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Abstract  
 
The tensile shear strength of a composite epoxy/sol-gel system modified with different 

ratios of multiwall carbon nanotubes (MWCNTs) was evaluated using an mechanical 

testing machine. The experimental results showed that the shear strength increased 

when lower than ~0.07 wt% of MWCNTs were added in the composite solution. The 

increase of the shear strength was attributed to both the mechanical load transfer from 

the matrix to the MWCNTs and the high specific surface area of this material that 

increased the degree of cross-linking with other inorganic fillers in the formulation. 

However, a decrease in the adhesive shear strength were observed after more than 

~0.07 wt% MWCNTs was added to the composite. The reason for this may be related to 

the high concentration of MWCNTs within the matrix leading to excessively high 

viscosity, dewetting of the substrate surfaces, and reduced bonding of MWCNTs with 

the matrix, thereby limiting the strength. SEM observation of the fracture surfaces for a 

composite epoxy/sol-gel adhesive materials with 0.01wt% MWCNTs showed a mixed 

interfacial/cohesive fracture mode. This fracture mode indicated strong links at the 

adhesive/substrate interface and interaction between CNTs and the matrix was 

achieved; therefore, adhesion performance of the composite epoxy/sol-gel material to 

the substrate was improved. An increase of a strong peak related to the C-O bond at ~ 

1733 cm-1 in the FTIR spectra was observed. This peak represented cross-linking 

between the CNT surface and the organosilica nano-particles in the MWCNTs doped 

composite adhesive. Raman spectroscopy was also used to identify MWCNTs within 

the adhesive material. The Raman spectra exhibits peaks at ~ 1275 cm-1 and in the 
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range of ~ 1549-1590 cm-1. The former is the graphite G-band while the latter is the 

diamond D-band. The D-band and G-band represent the C-C single bond and C=C 

double bond in carbon nanotubes respectively. 

 

Keywords: MWCNT, adhesive strength, sol-gel materials  

 

1. Introduction  

In recent years, filler-filled polymeric components have been widely used in a range of 

applications due to their numerous properties including mechanical strength and 

adhesive characteristics [1,2]. The use of small additions of carbon nanotubes (CNTs) 

are expected to be effective in improving the desired properties, such as mechanical, 

thermal and electrical properties. In addition, CNTs can be used as multifunctional 

components to develop new materials used in many different fields. Modified adhesive 

materials based upon the addition of CNTs have received considerable attention 

because of their potential to achieve property enhancement significantly greater than 

that attainable using conventional fillers. It has been reported [3,4] that the introduction 

of CNTs into some thermoplastics can enhance stiffness of the polymeric materials 

without sacrificing ductility.  Sager and co-workers [5] found that the increase in 

interfacial shear strength of carbon fiber in an epoxy matrix was obtained with the 

addition of CNTs. This improvement can be attributed to an increase in the interphase 

yield strength as well as an improvement in interfacial adhesion due to the presence of 

the CNTs. Also, due to high modulus and low weight of CNTs these materials were 

ideal reinforcing agents in a variety of adhesive and composite materials used in the 

aircraft and sport industries [6].  

Adhesive bonding, as an alternative to riveting, bolting, or welding is increasing in many 

industries, e.g. automotive and aircraft, due to its numerous advantages [7]; for 

example, low weight, homogeneous stress distribution, low cost, high corrosion 

resistance, ease of application and excellent thermal and insulation properties. 

Adhesives can be used to join many different materials including metals, composites, 

ceramics, films and damage-sensitive materials, singly and in combination. It has the 
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valuable capability of joining and fabricating complicated shapes to produce a smooth 

aerodynamic surface that gives an improvement in corrosion and/or fatigue resistance 

[8]. Due to their visco-elastic properties adhesives can reduce the vibration of the 

bonded parts compared with conventional joining techniques. All these features have 

encouraged scientists to investigate the production of new adhesives.  However, due to 

some defects; for example, porosity, voids, and incorrect cure within the adhesive 

structure, these adhesively bonded joints may crack and then fail at low loading. 

Adhesive bonded joints can fail upon exposure to aggressive environments via under 

film corrosion, which can lead to catastrophic failure of the adhesive structure in service 

[9,10].  

