified model of UML Class diagrams which we
will use to illustrate our approach. It consists of a Class having a set of Attributes and
operations. The attributes can be of type PrimitiveDataType or, of type Class. Classes also
have Associations with other classes. Note: For the purposes of our current example we
have assumed the attributes to be of type PrimitiveDataType only.

Figure 5 (right hand side) shows a simplified RDBMS model. It consists of a Table having
a set of Columns, a primary Key, ForeignKeys and Queries. The Key comprises columns
which are of the kind primary. Queries are performed on Tables to either extract information
from it or, to update some information.

In the rest of this section, we shall gradually build up the transformation between the UML
model and the RDBMS model from a number of small pieces.

cXtname=cn
kind=’Persistent’

Class

name= ”t_” + cn

Table

name= ”k_” + cn

Keykey

Fig. 6. A UML Class to Table relation

Figure 6 shows the relation cXt between Classes and Tables. Herein, each class of kind =
persistent gets transformed to a corresponding Table and a Key (primary) element having
the same name as the class, but prefixed with a ”t ” and ”k ” respectively (The naming may
be altered to suit the local database naming conventions). This relation may be represented
textually as follows:

relation cXt{

domain {(Class)[name = cn, kind = "persistent"]}

domain {(Table)[name = "t_" + cn ,

key = (Key)[name = "k_" + cn]]

}

}

Figure 7 captures the relation atXcol between Attributes of the class and the columns of
the table. Basically, each attribute of the class gets transformed to a corresponding column
of the table. The dataType of the column is typically set to either Number or Varchar
depending on the type of the attribute. The textual representation is as follows:

relation atXcol{

domain { (Attribute)[name = attN, kind = k,

8

type

atXcolname=attN
kind=k

Attribute
name=attN
type=dataType
kind=k

Column

name=pType

PrimaryDataType

Fig. 7. Attributes to Columns relation

type = (PrimitiveDataType)[name = pType]]

}

domain { (Column)[name = attN, kind = k, type = dataType] }

when { dataType = if (pType = ’Integer’) ’number’ else ’varchar’ }

}

The above relation is valid in the case of Attributes of type PrimitiveDataType only.

In the case of attributes of type Class, the type Class is broken down further into its
attributes, and each individual attribute of the Type Class is added to the generated table
as a column with an altered name as per the naming convention. The columns which are
generated are of a type (i.e. datatype) corresponding to the type PrimaryDataType only.

A:Attribute

attrs*

clAtXtbConame=cn
kind=”Persistent”

Class

name= ”t_” + cn

Table

name= ”k_” + cn

Key

C:Column

col

col

*

key

*

kind=”primary”

PC:Column

Fig. 8. Classes and Attributes relation

Figure 8 shows the combined view of the transformation of Classes and Attributes. Note
that attributes of the primary kind, apart from being transformed into Columns, result
in an association with the Key object of the table as well. This is textually (clAtXtbCo)
represented as follows:

relation clAtXtbCo{

domain { (Class)[name = cn, kind = "persistent", attrs = A] }

domain { (Table)[name = "t_" + cn,

col = C,

key = (Key) [name = "k_" + cn, col = PC]]

}

when {

conjunct(A->forAll(a | AtXcol(a, C.tochoice())),

C->forAll(c | AtXcol(A.tochoice(), c)),

PC = C->select(c| c.kind = ’primary’))

}

}

Function tochoice() is a function that returns the member elements of the set as a choice.
A choice is basically a container of objects - the relation will attempt to find a combination
of objects from different domains which satisfy the relation.

9

ascXfky

kind=’Persistent’

end1:Class

kind=’Persistent’

end2:Class

end1:Table

end2:Table

foreignKey

k:Key

refersTo

key

C:Column

col

col

src dest

fkeyOf

name=ascN

Association

name=”f_” + ascN

ForeignKey

kind=’Primary’

A:Attribute

attrs

(a)

Attribute

PrimitiveData
Type

kind=’Foreign’

Column
apXc

type

(b)

kind=”Foreign”

CF:Column

col

Fig. 9. Transformation of Associations

Transformation of Associations, as shown in figure 9(a) is a little less straightforward com-
pared to the other transformations which have been covered so far. In this case, the For-
eignKey element is introduced to relate the two tables corresponding to the two classes that
the association relates. We assume src to represent the source of the association and dest
to represent the destination of the association. The transformation results in a Foreign key
being defined for the Table corresponding to the source class. This foreignKey refers to the
key of the table corresponding to the destination Class of the association. All the primary
key columns of the destination class are added to the source table with the column kind
being set to foreign (figure 9(b)). This relation is textually represented as follows:

relation ascXfkey{

domain { (Association)[name = ascN, end1 = src,

end2 = (Class, dest)[attrs=A]]

