An analysis of behaviour change techniques used in a sample of gestational weight management trials

SOLTANI, Hora <http://orcid.org/0000-0001-9611-6777>, ARDEN, Madelynne <http://orcid.org/0000-0002-6199-717X>, DUXBURY, Alexandra and FAIR, Frankie <http://orcid.org/orcid.org/0000-0001-7613-3393>

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/11541/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
An Analysis of Behaviour Change Techniques Used in a Sample of Gestational Weight Management Trials

H. Soltani, M. A. Arden, A. M. S. Duxbury, and F. J. Fair

Centre for Health and Social Care Research, Sheffield Hallam University, Montgomery House, 32 Collegiate Crescent, Sheffield S10 2BP, UK

Department of Psychology, Sociology & Politics, Sheffield Hallam University, Heart of the Campus, Collegiate Crescent, Sheffield S10 2BQ, UK

Correspondence should be addressed to H. Soltani; h.soltani@shu.ac.uk

Received 4 November 2015; Accepted 3 February 2016

Introduction

Maternal obesity and excessive gestational weight gain are associated with multiple adverse outcomes. Maternal obesity and excessive gestational weight gain are associated with multiple adverse outcomes. There is a lack of clarity on the specific components of effective interventions to support pregnant women with gestational weight management. Despite an urgent need for evidence based guidance to support pregnant women on gestational weight management, there is a lack of clarity about effective interventions and their specific components. Interventions developed to reduce excessive gestational weight gain and its associated outcomes generally fit into the broad categories of dietary only, physical activity only, and mixed approaches utilising both diet and physical activity components [3]. It is important to identify which components and specific behaviour change techniques within these complex interventions are most effective, since this is needed to inform the development of future interventions and guidance.

Method

All 44 studies within a preexisting review of lifestyle interventions, with a potential to impact on maternal weight outcomes, were considered for content analysis. Interventions were classified using Behaviour Change Technique (BCT) taxonomy clusters to explore which categories of BCT were used in interventions and their effectiveness in managing gestational weight gain. The most commonly used BCTs were within the categories of “feedback and monitoring,” “shaping knowledge,” “goals and planning,” “repetition and substitution,” “antecedents,” and “comparison of behaviours.” For diet and mixed interventions “feedback and monitoring,” “shaping knowledge,” and “goals and planning” appeared the most successful BCT categories.

Results

Conclusions

Poor reporting within studies in defining the BCTs used, in clarifying the differences in processes between intervention and control groups, and in differentiating between the intervention and research processes made BCT classification difficult. Future studies should elaborate more clearly on the behaviour change techniques used and report them accurately to allow a better understanding of the effective ingredients for lifestyle interventions during pregnancy.

1. Introduction

Maternal obesity and excessive gestational weight gain are associated with adverse outcomes (such as macrosomia, shoulder dystocia, and gestational diabetes [1, 2]) and are on the rise. Despite an urgent need for evidence based guidance to support pregnant women on gestational weight management, there is a lack of clarity about effective interventions and their specific components. Interventions developed to reduce excessive gestational weight gain and its associated outcomes generally fit into the broad categories of dietary only, physical activity only, and mixed approaches utilising both diet and physical activity components [3]. It is important to identify which components and specific behaviour change techniques within these complex interventions are most effective, since this is needed to inform the development of future interventions and guidance.

Michie et al. have reported a consensually agreed structured taxonomy of behaviour change techniques which provides a framework for a more precise reporting of complex interventions [4]. The Behaviour Change Technique (BCT) taxonomy [4] is a useful tool to extract the active components of interventions, allowing comparisons between the component parts of successful and unsuccessful behaviour change interventions. Several studies [5–7] have used the behaviour change technique taxonomy described by Michie et al. [8] to define gestational weight gain management interventions. However only Currie et al. [9] have used the most up-to-date clustered BCT taxonomy [4] to code lifestyle interventions during pregnancy or the postnatal period, in their systematic review of 14 studies aimed at reducing the decline in physical activity during pregnancy.

Gestational weight management strategies often rely on complex interventions involving various interacting
components. Identification of active components of these interventions would help in better understanding and interpreting the results of the existing systematic reviews. It would also be helpful to inform the design of new interventions and their evaluations.