The incorporation of a second component in the adhesive matrix such as multiwall 

carbon nanotubes (MWCNTs) can enhance the load bearing capacity of reinforced 

adhesives, which greatly improves the structure and strength. In addition, using CNTs 

as a reinforcing component in polymer materials requires the ability to tailor the nature 

of the CNT walls in order to control the interfacial interactions between the CNTs and 

the polymer chains. It has been well known that [11] the surface interface between 

CNTs and the polymer matrix should be optimized. Covalent linkages achieved through 

chemical functionalization have been utilized in CNTs reinforced polymers. These 

interactions govern the load transfer efficiency from the polymer to the CNTs and hence 

the reinforcement efficiency. Numerous work about using carbon nanotubes as fillers in 

polymer matrix has been extensively reviewed in literatures [12, 13, 14]. In this work, we 

investigated influences of adding MWCNTs on the shear strength of composite 

epoxy/sol-gel materials. Adhesion of a single lap joint in the combined mild steel was 

evaluated according to ASTM D1002.     
 
 

 

 

 



4 

 

2. Experimental work  

 

Table 1 Composition of the mild steels. 

2.1  Materials  

Mild steel was used as the substrate material in testing the adhesive strength of the 

composite epoxy/sol-gel materials. Table 1 presented the composition of mild steels 

used in measuring the lap shear adhesive strength. The substrate sample was abraded 

using grinding with sandpaper having a surface roughness Ra = 0.102 µm and then 

ultrasonically cleaned by using acetone at room temperature. It should be pointed out 

that a more complicated surface treatment was not used as it was of interest to assess 

the ‘surface tolerance’ of the composite adhesive system. Composite epoxy/sol-gel was 

then applied as a thin layer on the surface of both mild steel specimens and the coated 

substrates were left for dry for one hour at room temperature. According to ASTM 

D1002, the coated mild steel samples (100 X 25 X 1.5 mm) were assembled into a 

single lap shear joint with 12.5 mm of the overlap length as shown in Figure 1a.  

 

 

 

 

 

 

 

Figure 1a  single lap joint 

 

To achieve the lap joints and control the adhesive bondline thickness, a simple 

clamping arrangement was designed, see Fig 1b. The applied contact pressure ( ̴ 

4MPa) was constant, which allowed a uniform adhesive thickness to be achieved. This 

procedure produced lap joint specimens with the same adhesive thickness layer ~ 

 
Composition 
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P 

 

S 

 

Mn 

 

Fe 

Mild steel 

wt% 
0.15 -0.2 

0.04 

max 

0.05 

max 
0.6-0.9 Rest 
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0.1mm.The specimen was then placed into an oven for heat treatment at various 

designated times and temperatures.  

 

 

 

 

 

 

Figure 1b The clamp tool for the lap joint. 
 

 

 

 

 

2.2 Composite epoxy/sol-gel solution preparation  

 

Hybrid organosilica-based sols were first prepared from the silane-based precursors. 

This hybrid sol was produced by mixing tetra-ethoxysilane (TEOS), methyl-

trimethoxysilane (MTMS), ethanol, and deionised water at a mole ratio of 2:3:40:60. 

Nitric acid (HNO3) was added as a catalyst to promote the hydrolysis and condensation 

reactions. The sol-gel modified epoxy adhesive was prepared by mixing the DGEBA 

(Diglycidyl ether of bisphenol-A resin (D.E.R 324, DGEBA) from Dow Chemicals with an 

average molecular weight of 700 g/mol) with the as-prepared hybrid sol and then left in 

an ultrasonic bath for 45 minutes at room temperature to ensure an uniform dispersion.  

Note: the sol-gel systems were not formulated with a curing agent. The epoxy groups in 

the sol-gel system are opened up by the nitric acid [15]. Additional reaction products 

due to esterification between the OH groups and epoxy groups of DGEBA are possible 

in the presence of metal alkoxide, as reported in [16]. This is further supported by the 

observation of weak FTIR absorption peaks attributed to the presence of an ester group 

[17].  
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2.3 Dispersion of MWCNTs into the epoxy/sol-gel material 

 

The sol-gel epoxy adhesive was further modified by doping with a selected ratio of 

MWCNTs (i.e. 0.01, 0.05, 0.07, 0.2, 0.5 and 1.0 wt%), (MWCNTs, from Sigma Aldrich 

with size, O.D.10-15nm, I.D. 2-6nm, length 0.1-10 µm) and small amount of γ-Al2O3 

nano-particles  ̴ 0.1g (99.98% metal basis, purchased from Alfa Aesar, A Johnson 

Matthey Company). Due to their hydrophobic properties and the formation of stabilised 

bundles under the action of van der Waals forces, MWCNTs generally aggregate 

together after being dispersed in water, resulting in the formation of hollow ropes [18]. 

