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Abstract 

The phase transitions and domain structure of the promising PbO-free solid solution series, 

(0.95-x)BiFeO3 - xLaFeO3 - 0.05La2/3TiO3 were investigated. X ray diffraction (XRD) 

revealed a transition from a ferroelectric (FE) R3c to a PbZrO3 (PZ) -like (Pbam) 

antiferroelectric (AFE) structure at x = 0.15 followed by a transition to a paraelectric (PE, 

Pnma) phase at x > 0.30. The ferroelastic/ferroelectric twin domain width decreased to 10-20 

nm with increasing x as the AFE phase boundary was approached but coherent antiphase 

tilted domains were an order of magnitude greater. This domain structure suggested the local 

symmetry (20 nm) is lower than the average structure (R3c, a
-
a

-
a

-
) of the tilted regions. The 

PE phase (x = 0.35) exhibited a dominant a
-
a

-
c

+
 tilt system with Pnma symmetry but diffuse 

reflections at ~1/4{ooe} positions suggest that short range antipolar order is residual in the 

PE phase. The complex domain structure and phase assemblage of this system challenge the 

conventional interpretation of phase transitions based on macroscopic symmetry. Instead, it 

supports the notion that frustration driven by chemical distributions at the nanometric level 

influence the local or pseudo-symmetry as well as the domain structure, with XRD giving 

only the average macroscopic structure. 

 

Introduction 

BiFeO3 (BFO) is one of the most extensively researched perovskite compounds 

because of its room temperature multiferroic properties. It is simultaneously ferroelectric 

(FE) with a Curie temperature, TC ≈ 1100 K,
1
 and antiferromagnetic (AFM) with a Néel 

temperature TN ≈ 643 K.
2
 The magnetic ordering is G-type with a weak canting moment with 

a 62 nm spin cycloid.
3
 At room temperature, the unit cell of BFO is rhombohedral (R3c) with 

arh of 5.6343 Å, αrh of 59.348° and a ferroelectric axis along [111]p (p = pseudocubic).
4,5

 The 

polarization of BFO is reported to be very large (ca. 90-100 µC/cm
2
) and hence it has 

attracted considerable attention for potential use in next generation ferroelectric memories.
6-8

 

Generally, polarization versus electric field loops do not saturate due to a combination of 

high Curie temperature (TC) and conductivity.
9
 As a room temperature multiferroic, BFO is 

an obvious choice for applications such as multiple state memory elements, electric field 

controlled magnetic resonance devices and transducers with magnetically modulated 

piezoelectricity.
10

 One of the issues currently facing BFO is that the multiferroic properties 

are inaccessible due to its antiferromagnetic nature, which leads to cancellation of 

macroscopic magnetization and generally hinders linear magnetoelectric coupling.
11

 

Moreover, the processing of phase-pure BFO is very difficult and is usually associated with 

parasitic phases such as Bi25FeO39 and Bi2Fe4O9, due also in part to the volatile nature of 

Bi2O3.
12

  

 



Partial substitution of rare earth (RE) ions on the A-site of BFO have been shown to 

reduce TC, eliminate secondary phases and enhance the magnetic properties.
1
 An 

antiferroelectric (AFE) PbZrO3-like structure is also reported to be stabilized between the FE, 

R3c and PE, Pnma phases in RE-doped BFO.
9,13

 It has also been postulated that during 

processing Fe
3+ 

reduces to Fe
2+

, compensated by the formation VO

..
, leading to an increase in 

conductivity.
14

 Hence, researchers have adopted a strategy of donor doping on the B-site to 

reduce the [VO

..
], thereby enhancing resistivity.  

 

Doping Ti
4+

 ions in Bi0.85Nd0.15FeO3 has shown promising results by reducing bulk 

conductivity from ∼1 mS cm
-1

 to <1 μS cm
-1

, accompanied by a large increase in activation 

energy for bulk conduction from 0.29 to >1.0 eV.
15

 Recently Reaney et al.
16

 investigated 

Bi0.85Nd0.15Fe0.9Ti0.1O3 using aberration corrected scanning transmission electron microscopy 

and found a distribution of Nd-rich precipitates in the perovskite matrix, concluding that Ti 

donor-doping is ionically compensated by VNd‴ rather than VBi‴ or VFe‴. The authors proposed 

the appropriate tie-line for preparing single-phase compositions should be based on the solid 

solution, RE2/3TiO3 - BiFeO3. Our initial studies on the system xRE2/3TiO3 - (1-x)BiFeO3 

revealed only a limited solubility of x ~ 0.03 and ~0.05 for RE = Nd and La, respectively. 

