

Yes We ACHEON!

TRANCOSSI, Michele https://shura.shu.ac.uk/11755/

This document is the Published Version [VoR]

Citation:

TRANCOSSI, Michele (2015). Yes We ACHEON! In: EU Aerodays, London, 20-22 October 2015. ASME. (Unpublished) [Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

YES WE ACHEON!

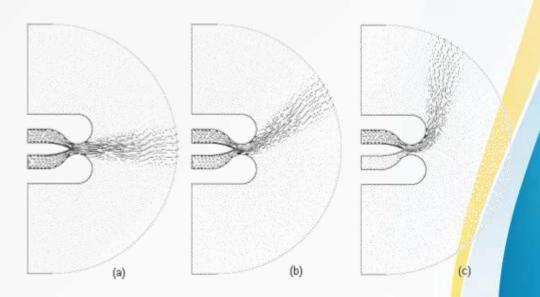
Michele Trancossi

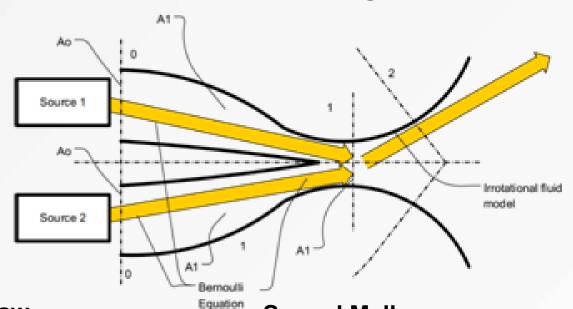
University of Modena and Reggio Emilia
Sheffield Hallam University

The present work has been performed as part of ACHEON Project | ACHEON Project - Aerial Coanda High Efficiency Orienting-jet Nozzle project, with ref. 309041 supported by European Union through the 7th Framework Programme (www.acheon.eu).

We have a dream...

Control of dynamic deflection of a jet without any part in movement:


- **■Fluiddynamic**
- **Electrostatic**


- Distribution of chemicals
- Acclimatizing
- Deicing
- Technological Applications
- Etc.

Coanda effect: something exoteric...

Bradshaw

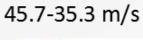
$$\theta = f \cdot \sqrt{a \cdot b \cdot \frac{P_{wall} - P_{\infty}}{\rho \cdot u^2}}$$

Newman

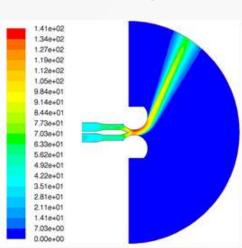
$$u_p = \frac{P_s - P_a}{P_0 - P_a} = -\left[2\frac{b}{a} + \left(\frac{b}{a}\right)^2\right] \quad \text{Von Karman}$$

$$\mu \frac{d^2u}{dv^2} = \frac{dp}{dx}$$

So and Mellor

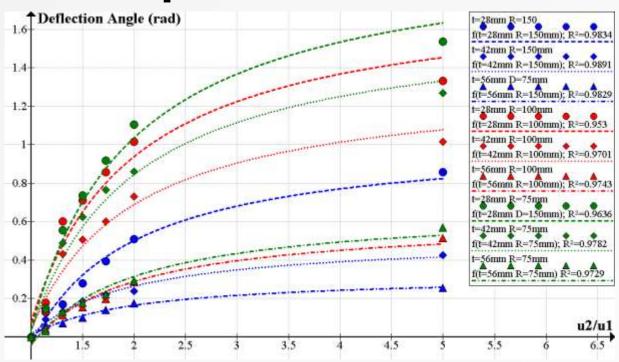

$$u/u_{pw} = \left[(P_t - P_r)/(P_r - Psw) + e^{-2ky} \right]^{1/2}$$

$$u = 12Pr P_{tot} P_{tot} = 10.5$$


$$upw = [2Pr - Psw]^{0.5}$$
$$\delta P/\delta y = k \rho u^2$$

$$\mu \frac{d^2 u}{dy^2} = \frac{dp}{dx}$$

Yes we ACHEON!