}

domain { (ForeignKey)[name = "f_" + ascN,

fKeyOf = (Table, srcTbl) [col = C],

refersTo = (Key, k)[keyOf = destTbl],

col = CF]

}

when {

conjunct(cXt(src, srcTbl),

cXt(dest, destTbl),

((A->select(a | a.kind=’Primary’))->forAll(at| atXcol(at,

CF.tochoice()))),

(CF->forAll(cf | atXcol((A->select(a |

a.kind=’Primary’).tochoice(), cf)))))

}

}

10

Figures 6 through to figure 9 show the building blocks based on which a UML model is
transformed into a corresponding RDBMS model. Thus, the final RDMBS model will be a
composition of the above mentioned basic transformations. The textual representation of
the complete relation clsAttrAscXtblColFkey is as follows:

relation clsAttrAscXtblColFkey{

domain { (Class)[name = cn, kind = "persistent",

attrs = A , assoc = ASC]

}

domain { (Table)[name = "t_" + cn,

col = C,

foreignKey = F,

key = (Key) [name = "k_" + cn, col = PC]]

}

when {

conjunct(A->forAll(a | AtXcol(a, C.tochoice())),

PC = C->select(c | c.kind = ’primary’),

C->forAll(c | AtXcol(A.tochoice(), c)),

ASC->forAll(asc | asXf(asc, F.tochoice())),

F->forAll(f | AtXcol(ASC.tochoice(), f)))

}

}

7.2 An example instance model

src dest

attrs

operation type

Name=”Cls1”
Type = “persistent”

:Class

Name=”Cls2”
Type = “persistent”

:Class

name=”C1_att1”
kind=”primary”

:Attribute

name=”C1_att2”
kind=””

:Attribute

name=”C2_att1”
kind=”primary”

:Attribute

name=”C2_att2”
kind=””

:Attribute

name=”Oper1”

:Operation

name=”Int”

:PrimaryDataType

name=”String”

:PrimaryDataType

name=”Cls1_Cls2"

:Association

attrs attrs attrs

type

Fig. 10. An Example UML Model

We now illustrate the transformation by means of an actual example. Figure 10 represents
an example UML model. It consists of two classes Cls1 and Cls2 having two attributes each
as shown in the figure. As mentioned earlier, for the purposes of our illustration we will
be specifying Attributes to be of the type PrimaryDataType only. The Attribute C1 att1
of Class Cls1 as well as Attribute C2 att1 of Class Cls2 have their kind set to primary.
Cls1 has an operation Oper1 attached to it. Cls1 and Cls2 are also linked together by an
Association as shown in the figure.

Figure 11 shows the resultant RDBMS model of the example UML model shown in figure 10.
Note the foreign key relationship f Cls1 Cls2 which is established between the two classes
to capture the association. Thus table t Cls1 has a foreign key relationship which refers to
the Key Cls2 of Table t Cls2 and the key column C2 att1 of table t cls2 gets added as a
column with kind = ”foreign” into the table t cls1.

11

col

query

name=”t_Cls1”

:Table

name=”t_Cls2”

:Table

name=”C1_att2”
dataType=”Number”

:Column

name=”C1_att1”
dataType=”Number”

:Column

name=”C2_att1”
dataType=”Number”

:Column

name=”C2_att2”
dataType=”varchar”

:Column

name=”q_Oper1”

:Query

col col col

name=”k_Cls1”

:Key

name=”k_Cls2”

:Key

key

col col

foreignKey

refersTo

key

name=”f_Cls1_Cls2"

:ForeignKey
fKeyOf

name=”C2_att1”
dataType=”Number”
kind=”Foreign”

:Column
col

col

Fig. 11. The resultant RDBMS Model

7.3 Creating a Mapping

The example so far dealt with the relation between the UML Model and the RDBMS Model.
In other words, given a UML model and a RDBMS model, we can check them using the
relations specifications to see if they are valid transformations of each other.

However if we wanted to generate RDBMS model, given the UML model, then we would
have to refine the specifications and create an implementation which can take in the UML
model and generate an RDBMS model out of it. If one wished to actually transform a
UML model to RDBMS and back again, then the relation would have to be refined to two
separate mappings to implement it. As mentioned earlier in subsection 4.3, in the case of
mappings, the second (target) domain gets substituted by an action body which implements
the transformation based on the input domain.

We provide a mapping for a small subsection of the transformations example in subsection
7.1 consisting of Classes and Attributes only.

Consider the relation between Classes and Tables - cXt shown in subsection 7.1. A corre-
sponding mapping is as follows:

mapping M_cXt refines cXt{

domain {(Class)[name = cn, kind = "persistent"]}

body {(Table)[name = "t_" + cn ,

key = (Key)[name = "k_" + cn]]

}

}

Herein, the second domain (corresponding to table) is replaced by a body which contains
an expression which creates the Table and the Key elements as per the specifications. This
particular mapping is very simple.