Hence, to extend the RE-doping concentration levels, LaFeO3 is used as an alternative end 

member within a ternary (0.95-x)BiFeO3 - xLaFeO3 - 0.05La2/3TiO3 (BLFT) solid solution 

series. The resulting ceramics revealed themselves to have a homogeneous distribution of the 

constituent ions compared with (1-x)BiFeO3 – xLaFeO3 compositions, possibly as a result of 

the enhanced diffuse rates due the formation of A-site vacancies. Consequently not only 

could the functional properties be investigated but also phase transitions occurred over 

narrow compositional and temperature intervals in comparison to previous studies.
9
 Hence, 

these compositions afforded a more detailed study of the domain and local structure using 

transmission electron microscopy. 

 

Methodology  

BLFT (0.05 ≤ x ≤ 0.35) solid solutions as shown in Figure 1 were prepared using Bi2O3 (99.9 

%, Acros Organics), Fe2O3 (99%, Sigma Aldrich), TiO2 (99.9 %, Sigma Aldrich) and La2O3 

(99.99 % Stanford Materials) as the starting materials.  The raw materials were dried before 

use. 

Samples were attrition milled for 1 hour at 300 rpm in a Union Processes Attritor 

(Szegvari Attritor System, Union Process, Arkon, Ohio, USA) attrition mill, using 3 mm 

diameter yttria-stabilised zirconia media in isopropanol. The slurry was separated from the 

media and dried overnight at 80 ˚C. The mixed dried powders were then sieved through a 355 

micron mesh and calcined at temperatures between 910-990 °C for (0.05 ≤ x ≤ 0.35) in Al2O3 

crucibles for 3 hours at 3 ˚C/min in a muffle furnace.  

The calcined powders were attrition milled for a second time as above, and then 

pressed into pellets using a uniaxial press. The green pellets were sintered in air at various 

temperatures in the range 960-1060 °C for (0.05 ≤ x ≤ 0.35) for 3 h at 3 ˚C/min to achieve > 

95% of the theoretical density. Bulk densities were measured using a Mettler Toledo model 

MS104S digital densitometer utilising the Archimedes principle. 

XRD was performed on crushed pellets using a Siemens D5000 diffractometer with 

CuKα (λ = 1.5418 Å). In situ XRD was performed for selected samples using a Siemens 

D5000 HTXRD and data were collected in the temperature range 30 – 500 °C.  Differential 



scanning calorimetry (DSC) was performed using a Netzch DSC 404 C Pegasus from 20 to 

800 °C at heating/cooling rates of 10˚/min.  

For scanning electron microscopy (SEM) the samples were mounted on aluminium 

stubs and coated with carbon. SEM of fracture surfaces was performed using a JEOL JSM-

6400. Samples for Transmission Electron Microscopy (TEM) were mechanically ground to a 

thickness of ~50 µm, mounted on copper rings and ion-milled until perforated using a Gatan 

Duo Mill. Electron diffraction patterns and images were taken using a JEF-2010F TEM, 

operating at 200 kV.  

For dielectric measurements, gold paste electrodes (T-10112, Metalor Technologies 

UK Ltd., Birmingham, UK) were applied to the pellets, which were then heated at 800 °C for 

2 h to harden and anneal. A LCR meter (Model 4284A, Hewlett Packard, HP) was used to 

measure capacitance and tan δ at fixed frequencies of 100 kHz, 250 kHz and 1 MHz from 

room temperature to 800 °C. A HP4192A was used to perform impedance spectroscopy (IS)  

at various temperatures between 25 and 500 °C in the frequency range 5 Hz to 13 MHz. 