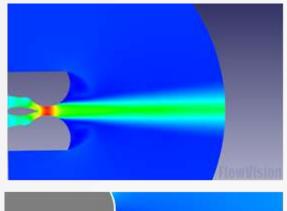
- The fluid stream is subject to a difference of pressure that equilibrates the centrifugal force.
- frictional effects that are depending on the velocity u

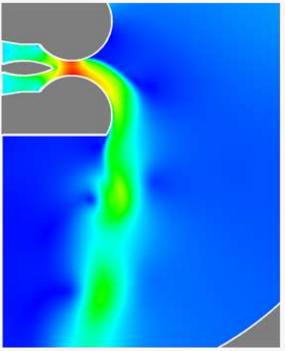
$$\frac{\partial P_r}{\partial r} = \rho \cdot \omega^2 \cdot r = \rho \cdot \frac{u^2}{r} \qquad \tau = \mu \cdot \frac{\partial u}{\partial r} = c_f \cdot \frac{\rho \cdot u^2}{2}$$

$$u(r) - u_{\min} = \frac{R}{r} \cdot \Delta u_1 \rightarrow u(r) = \frac{R}{r} \cdot \Delta u_1 + u_{\min,1}$$

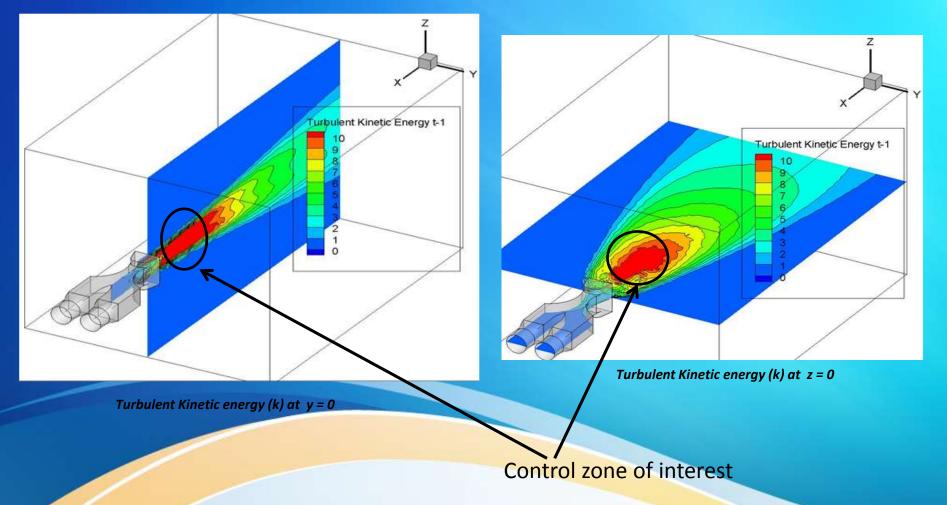
100% indipendent validation

very preliminary model presented by Unimore, from which the project starts, is acceptable

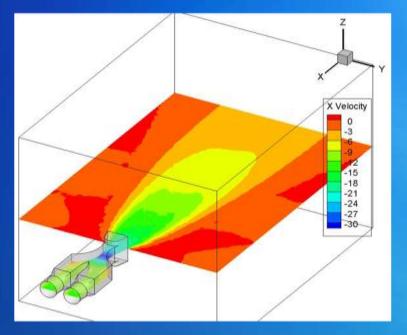

Drăgan V.: A New Mathematical Model for Coandă Effect Velocity Approximation. INCAS Bulletin, vol.4, pp.85-92, 2012.

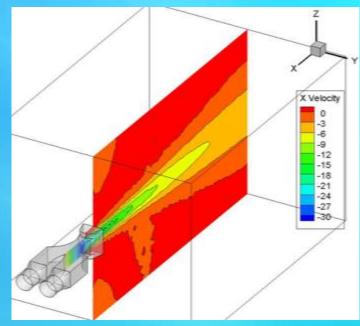

the last presented models works properly even if it needs to be implemented

regarding better turbulence models and swirl.

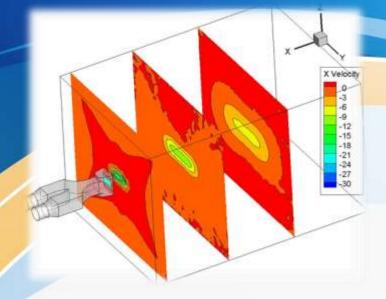

Dragan V., "Reynolds number calculation and applications for curved wall jets", INCAS Bulletin, Volume 6, Issue 3, pp. 35 – 41, (2014).

