Spatio-temporal metrics that distinguish plays in field hockey: a pilot study

MCINERNEY, Ciaran <http://orcid.org/0000-0001-7620-7110>, GOODWILL, Simon <http://orcid.org/0000-0003-0638-911X>, FOSTER, Leon <http://orcid.org/0000-0002-1551-0316> and CHOPPIN, Simon <http://orcid.org/0000-0003-2111-7710>

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/11873/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

Copyright and re-use policy
See http://shura.shu.ac.uk/information.html
Spatio-temporal metrics that distinguish plays in field hockey: A pilot study

Ciarán McInerney¹,
Dr. Leon Foster¹, Dr. Simon Choppin¹, Dr. Joseph Stone², Dr. Simon Goodwill¹

¹Centre for Sports Engineering Research, Sheffield Hallam University
²Academy of Sport and Physical Activity, Sheffield Hallam University
Introduction

Direction of play

(x, y, t)

θ

$=$ offence

$=$ defence
Introduction

Positions

Distances

Angles

Spread

Area

Duration

Speed

Context

(x, y, t)

\[\Delta t = t_2 - t_1 \]

\[\Delta t = \frac{d}{t_2 - t_1} \]

No. of players
How many variables actually relate strongly to the output?
Introduction

Aim

To estimate the distribution of strong marginal effects of spatio-temporal metrics in field hockey plays.
Method

Data collection

HD cam’, pan-tilt-zoom

4K cam’, 0.3x fisheye lens, fixed
Method

Data processing

- **Positions**: Variables (x, y, t)
- **Distances**: $\Delta t = t_2 - t_1$
- **Angles**: θ
- **Spread**: Equation $\Delta t = \frac{d}{t_2 - t_1}$

- **Area**: Diagram showing area calculation
- **Duration**: Diagram showing time difference $t_2 - t_1$
- **Speed**: Diagram showing speed calculation
- **Context**: Diagram showing number of players and context
Method

Data analysis

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Measure of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cramér’s V</td>
<td>Association</td>
</tr>
<tr>
<td>Mutual Information</td>
<td>Mutual dependency</td>
</tr>
<tr>
<td>I-score</td>
<td>Influence / association</td>
</tr>
</tbody>
</table>
Method

Data analysis

<table>
<thead>
<tr>
<th>Metric</th>
<th>Good vs. Bad</th>
<th>Good vs. OK</th>
<th>Ok vs. Bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric₁</td>
<td>{V, M, I}</td>
<td>{V, M, I}</td>
<td>{V, M, I}</td>
</tr>
<tr>
<td>metric₂</td>
<td>{V, M, I}</td>
<td>{V, M, I}</td>
<td>{V, M, I}</td>
</tr>
<tr>
<td>…</td>
<td>…</td>
<td>…</td>
<td>…</td>
</tr>
<tr>
<td>metric₁₈₃₇</td>
<td>{V, M, I}</td>
<td>{V, M, I}</td>
<td>{V, M, I}</td>
</tr>
</tbody>
</table>

\[V = \text{Cramér's } V \] \hspace{1cm} \[M = \text{Mutual Information} \] \hspace{1cm} \[I = \text{l-score} \]
Results

Good vs. Bad

- Large effect
- Moderate effect
- Small effect
Conclusions

Reminder

Aim: To estimate the distribution of strong marginal effects of spatio-temporal metrics in field hockey plays.

1. Small subset of large effect metrics.

 => use univariate variable-selection methods.

2. Agreement between statistics.

 => confidence in apparent distribution.

 => same methods can be applied for all comparisons.
Spatio-temporal metrics that distinguish plays in field hockey: A pilot study

Ciarán McInerney

c.mcinerney@shu.ac.uk

Centre for Sports Engineering Research, Sheffield Hallam University