A RT66A standardized ferroelectric test system (Radiant Technologies) operated in 

virtual ground mode coupled to a TREK high voltage amplifier (Model 609E-6) was used to 

generate room temperature polarisation-field (P-E) data for the fabricated ceramics. To 

achieve high saturation field the samples were mechanically thinned to less than 0.5 mm 

before electroding. The data were recorded by placing the sample in Silicone oil between Cu 

electrodes. 

 

Results and Discussion  
XRD traces from crushed pellets of BLFT (0.05 ≤ x ≤ 0.35) are shown in Figure 2. All 

compositions could be indexed according to single phase perovskite structure with no 

secondary peaks observed within the detection limit of the diffractometer. The peaks in 

compositions with x ≤ 0.10 were indexed as a FE phase with rhombohedral (R3c) symmetry. 

Peak splitting was observed at x = 0.15 which persisted until x ≤ 0.30. This was attributed to 

the transformation from the ferroelectric phase to the antiferroelectric PbZrO3-like (Pbam) 

structure reported by Karimi et al. for Nd-doped BiFeO3.
13

 At x = 0.35, the splitting 

disappeared resulting in metrically cubic XRD patterns. SEM images of fractured surfaces for 

x = 0.05 and x = 0.15 are shown in Figure 3. The microstructure is similar for all 

compositions with a grain size < 1 µm.   

 

 DSC data for a range of BLFT samples are shown in Figure 4 which reveal anomalies 

at ~ 715, ~ 651 and ~ 561 °C, for x = 0.05, 0.10 and 0.15,  respectively. As the La 

concentration increases, the anomalies become broader and less intense and no discrete peaks 

were observed for compositions with 0.20 ≤ x ≤ 0.35. The decrease in TC with increasing x 

may be explained by considering that the onset temperature of the PE-FE and PE-AFE 

transitions decreases with decreasing tolerance factor (t) and average A-site ionic 

polarizability, .
17

 The tolerance factor establishes, in a single metric, how well the ions 

within the perovskite lattice fit in their respective sites.
18

 

 

La
3+ 

(1.32 Å, 5.5 Å
3
) has smaller ionic radius and polarizability than Bi

3+
 (1.36 Å, 

6.12 Å
3
)

19
, hence increasing La ion concentration decreases both t and  simultaneously. This 

has the effect of decreasing TC with respect to the end member BFO and also promoting an 

AFE rather than FE phase.
9
 A composition-independent anomaly at ~350 °C is observed in 

all DSC plots, indicating a transition from AFM ordering to a paramagnetic phase (TN). 



Magnetic ordering is dominated by the B-site, and hence substituting magnetic Fe
3+

 by 

diamagnetic Ti
4+ 

ions results in a lower value of TN compared to pure BFO.
15

 

 

The relative permittivity and tan δ of samples with 0.05 ≤ x ≤ 0.35 are shown in 

Figure 5. A broad relaxation is observed near TN for all compositions. In BFO-based 

ceramics, such anomalies have been previously reported
11,20-23

 but their underlying cause is 

not yet fully understood. Cheng et al.
21

 attributed it to ferroelastic strain coupled with an 

antiferromagnetic transition. Others
22,23

 have attributed it to Maxwell-Wagner-type relaxation 

which may arise due to space-charge polarization. The dielectric loss at room temperature is 

< 0.05 for all compositions but above ~ 300 °C it rises sharply. This is attributed to an 

increase in conductivity, which may also account for the anomalies near TN. Above 500 °C, 

all compositions become highly conductive, and hence the transitions observed for (0.05 ≤ x 

≤ 0.15) in DSC could not be observed in r versus temperature plots. However, composition 

dependent, frequency independent broad peaks are observed in r versus temperature for x > 

0.15, which suggests they relate directly to the onset of the PE-AFE transition but further 

evidence is required to prove that the dielectric maxima are coincident with a change in 

symmetry.   