Computations


Mass velocity [kg/m2s]	60-60	58-62
Fx [N]	42.15	12.35
Fy [N]	0	41.92
Thrust angle [o]	0	73.35
Efficiency [-]	0.73	0.72


The turbulent kinetic energy shows that the control zone of jet is not just after the exit flow. What was the intuition before computation.

It is located little bit away from the exit.


High turbulence zone in z plane indicates the fact.

Flow field for x-velocity for z = constant for 3D simulation of the nozzle

Flow field for x-velocity for y = 0 for 3D simulation of the nozzle

Flow field for x-velocity in x - direction

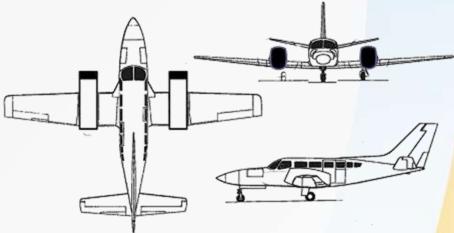
For the inlet velocity 10m/s, at the throat 30 m/s velocity is obtained.

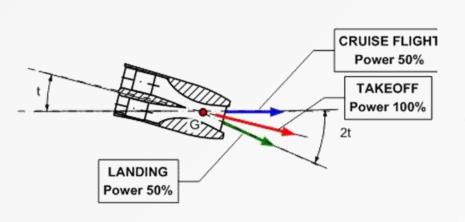
Even slight velocity ratio for 1.5 (15ms-1/10ms) is able to deviate the jet either side.

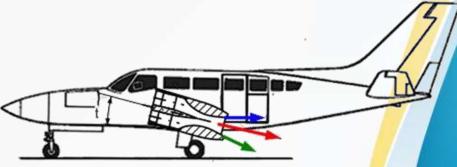
And some experiments...

And some experiments...

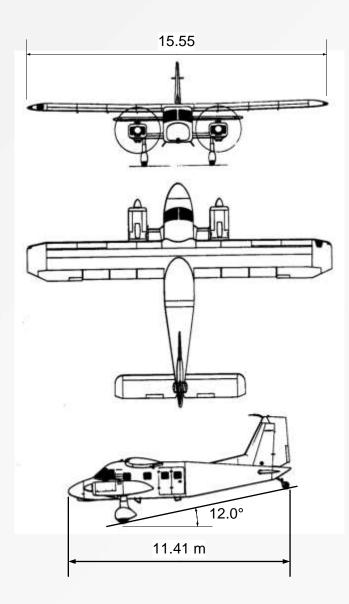
And some experiments...




Can it work on airplanes?


- A wonderful work has produced by UoL
- Cen Z., Smith T., Stewart P., and Stewart J, "Integrated flight/thrust vectoring control for jet-powered unmanned aerial vehicles with ACHEON propulsion", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, first published on July 29, 2014
- It demonstrates that the nozzle increases the maneuvrability of an aiplane with surprising results.

Acheonizing an old fashioned plane...


And now some boring numbers!

Empty weight	Lb	4,069		
Useful load	Kg	662		
Max takeoff weight	Kg	3107		
Max on board fuel	Batteries (Boston Power Swing® 5300 Rechargeable Lithium-ion Cell)			
	Kg	1050		
	Wh/kg	207		
	Ah	4,420		
	Fuel	10 00 00 00 00 00 00 00 00 00 00 00 00 0		
	Kg	640		
Propulsion				
Cogen	Rolls Royce Me	odel 250		
Power	kW	250		
Mass	Kg	250		
Motor		erg Nova 150 mounted in two ACHEON		
Power	kW	150		
Mass	Kg	11.5		
Performances		#b		
Max speed	m/s	118.9		
Max cruising speed	m/s	109.4		
Stall Speed	m/s	46.3		
Stall Speed Carriage	m/s	25.1		
Initial rate of climb	m/s	7.366		
Service ceiling	M	8200		
Long range cruising speed	m/s	84.4		
Range with reserves at economical cruising speed	km	2000		