Below we show a mapping of the relation atXcol which involves if conditions in the when
block:

mapping M_atXcol refines atXcol{

domain { (Attribute)[name = attN, kind = k,

12

type = (PrimitiveDataType)[name = pType]]

}

body { (Column)[name = attN,

kind = k,

type = if (pType = ’Integer’) ’number’ else ’varchar’] }

}

In this mapping, the when clause of the relationship containing the if else assignment has
been appropriately modified and introduced in the expression of the body to set the type of
the column.

Moving onto a little bit more complex mapping, we now include a mapping for the relation
clAtXtbCo between Classes and Attributes and their corresponding Tables and Columns
from subsection 7.1:

mapping M_clAtXtbCo refines clAtXtbCo {

domain {(Class)[name = cn, kind = "persistent", attrs = A]}

body { (Table,t) [name = "t_" + cn,

col = A->iterate(a, cols = Set{} |

cols->including(M_atXcol(a)))

key = (Key)[name = "k_" + cn,

col = t.col->collect(c |

c.kind = "primary")]]

}

}

Herein, each attribute is iterated through and mapped to a column using the submapping
M atXcol. Similarly, the keys are mapped after selecting the columns which are of kind
primary.

This mapping transforms a given Class and Attribute model to a corresponding RDBMS
model. In order to perform a transformation from an RDBMS model to a UML model a
reverse mapping would have to be defined. However, all these transformed models can be
checked for conformance to the transformation specifications using the relation specifications
which we have defined in subsection 7.1 .

8 Conclusions

We originally motivated the need for a practical definition of transformations to allow models
to be manipulated; this need is enshrined in the OMG QVT RFP. We then outlined our
approach to transformations, and presented a non-trivial example involving relations and
then refined it to mappings which could be used to generate transformed models from a
source model. To summarize, our solution provides: the ability to express transformations as
both relations and mappings; standard pattern languages for both relations and mappings;
powerful mechanisms for reusing transformations and for composing transformations.

The future for model transformations is hard to precisely predict since it is undoubtedly
the case that we are still in the early stages of model transformation technology. We expect
approaches such as the one we outline in this paper to be further enhanced and, as real
world experience in the area develops, to evolve in different directions. We also expect that
in the future specific transformation language variants will be created to handle particular
problem domains; nevertheless we feel that most of the fundamental concepts, as outlined

13

in this paper, will hold true no matter the type of transformation involved.

This research was funded by a grant from Tata Consultancy Services. The authors would
like to thank Mr Girish Maskeri of Tata Consultancy Services for his invaluable help with
this paper.

References

[1] Object Management Group, Request for Proposal: MOF 2.0 Query / Views /
Transformations RFP, ad/2002-04-10 (2002).

[2] D. DSouza, Model-driven architecture and integration - opportunities and
challenges, http://www.kinetium.com/catalysis-org/publications/papers/2001

-mda-reqs-desmond-6.pdf (2001).

[3] J. Bézivin, From object composition to model transformation with the MDA, in:
TOOLS 2001, 2001.

[4] M. A. de Miguel, D. Exertier, S. Salicki, Specification of model transformations based
on meta templates, in: J. Bezivin, R. France (Eds.), Workshop in Software Model
Engineering, 2002.

[5] K. Lano, J. Bicarregui, Semantics and transformations for UML models, in: J. Bézivin,
P.-A. Muller (Eds.), The Unified Modeling Language, UML’98 - Beyond the Notation.
First International Workshop, Mulhouse, France, June 1998, 1998, pp. 97–106.

[6] K. Lano, J. Bicarregui, UML refinement and abstraction transformations, in: Second
Workshop on Rigorous Object Orientated Methods: ROOM 2, Bradford, May, 1998.,
1998.

[7] W. M. Ho, J.-M. Jézéquel, A. L. Guennec, F. Pennaneac’h, UMLAUT: An extendible
UML transformation framework (1999).

[8] T. Levendovszky, G. Karsai, M. Maroti, A. Ledeczi, H. Charaf, Model reuse with
metamodel-based transformations, in: C. Gacek (Ed.), ICSR, Vol. 2319 of Lecture Notes
in Computer Science, Springer, 2002.

[9] QVT-Partners revised submission to qvt-rfp, ad/2003-08-18 (2003).

[10] Object Management Group, Meta Object Facility (MOF) Specification,
formal/00-04-03 (2000).

[11] M. Gogolla, Graph transformations on the UML metamodel, in: J. D. P. Rolim, A. Z.
Broder, A. Corradini, R. Gorrieri, R. Heckel, J. Hromkovic, U. Vaccaro, J. B. Wells
(Eds.), ICALP Workshop on Graph Transformations and Visual Modeling Techniques,
Carleton Scientific, Waterloo, Ontario, Canada, 2000, pp. 359–371.

14