Numerous systematic reviews have evaluated the efficacy of interventions designed to improve weight outcomes for mothers [3, 5, 6, 10–14]. Of these most included 9 to 11 interventional studies [5, 10, 11, 13], with one review [14] only including 5 studies, two reviews including 19 studies [6, 12], and the final review by Thangaratinam et al. [3] of 44 studies. The reviews by Brown et al. [14], Thangaratinam et al. [3], and Choi et al. [13] focused exclusively on randomised controlled trials. Results across the reviews have varied. Streuling et al. [10] found that physical activity or diet alone interventions were not effective at reducing gestational weight gain but interventions based on physical activity and dietary counselling combined with weight monitoring appeared to be successful. In comparison Choi et al. [13] found that obese and overweight women allocated to physical activity or physical activity plus diet interventions in pregnancy had lower gestational weight gains, with supervised physical activity being especially effective. Thangaratinam et al. [3] showed some evidence of effectiveness across all interventions in reducing gestational weight gain (mean difference (MD) −1.42, 95% confidence interval (CI) −1.89 to −0.95). They also reported significant reductions in weight gain in pregnancy in subgroup analysis for dietary interventions (MD −3.84, 95% CI −5.22 to −2.45), physical activity interventions (MD −0.72, 95% CI −1.20 to −0.25), and interventions with a mixed approach (MD −1.06, 95% CI −1.67 to −0.46).

Due to the comprehensive approach in inclusivity and rigour in Thangaratinam et al.’s [3] review and due to it being the most highly accessed and cited article within the field of research of gestational weight management, this was selected as the source of literature for content analysis in our review. The aim of this study was therefore to evaluate the behaviour change techniques included in diet, physical activity, or mixed interventions with a potential to impact on maternal or fetal outcomes related to weight and to identify the categories of behaviour change technique of those interventions which were effective. To our knowledge, this is the first study to use the BCT taxonomy to identify techniques used in a wide range of gestational weight management lifestyle interventions.

1.1. Objectives. To explore the patterns of behaviour change techniques used in interventions with a potential to impact maternal and fetal outcomes related to gestational weight gain.

2. Methods

2.1. Data Selection. This study was based on the 44 randomised controlled trials of interventions with a potential to impact maternal or fetal outcomes related to weight which were included in the HTA commissioned systematic review [3]. The studies included in the review were focused on diet only (n = 13), physical activity only (n = 18), or mixed (n = 13) diet and physical activity interventions for a range of pregnant women, focusing specifically on overweight and or obese women in 11 studies. The study selection criteria and assessments of quality and bias have all been reported by Thangaratinam et al. [3]. They found that the quality of studies included in the analysis for gestational weight gain was moderate, but quality for other outcomes such as preterm delivery and hypertension was low, where there may have been a risk of publication bias.

2.2. Data Extraction and Synthesis. Michie et al.’s [4] health behaviour change technique taxonomy was used to identify the behavioural components of the intervention within each included study. This taxonomy contains 93 itemised health behaviour change techniques which are clustered into 16 groupings (see the following list), with each group containing between 3 and 11 clustered behaviour change techniques. For practicality of reporting the category groupings were used for the purpose of this review.

Groupings within Michie et al.’s [4] Hierarchically Clustered Behaviour Change Technique Taxonomy. Consider the following:

1. Goals and planning.
2. Feedback and monitoring.
3. Social support.
4. Shaping knowledge.
5. Natural consequences.
6. Comparison of behaviour.
7. Associations.
8. Repetition and substitution.
9. Comparison of outcomes.
10. Reward and threat.
11. Regulation.
13. Identity.
15. Self-belief.

Three researchers (H. Soltani, M. A. Arden, and A. M. S. Duxbury) independently extracted and coded the data, to improve reliability of the data categorisation. Where there were differences in coding, the research team had a discussion to reach consensus regarding the codes and categories.

Behaviour change technique categories were classified as successful or unsuccessful within each study dependent upon whether a significant difference was found between the intervention and control group on gestational weight gain. Due to the heterogeneity of the included studies data was synthesised narratively and presented in tables and graphs as statistical synthesis was not possible.
3. Results

Of the original 44 papers included within the Thangaratinam et al. review [3], one study only consisted of a conference abstract [26]. Full-text versions of all of the other articles were obtained. The 44 trials included 7627 women who had been randomised. Healthcare professionals delivering the interventions varied across the studies and included dieticians, nutritionists, clinical psychologists, doctor, nurses, and midwives.

Table 1 contains study characteristics and the behaviour change technique categories agreed by the researchers for each of the included studies [15–59]. It was not possible to apply any behaviour change taxonomy code to 10 of the studies. Figure 1 shows the distribution of BCT categories within the studies. The most commonly used behaviour change technique clusters were "feedback and monitoring," "shaping knowledge," "goals and planning," "repetition and substitution," "comparison of behaviours," "natural consequences," "comparison of outcomes," and "antecedents," and "comparison of behaviours."