 

In-situ XRD data for compositions 0.20 ≤ x ≤ 0.30 are shown in Figure 6 (a-c). For x 

= 0.20, the peak splitting at ~ 45°  starts to disappear at 300 °C and becomes undetectable 

by 400 °C. For x = 0.25, the peak splitting disappears at a lower temperature, between 250 

and 300 °C, and similarly in x = 0.30 the peak splitting (albeit weaker) vanishes between 25 

and 200 °C. In-situ XRD data thus confirms that the broad dielectric maxima correspond to a 

change in symmetry consistent with a PE-AFE transition. The PE-AFE transition for x = 0.20 

is coincident with the relaxation behaviour present in all samples and hence cannot be 

resolved. 

 

TEM and electron diffraction were used to further characterise changes in domain 

structure and crystal structure for samples of x = 0.05, 0.20 and 0.35. A dark field image of x 

= 0.05, with corresponding 〈110〉 zone axis diffraction patterns (ZADPs) inset is shown in 

Figure 7. The two patterns are from different macrodomains within the grain and reveal the 

variance of the ½{𝑜𝑜𝑜} superstructure reflections which appear in 6/12 〈110〉 ZADPs for R3c 

symmetry (a
-
a

-
a

-
), according to Woodward and Reaney.

24
 Figure 7 illustrates two domain 

length scales: fine scale ferroelectric/ferroelastic twin domains (10-20 nm) and larger regions 

(100-200 nm) which define the domain structure associated with antiphase tilting. This 

suggests the local directions of polarisation and strain (10-20 nm) are inconsistent with the 

rhombohedral distortion of the macroscopic tilt system and symmetry. To rationalise, the 

observed macroscopic symmetry (R3c), macrodomain and nanodomain structure, we propose 

that each tilt domain (100-200 nm) is an amalgamation of many tens of finer scale 

ferroelastic/ferroelectric twins (10-20 nm) whose average polarisation vector and 

spontaneous strain are consistent with the symmetry of the macroscopic tilt system (a
-
a

-
a

-
) 

but which locally have lower symmetry. The most likely symmetry based on the diffraction 

patterns and domain structure is monoclinic. This scenario is schematically illustrated in 

Figure 8. 

A bright field image of sample x = 0.20 along with <001>, <110>, and <111> ZADPs 

are shown in Figure 9. In agreement with Karimi et al,
9
 an intermediate phase is observed 

which is quadrupled according to the PbZrO3 structure with Pbam symmetry. The 

quadrupling arises from antipolar order of the A-site cations along <110> directions. Note 

however, that the ¼{ooe} reflections are streaked, indicating some variation in the cell 



dimensions in 1D, an effect discussed in detail for doped PbZrO3 structured ceramics by 

Maclaren et al.
25

 In addition, ½{ooo} superstructure reflections are observed, consistent with 

the a
0
b

-
b

-
 tilt system associated with the PbZrO3-like structure.

26
 Samples with x = 0.20 

exhibit a typical lamellar ferroelastic domain structure (100-200 nm) consistent with previous 

studies of PbZrO3 structured ceramics 
27

 but there is no evidence of the fine scale twins 

observed in x = 0.05. 

A bright field image of x = 0.35 is shown in Figure 10 along with <001>, <110>, and 

<111> ZADPs. Very few grains revealed a clear domain structure, suggesting each is 

effectively a single domain. Electron diffraction patterns reveal a dominant superstructure 

that gives rise to a combination of ½{ooo}, ½{eoo} and ½{eeo} reflections, defining the 

likely tilt system as a
-
a

-
c

+
 consistent with Pnma symmetry.

24
 Although the dominant discrete 

superstructure reflections may be indexed according to a Pnma cell, there are diffuse 

reflection which lie at ~1/4{ooe} positions similar to those observed for x = 0.20. The 

appearance of 1/4{ooe} reflections and their diffuse character suggests there is still some 

tendency towards quadrupling of the cell in a manner reminiscent of PbZrO3. The diffuse 

reflections imply residual short range, antipolar clustering of the A-site ions such that there is 

simultaneously a strong commensurate doubling of the cell in accordance with Pnma 

symmetry (a
-
a

-
c

+
) but also a short range incommensurate modulation with a wavelength of 

~22a. 