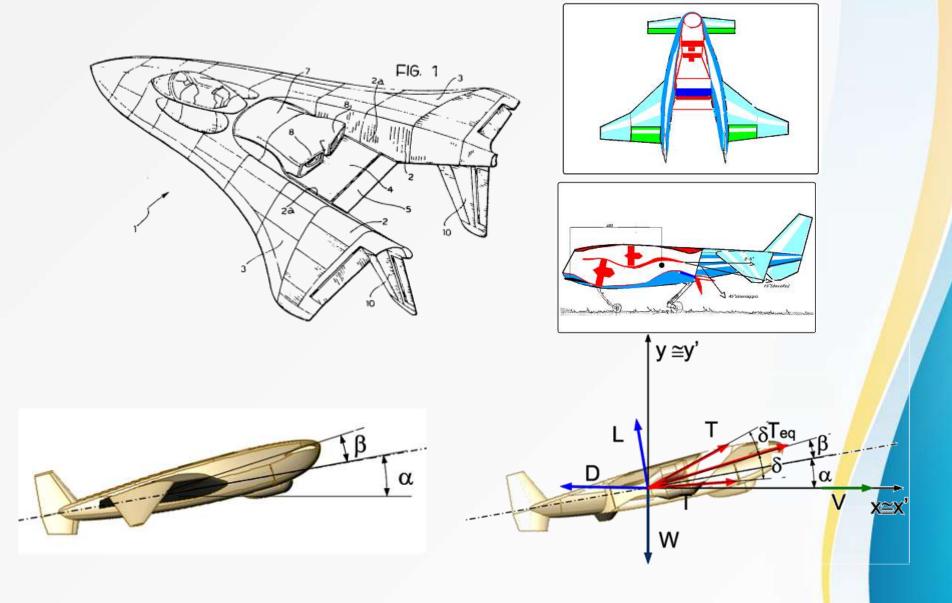
				ACHE	2N		14		
Angle of deflection			15°		10°		5°	0°	5
Direction of Thrust Max Power	5185.2 280	Tx 5009	Ty 1342	Tx 5106	Ty 900.4 280	Tx 5166	Ty 451.9	Tx 5185	Kg kW
Max Fower	46.3		26.3		32.9	2	39.5	46.3	m/s m/s
u _{stall, carriage, down} Take off mass	31.74 3105		18		22.6 3103	5	27.1	31.7	Kg m/s
Lift Off Speed	50.93		28.93		36.19		43.45	50.93	m/s
Take off Speed	55.56		31.56		39.48		47.4	55.56	m
Liftoff Length	641.5		206.8		323.4		468.4	690	m
Takeoff Length (calculated)	690		222.4		347.8		503.8	690	m
Take off length declared	670								m/s
Lift Off Time	16.5		9.48		11.9		14.32	16.5	S
Take Off Time	17.74		10.2		12.8		15.4	17.74	kJ.
Energy needs	132012	3	27468		31068		34668	44280	kJ
Energy saving	0	1	04544		100944		97344	87732	9
Energy saving	0	7	9.19%	- 7	76.47%		73.74%	66.46%	

	Configuration					
	Cessna 402			Cessna 402	ACEON	3
Flight Condition:	traditional	15°	10°	5°	0°	
Take-Off	132012	27468	31068	34668	44280	kJ
Second Take-Off Segment	504000				139100	kJ
Enroute (30min)	1908000				636000	kJ
Approach Segment	267120				53000	kJ
Landing Segment	396036	8240	9320	10400	13284	kJ
Energy consumption	3207168	863808	868488	873168	885664	kJ
Max on board energy	0			7	1229580	kJ
Reserve	-3207168	365772	361092	356412	343916	kJ

And now... the best commuter ever built...

Power	150	kW
Fan Diameter	1100	mm
Hub Diameter	120	mm
Max Fan Speed	6000	RPM
FOM	0.9	
Blade Angle Delta	0.36	Rad
	20.75	Deg
Fan Swept Area	0.94	m^2
Fan Blade Tip Speed	1348.10	m/s
Fan Blade Tip Mach	1.02	m
Disk Power Loading	159.74	kW/m^2

n2/n1	T	'tot	Angle	Teff	Tx	Ту
(-)	(kg)	(N)	(deg)	(N)	(N)	(N)
1	708.31	6948.54	0.00	6601.11	6601.11	0.00
0.866769	710.82	6973.17	3.20	7036.54	7025.57	392.79
0.74928	717.98	7043.37	6.40	4960.77	4929.85	552.97
0.642565	729.90	7160.33	10.60	3863.57	3797.64	710.71
0.545337	746.49	7323.10	15.00	3107.70	3001.81	804.33
0	804.86	7895.64	15.00	2551.41	2464.47	660.35


Dornier Do 28 D2 can take off from the garden behind my house...