There were many studies where the authors could not agree on the behaviour change techniques involved within the intervention. The disputed techniques are shown in Table 2. Eight of the 10 studies for which no behaviour change technique code was recorded had potentially included BCTs but the research team could not reach agreement on them. Two studies [27, 56] included no discernible BCTs. The most common category where a disagreement occurred between the authors was "goals and planning," with 21 of the 22 studies with a disputed behaviour change technique being discrepant within this cluster. In only 2 of these 21 studies [21, 23] was the discrepancy not within the subcategory "goal setting (behaviour)."

For the studies where it was possible to categorise the type of behaviour change, BCT category according to type of intervention was plotted (Figure 2). While all types of intervention made use of "feedback and monitoring" and "shaping knowledge" techniques physical activity based interventions utilised "comparison of behaviours" and "repetition and substitution" more than dietary or mixed lifestyle interventions. In comparison dietary based and mixed interventions incorporated "goals and planning" more often.

Gestational weight gain was reported in 34 studies; however for 6 of these studies no agreement was obtained for applying a BCT code. The success of each behaviour change technique according to type of intervention in the resulting 28 studies is shown in Figure 3. In studies where a BCT classification could be applied a significant difference in gestational weight gain between the intervention groups and control groups was found more often for diet based (n = 5) or mixed interventions (n = 6) compared to physical activity based interventions (n = 1).

The prevalence of each BCT category in both successful and unsuccessful interventions for reducing gestational weight gain is shown in Table 3. The BCT categories present in 50% or over of the studies with successful interventions were "feedback and monitoring," "goals and planning," and "shaping knowledge."