Thus, uniform dispersion in a sol is one of the key issues for the application of 

MWCNTs. MWCNTs were ultrasonically treated by the pure nitric acid for 5 min and 

then washed by DI water for 5 times to remove the acid. To achieve an optimum 

dispersion, a selected ratio of MWCNTs and γ-Al2O3 nanoparticles was first added into 

2-propanol. The solution was then ultrasonically dispersed for 90 minutes at 25°C using 

an ultrasonic generator (Roop Telsonic Ultrasonic Ltd, TEC-40, Switzerland). After 

being dispersed, it was mixed with the as-prepared sol-gel/epoxy solution and this 

mixture was then excited ultrasonically for 2 hours using the same generator, followed 

by continuous stirring overnight to obtain a stabilised uniform sol.  

 

 
2.4. Mechanical and surface characterization 

Shear mode loading was employed to evaluate the adhesive strength of the composite 

epoxy sol-gel material on mild steel substrates. The lap joints were tested at room 

temperature 23±1˚C, on a mechanically driven test machine (Instron tensile machine) 

having a capacity of 150 kN, and at a constant cross-head speed of 1 mm/min. Data 

were taken as an average of at least three measurements. A Brookfield CAP 2000 

viscosimeter was used to carry out viscosity measurements at 22 °C with 2.5 mm 

diameter cone-plate geometry, the cone having an inclination of 0.1 radian. A scanning 

electron microscope (SEM) was used to observe and to analyse adhesive fracture 

surfaces of the lap joint on both materials. Images have been taken using an SEM 
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(Philips XL40) operated in the high vacuum mode. The specimen surfaces were coated 

with the flash- evaporated carbon to prevent charging for the SEM observation. FTIR 

and Raman spectroscopy were used to identify different chemical bonds within the 

composite matrix.   

  

3. Results and discussions  
 

3.1 Adhesive shear strength  
 

The expermental results for effects of doping different amounts of MWCNTs into the 

epoxy/ sol-gel system on the adhesive lap shear strength are shown in Figure 2  where 

the shear strength of the joints increased when small amounts of MWCNTs were added. 

However, with futher addition of the MWCNTs into the composite epoxy/sol-gel system 

beyond 0.07 wt%,  a decrease in the adhesive shear strength was recorded. By adding 

the low-level of MWCNTs fillers in the composite epoxy/sol-gel system improved the 

bonding, being attributed to both the mechanical load transfer from the matrix to the 

MWCNTs and the high specific surface area of this material which increased the degree 

of cross-linking with other inorganic fillers in the formulation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Lap shear strength results with the doping concentration of MWCNTs in 

the composite epoxy/sol-gel system. 
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The presence of nitric acid within our sol-gel formulation promoted the formation of 

carboxylic and hydroxyl groups on the MWCNT surfaces. It was referred [15,16] that 

nitric acid is extensively used to oxidize CNTs and produces carboxylic groups on its 

surface, which contributes to the solubilization of nanotubes. In addition, because of 

high relative surface areas of MWCNTs, this resulted in a strong interaction or 

anchoring of sites along MWCNTs with the adhesive matrix; therefore, the adhesive 

structures considerably enhanced.  Pitalsky et al. demonstrated [19] that chemical 

agents such as HNO3 increased the density of polar functional groups on the CNT 

surfaces. MWCNTs can also play a role in minimising the formation of micro-cracking by 

bonding them to organosilica nanoparticles via the interaction of the carboxylic with 

hydroxyl groups of organosilica. It has been reported [20] that the increase in the load 

transfer provided by the deformed MWCNTs within the matrix gave rise to the Si-O-

CNTs bridges and/or polymer/CNT interactions. Therefore, it finally resulted in the 

development of a strong interfacial bonding between matrix and MWCNTs. However, 

when the amount of MWCNTs in the matrix was higher than ~0. 07 wt%, the adhesive 

strength decreased again. One of the reasons may be attributed to the high amount of 

MWCNTs within the matrix leading to high viscosity, resulting in more difficulty in 

obtaining a uniform adhesive layer on substrate surfaces, therefore reducing the 

bonding of MWCNTs with matrix. Table 2 listed viscosity changes of our adhesives with 

the amount of MWCNTs in the matrix.  This performance was also investigated by Loos 

et al. [21] who reported that the addition of high CNTs contents may reduce the strength 

of adhesive materials due to the increased viscosity of the adhesive.  