ACHEON allows reducing of more than 50% the needs in terms of landing an takeoff space:

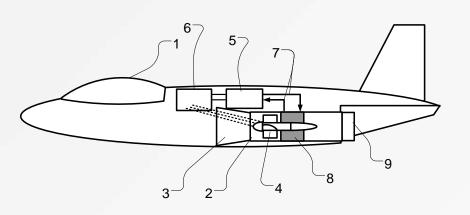
from 170 m to less than 100.

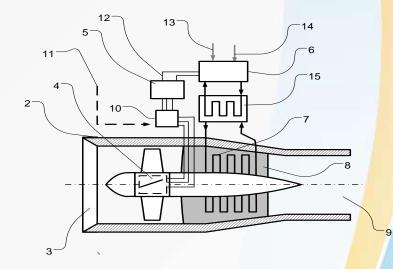
Having some weight and payload
With RR series 250 turbofan cogeneration

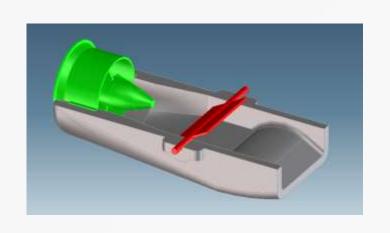
...and let's do it strange...

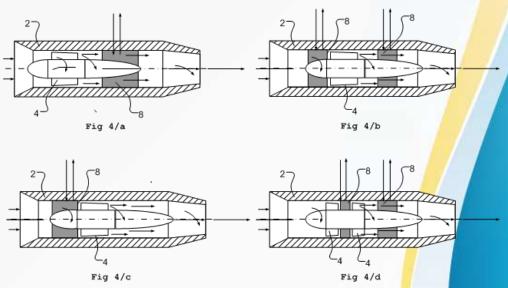
whow... it can work!

	Unitary mas s	Number	Total mass
Component	G	-	G
Propellers	37	4	148
M otors	72	3	216
Speed control	26	4	104
Servo	8.5	4	340
Receiver	50	1	50
Battery	786.2	2	1572.4
Cabling and accessories	200	1	200
		Total mass	2630.4


- Assuming an angle of attack of 7.5°
- Take off
 - angle of the fuselage and thrust 7.5°
 - max thrust takeoff,
 - Vstall about 9 m/s
 - Vtakeoff = 10.65,
 - takeoff length about 12 m,
 - acceleration of 3 m/s.
- Climbing
 - angle of 20° about
 - speed about 14 m/s
 - angle of attack 7.5,
 - Thrust is oriented upward with an angle of 15°
- Cruise
 - min speed about 10-12 m/s
 - cruise speed of 25 m/s
- Landing
 - landing lenght less than 12 m.




Less than 4 kg


5 to 45 m/s About 4.000 €

...and how can we improve it?

ACHEON balance...

- 600.000 Euro demonstrated that, even still embrional ACHEON works!
- We have demonstrated that ACHEON could fly...
 ...actually on subsonic airplanes
- it can be helped by thermal effects which needs further studies
- A large number of high quality papers produced
- Theoretical results reaches fully achieved TRL 2...
 ... even if they need further studies and further experimental validations to be exaustive
- ... 2 patents... 1 connected patent.
- ... UOL, UBI, and VUB experimental results have started the road through TRL 3...
- We have encuraged new research direction on Coanda effect
- We have met other research groups working on Coanda Effect...
 ... they have also validated some results free of charge because of their scientific importance!
- ACHEON according to UNIMORE has been a success!
- What do you think about continuing it????

... and for tomorrow... I think that ACHEON could work!

Thanks!

The present work has been performed as part of ACHEON Project | ACHEON Project - Aerial Coanda High Efficiency Orienting-jet Nozzle project, with ref. 309041 supported by European Union through the 7th Framework Programme (www.acheon.eu).