The electrical microstructure and bulk conductivity of the ceramics were investigated 

using IS. A representative Z* plot for x = 0.05 at ~ 350 
o
C is shown in Figure 11 (a) which 

gives rise to a single semi-circular arc that could be modelled, to a first approximation, on an 

equivalent circuit based on a single parallel Resistor-Capacitor (RC) element. The associated 

capacitance of the arc was ~ 16 pFcm
-1

 indicating a bulk (grain) response that dominated the 

resistivity of the ceramic. The peak maximum in M″ is inversely proportional to C, and the 

peak maximum in Z″ is directly proportional to R.
28

 The coincidence in frequency of the peak 

maximum in Z″ and M″ spectra in Figure 11 (b) demonstrated the ceramic to be electrically 

homogenous and this feature was observed in all samples. The activation energy for bulk 

conduction was calculated from Arrhenius plots of the bulk conductivity,  (=1/R) and was > 

1 eV for all compositions, Figure 12. This showed all samples to be electrically insulating 

and although the conduction mechanism is unknown at this stage the leaky behaviour 

displayed by undoped BFO has clearly been suppressed in this series of ceramics.  A room 

temperature polarization vs electric field loop for x = 0.05 is shown in Figure 13 and is 

representative of all samples. The relationship between polarization and electric field is 

almost linear for all compositions and no switching was observed despite the large applied 

fields.  

 

General Discussion 
 The discrete structural changes observed by XRD and dielectric data as a function of 

composition and temperature married to the absence of a second arc in the impedance 

spectroscopy measurements indicate that the ceramics are structurally and electrically 

homogeneous. Presumably, the enhanced homogeneity in comparison with previous studies 

of La doped BiFeO3
9
 arises because of the formation of A-site vacancies (TiFe

.
 = 1/3VLa‴) 

which enhance diffusion rates. Nonetheless, for the first time in La doped BiFeO3 

compositions, the local and domain structure can be reliably interpreted without the influence 

of macroscopic chemical inhomogeneity. Most importantly, the frustration effects discussed 

and documented extensively in, e.g. the PZT phase diagram,
29

 in the vicinity of phase 



boundaries may be evaluated. In PZT, Woodward and Reaney
29

 reported an unusual 

nanodomain structure at the AFE/FE phase boundary within the R3m phase. The observed 

nanodomains existed within larger domains and were interpreted as local monoclinic (Pm) 

regions which amalgamated to give an average R3m structure. For compositions at the 

AFE/FE boundary in this contribution a similar situation is observed but with greater clarity 

as the domain variants of the antiphase tilt structure are an order of magnitude greater than 

the ferroelastic/ferroelectric nanotwins. Levin and Reaney
30

 observed a similar phenomenon 

in Na1/2Bi1/2TiO3 ceramics which they reported to contain long range antiphase tilt regions 

(m) inside which ferroelastic/ferroelectric nanotwins (10-20 nm) resided. 

The observation of short range antipolar order in the PE phase for compositions with 

x = 0.35 has no parallels with PZT since there is no room temperature PE phase reported in 

the associated phase diagram. Nonetheless, the concept of polar clusters (short range order) 

existing above the PE-FE TC in ferroelectrics is very well accepted. Polar clusters are 

however, effectively invisible to diffraction techniques since there is no additional 

superstructure generated. If a similar phenomenon were considered above the PE-AFE TC 

then weak, diffuse ¼{ooe} would be the natural consequence and are observed in the present 

study.  

The BLFT solid solution series may therefore be considered to exhibit clear aspects of 

pseudosymmetry particularly in the vicinity of structural phase transitions. A 

pseudosymmetric composition is defined as containing a ubiquitous distribution of regions 

whose local symmetry is lower than the average macroscopic symmetry. The driving forces 

for the appearance of pseudosymmetry are nanoscale chemical distributions whose impact 

becomes most apparent as phase boundaries are approached and competition between local 

regions for the dominant symmetry is enhanced. Levin and co-workers
31

 determined aspects 

of pseudosymmetry across the morphotropic phase boundary in (Na,K)1/2Bi1/2TiO3 solid 

solutions in which similar generic features were described. Similarly, features of the 

morphotropic and AFE/FE phase boundaries in the PZT phase diagram
29

 may be 

reinterpreted and attributed to the generic phenomenon of pseudosymmetry. 