 

Table 2.  Viscosity denpendent on the doping concentration of MWCNTs in Matrix  

 

Concentration of 

MWCNTs (%) 
0.01 0.05 0.07 0.2 0.5 1.0 

Viscosity (cP) 136.3 150.35 169.5 206.34 234.98 267.68 
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Doping too high a content of MWCNTs in the matrix changed the morphological 

structures of the adhesives as shown in Section 3.2 below since the presence of high 

concentration MWCNTs during densification led to a high degree of pores or defects 

(e.g. microcracks) that were one of another reasons causing the decrease of lap joint 

strength.  The pores were created by the increased viscosity that hindered the removal 

of the trapped air bubbles. Additionally, too high concentration of MWCNTs in the matrix 

led to their aggregation because of the difficulty in dispersion, which further resulted in 

increasing opportunity of forming defects, therefore deteriorating the adhesive strength. 

Shu-quan et al. [22] conducted their study, which also showed that by increasing the 

concentration of CNTs in the matrix raised the viscosity of the adhesive matrix, 

impeding the removal of bubbles. They believed that the trapped air bubbles in the 

matrix considerably degraded mechanical properties of the adhesives. In Figure 3, the 

influence of the addition of MWCNTs on the adhesive performance of the composite 

epoxy/sol-gel materials are further illustrated through a measure of the stress/strain 

curves. Below 0.07 wt% concentration, MWCNTs were well distributed within the matrix 

and high degree of cross-linking with the matrix was obtained, therefore enhanced the 

stretching ability of the adhesive, enabling the transfer of high loads without failure 

[23,24]. When the amount of MWCNTs increased above 0.07 wt%, a reduction in strain 

was noted in the stress/strain curves shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Results of stress/strain curves  for the composite epoxy/sol-gel materials 
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3.2 SEM observation 
 

The introduction of inorganic fillers into the formulation increased the degree of cross-

liking within the adhesive matrix and the bonding at the interface, which improved the 

strength. The SEM image in Fig.4a showed a good distribution of MWCNTs (0.07 wt%) 

within the adhesive matrix with a consequential effect on the adhesive strength. It 

should be noted that the diameter of MWCNTs was very large and this was due to the 

presence of a coating of the adhesive on their surfaces. Achieving a good dispersion of 

MWCNTs introduced a positive effect on the composite epoxy/ sol-gel adhesive network 

and increased the chemical interaction bonds [25] (i.e. hydrogen bonds) within the 

adhesive matrix. Fig.4b illustrated micropores of the adhesive after doping with 1.0 wt% 

MWCNTs.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4a SEM images for distribution of MWCNTs in 0.07 wt% adhesives in the fracture surface. 
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Fig.4b SEM images of micropores observed on adhesives with 1.0 wt% MWCNTs additions.  

 

The fracture surfaces were used to assess the fracture modes of the composite 

epoxy/sol-gel on a mild steel substrate as shown in Figure 5a, b, and c. Figure 5a 

showed the SEM micrograph of the fracture surface with 0.01 wt % doped MWCNTs. A 

mixed adhesive/cohesive fracture mode was observed. This fracture mode indicated 

strong links at the adhesive/substrate interface. Interaction between MWCNTs and the 

matrix was achieved as shown in Figure 4, which therefore improved adhesion 

performance of the composite epoxy/sol-gel material to the substrate. The failure may 

have been initiated at the adhesive/substrate interface and then transferred within the 

bulk adhesive, revealing that two adhesion forces controlled the failure system. Figure 

5b showed the fracture surface following the addition of 0.2 wt % MWCNTs to the 

composite matrix. Adhesive fracture mode was presented. With further increase in the 

amount of MWCNTs up to 1.0 wt %, the fracture mode remained adhesive mode with 

cracks in the adhesive matrix, as illustrated in Figure 5c. The cracks may be due to the 

increased free volume of MWCNTs within the adhesive, which weakened the interfacial 

bonding and reduced the adhesive shear strength.  
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Figure 5. SEM images of the composite epoxy/sol-gel fracture surfaces with an addition 

of MWCNTs;  (a) 0.01 wt%; (b) 0.2 wt%; and (c) 1.0 wt%. 

 

 

 

 

3.3 FTIR spectra of the composite/epoxy sol-gel adhesive 

Infrared absorption spectra of the composite epoxy/sol-gel as a function of cure time to 

understand the chemical changes in the formulation during the curing processes are 

shown in Figure 6a. FTIR absorption peaks in the range ~ 800-1800 cm-1 were given. 

The most interesting bands in the FTIR spectrum were the epoxy ring at ~ 950 cm-1 

which disappears on increasing cure time and C-O at ~ 1733 cm-1 that increased when 

cure time was increased. An increase in cure time improved the adhesive cross-linking 

via the inorganic nano-filler materials (i.e. Al2O3, MWCNT) within the epoxy/sol-gel 

system. Figure 6a showed a clear shoulder at ~ 1165 cm-1 that corresponded to the Al-

O-Si bond as mentioned in [26]. The introduction of MWCNTs into the adhesive 

promoted the cross-linking of the adhesive by acting as a reinforcement network, which 
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restricted and reduced the crack initiation or propagation within the bulk adhesive. 

Infrared absorption spectra demonstrated that the strong peak related to the C-O-Si 

bond at ~ 1733 cm-1 was enhanced by extending the cure time. This peak was assumed 

to be related to the cross-linking between the MWCNTs surface and the organosilica 

nano-particles in the epoxy/sol-gel matrix [27,17]. In order to further confirm this 

assumption, a matrix sample without the addition of MWCNTS was prepared after cure 

for 16 hr for the FTIR analysis. As shown in Fig.6b, only a negligible peak presented at 

~ 1733 cm-1, which was due to lack of the C-O-Si bond between the MWCNTs and 

matrix.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6a. FTIR spectra of the composite/epoxy sol-gel adhesive from 800  to 1800 cm

-1 
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Figure 6b. FTIR spectrum of the matrix without additives of  MWCNTs. 

 

 

3.4 Raman spectra analysis   

Raman spectroscopy was used to identify MWCNTs in the composite epoxy/sol-gel 

adhesive.  Figure 7 highlighted the presence of inorganic components, i.e. MWCNTs, in 

the adhesive matrix. The spectra exhibited peaks at ~ 1275 cm-1 and in the range of ~ 

1549-1590 cm-1. The former was the graphite G-band and the latter is the diamond D-

band. The D-band and G-band represented the C-C single and C=C double bonds  of 

the carbon nanotubes, respectively [28]. MWCNTs in this system enhanced the 

adhesive linkage and interacted with other inorganic materials as observed through the 

formation of Si–O–MWCNT [29]. In addition, weak Raman peaks between 400 and 450 

cm-1 corresponded to the organosilica network stretch by the sol-gel derived structure. 

Spectral peaks between 830 and 980 cm-1 were attributed to the Si-OH asymmetric 

bond, indicating the presence of some free silanol groups in the hybrid epoxy/sol-gel 

system or the Si-O-Si bond [30]. However, Raman spectral peaks of γ-Al2O3, which 

were normally close to the SiO2 peak locations, were shown here between 605 and 610 

cm-1. Similar results were also found by Hernandez [31] and Gnyba [20].  
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Figure 7. Raman spectra of the SG3 composite epoxy/sol-gel adhesive.  
 

4. Conclusions  

 

An increase in the proportion of the doped MWCNTs (up to 0.07 wt%) within the 

composite/epoxy sol–gel adhesive resulted in an enhanced shear strength of mild steel 

coupons bonded with the epoxy adhesive. This increase was attributted to the 

mechanical load transfer from the matrix to the MWCNTs. The high specific surface 

area of MWCNTs promoted the cross-linking with other inorganic fillers in the 

formulation. However, further increase in MWCNTs above 0.07 wt% led to a reduced 

shear strength. The reason was related to the increased viscosity of the adhesives and  

the degree of increased microdefects therefore leading to a decrease in bonding. In 

addition, a strong link at the adhesive/substrate interface indicated that an interaction 

between MWCNTs and the matrix was achieved, which improved adhesion 

performance of the composite epoxy/sol-gel material to the substrate. 
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