 

Conclusions 

In summary, we present a study and interpretation of the phase transitions and domain 

structure in a new solid solution series, (0.95-x)BiFeO3 - xLaFeO3 - 0.05La2/3TiO3. Samples 

were electrically homogeneous, with low dielectric loss (< 0.05) and bulk conduction 

activation energies in excess of 1 eV. TEM and XRD revealed a series of structural phase 

transitions, from R3c for samples with x < 0.15 to (0.15 < x < 0.30) and macroscopic Pnma 

phase for x = 0.35 with clusters of antipolar order. The dielectric data showed strong 

relaxation near TN, however this did not impinge upon the broad anomalies which correspond 

to PE-AFE and PE-FE transitions. These anomalies occurred as a function of composition 

and were confirmed using in-situ XRD.  

The domain structure in the FE phase near the AFE boundary was complex with 

ferroelastic nanotwin domains present, inconsistent with the macroscopic tilt domain 

structure. A model has been proposed where the macroscopic tilt domains are considered to 

be an amalgamation of lower symmetry twins in which the average macroscopic polarisation 

vector remains [111], consistent with the average symmetry by XRD. The presence of diffuse 



1/4{ooe} reflections in addition to strong discrete, doubled superstructure reflections for x = 

0.35 was considered as evidence that antipolar clusters were residual in the Pnma phase 

adjacent to the AFE/PE boundary.   

Finally, it is concluded that aspects of pseudosymmetry may be clearly resolved in 

BLFT compositions through detailed TEM and electron diffraction studies in the vicinity of 

the phase boundaries where the local symmetry invariably appears lower than the average 

macroscopic symmetry. 
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Figure 1: Ternary phase diagram of BiFeO3-LaFeO3-La2/3TiO3. 

Figure 2: X- ray diffraction patterns of BLFT (0.05 ≤ x ≤ 0.35). x = 0.05, 0.15 and 0.35 are 

respectively indexed as BiFeO3-like (R3c), PbZrO3-like (Pbam) and LaFeO3-like (Pnma). 

 

Figure 3: Secondary electron images of a fracture surface for a) x = 0.05 and b) x = 0.15. 

Figure 4: DSC data for BLFT ceramics showing Curie temperatures for x = 0.05, 0.10 and 

0.15. The inset shows the Neel temperature, TN, for 0.05 ≤ x ≤ 0.35. 

Figure 5: Relative permittivity and tan  vs. temperature for BLFT 0.05 ≤ x ≤ 0.35 ceramics. 

Figure 6: In-situ XRD diffractograms for a) x = 0.20, b) x = 0.25 and c) x =0.30. 

Figure 7: Dark field TEM illustrating the domain structure for x = 0.05 with inset 〈110〉 zone 

axis diffraction patterns from different macrodomains. Reflections indicated as ‘a’ are 

½{𝑜𝑜𝑜} superstructure reflections associated with antiphase rotations of the O-octahedra. 

Figure 8: Schematic illustrating the hierarchical domain structure observed within x = 0.05.  



 

 

Figure 9: Bright field TEM showing ferroelastic domains typical of the PZ-like structure. 

Inset are <100>, <011> and <111> ZADPs. af = ¼{hk0} reflections associated with antipolar  

order in the PZ-like structure. a = ½{ooo} reflections associated with antiphase rotations of 

the octahedra and consistent with an a
0
b

-
b

-
 tilt system. 

Figure 10: Bright field image and <<001>, <110, and <111> zone axis diffraction patterns 

from compositions with x = 0.35.  ½{𝑒𝑒𝑜} superstructure reflections are denoted ‘ac’ and 

arise from antiparallel cation displacement, ½{ooe} reflections (i) arise from in phase tilting, 

½{ooo} (a) are generated by antiphase tilting.  Diffuse ¼{ooe} (af) reflections arise from 

antipolar clusters and are highlighted in the expanded inset. 

Figure 11: (a) Z* and (b) a combined Z″ and M″ spectroscopic plot for x = 0.05 at 347 
o
C. 

Figure 12: Arrhenius plots of bulk conductivity for BLFT ceramics. 

Figure 13: Polarization vs electric field for x = 0.05 at room temperature. 
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