4. Discussion

We have used the Thangaratinam et al. [3] review as an example of a report incorporating diet, physical activity, and mixed lifestyle interventions with the potential to impact on maternal or fetal weight outcomes. Of the 44 studies included within that review, 34 reported total gestational weight gain. The most commonly used behaviour change technique categories were "feedback and monitoring," "shaping knowledge," "goals and planning," "repetition and substitution," "antecedents," and "comparison of behaviours." To our knowledge there is only one other study [9] in which lifestyle interventions in pregnancy or the postpartum have been classified according to Michie et al’s BCT taxonomy [4]. The behaviour change technique components of interventions in pregnancy aimed at reducing the decline in physical activity were categorised within that study by Currie et al. [9], with
<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention delivery</th>
<th>Number of participants randomised</th>
<th>Number of participants analysed</th>
<th>GWG in kg Intervention group mean (SD)</th>
<th>GWG in kg Control group mean (SD)</th>
<th>Significant difference</th>
<th>Agreed BCT categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clapp 1997 [15]</td>
<td>Not stated</td>
<td>—</td>
<td>12</td>
<td>11.8 (5.6)</td>
<td>19.7 (2.9)</td>
<td>p < 0.01</td>
<td>Feedback and monitoring, shaping knowledge, comparison of outcomes</td>
</tr>
<tr>
<td>Crowther et al. 2005 [16]</td>
<td>Dietician</td>
<td>1000</td>
<td>1000</td>
<td>8.1 (0.3)</td>
<td>9.8 (0.4)</td>
<td>Adjusted p = 0.01</td>
<td>Goals and planning, shaping knowledge, comparison of outcomes</td>
</tr>
<tr>
<td>Landon et al. 2009 [17]</td>
<td>Clinician</td>
<td>958</td>
<td>931</td>
<td>2.8 (4.5)</td>
<td>5 (3.3)</td>
<td>p < 0.001</td>
<td>Feedback and monitoring, shaping knowledge, regulation</td>
</tr>
<tr>
<td>Ney et al. 1982 [18]</td>
<td>Not stated</td>
<td>20</td>
<td>20</td>
<td>11.8 (4.5)</td>
<td>15.9 (6.8)</td>
<td>p < 0.05</td>
<td>Goals and planning, shaping knowledge, regulation</td>
</tr>
<tr>
<td>Quinlivan et al. 2011 [19]</td>
<td>Food technologist, clinical psychologist</td>
<td>132</td>
<td>124</td>
<td>7.0 (5.2)</td>
<td>13.8 (5.2)</td>
<td>p < 0.001</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, regulation</td>
</tr>
<tr>
<td>Thornton et al. 2009 [20]</td>
<td>Dietician, physician</td>
<td>257</td>
<td>232</td>
<td>4.99 (6.79)</td>
<td>14.06 (7.40)</td>
<td>p < 0.001</td>
<td>Goals and planning, feedback and monitoring, comparison of outcomes</td>
</tr>
<tr>
<td>Wolff et al. 2008 [21]</td>
<td>Dietician</td>
<td>64</td>
<td>50</td>
<td>6.6 (5.5)</td>
<td>13.3 (7.5)</td>
<td>p = 0.002</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, regulation</td>
</tr>
<tr>
<td>Bechtel-Blackwell 2002 [22]</td>
<td>Research nurse</td>
<td>60</td>
<td>46</td>
<td>6.87 (NR)</td>
<td>5.57 (NR)</td>
<td>NS</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, repetition and substitution</td>
</tr>
<tr>
<td>Briley et al. 2002 [23]</td>
<td>Nutritionist</td>
<td>27</td>
<td>20</td>
<td>11.9 (6.3)</td>
<td>15.2 (5.1)</td>
<td>NS</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, repetition and substitution</td>
</tr>
<tr>
<td>Khoury et al. 2005 [24]</td>
<td>Dietician</td>
<td>290</td>
<td>290</td>
<td>8.9 (3.1)</td>
<td>9.4 (3.0)</td>
<td>NS p = 0.20</td>
<td>—</td>
</tr>
<tr>
<td>Rae et al. 2000 [25]</td>
<td>Research dietician</td>
<td>125</td>
<td>117</td>
<td>11.56 (10.48)</td>
<td>9.68 (10.66)</td>
<td>NS p = 0.338</td>
<td>—</td>
</tr>
<tr>
<td>Badrawi et al. 1992 [26]</td>
<td>Not stated</td>
<td>100</td>
<td>—</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>—</td>
</tr>
<tr>
<td>Gomez et al. 1994 [27]</td>
<td>Not stated</td>
<td>60</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 1: Study characteristics and definite Behaviour Change Technique categories.
<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention delivery</th>
<th>Number of participants randomised</th>
<th>Number of participants analysed</th>
<th>GWG in kg Intervention group mean (SD)</th>
<th>GWG in kg Control group mean (SD)</th>
<th>Significant difference</th>
<th>Agreed BCT categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedaghati et al. 2007 [28]</td>
<td>Qualified instructor and midwife</td>
<td>100</td>
<td>90</td>
<td>13.55 (1.131)</td>
<td>15.1 (2.102)</td>
<td>(p < 0.000)</td>
<td>Feedback and monitoring, shaping knowledge, antecedents</td>
</tr>
<tr>
<td>Baciuk et al. 2008 [29]</td>
<td>Qualified instructor</td>
<td>71</td>
<td>70</td>
<td>14.3 (2.1)</td>
<td>15.1 (1.6)</td>
<td>NS (p = 0.38)</td>
<td>Feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution, antecedents</td>
</tr>
<tr>
<td>Cavalcante et al. 2009 [30]</td>
<td>Qualified instructor</td>
<td>71</td>
<td>70</td>
<td>14.3 (2.1)</td>
<td>15.1 (1.6)</td>
<td>NS (p = 0.38)</td>
<td>Feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution, antecedents</td>
</tr>
<tr>
<td>Barakat et al. 2009 [31]</td>
<td>Qualified fitness specialist</td>
<td>160</td>
<td>142</td>
<td>11.5 (3.7)</td>
<td>12.4 (3.4)</td>
<td>NS (but some difference in obese only group)</td>
<td>Feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution, antecedents</td>
</tr>
<tr>
<td>Barakat et al. 2012 [32]</td>
<td>Qualified instructor with obstetric assistance</td>
<td>100</td>
<td>83</td>
<td>12.5 (3.2)</td>
<td>13.8 (3.1)</td>
<td>NS (p > 0.05)</td>
<td>Feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution, antecedents</td>
</tr>
<tr>
<td>Clapp et al. 2000 [33]</td>
<td>Not stated</td>
<td>50</td>
<td>46</td>
<td>15.7 (4.7)</td>
<td>16.3 (3.4)</td>
<td>NS</td>
<td>Feedback and monitoring, shaping knowledge, natural consequences</td>
</tr>
<tr>
<td>Erkkola 1976 [34]</td>
<td>Not stated</td>
<td>76</td>
<td>62</td>
<td>11.8 (NR)</td>
<td>11 (NR)</td>
<td>NS</td>
<td>Feedback and monitoring, shaping knowledge, natural consequences</td>
</tr>
<tr>
<td>Garshasbi and Faghih 2005 [35]</td>
<td>Midwife</td>
<td>266</td>
<td>212</td>
<td>14.1 (3.8)</td>
<td>13.8 (5.2)</td>
<td>NS (p = 0.63)</td>
<td>Comparison of outcomes</td>
</tr>
<tr>
<td>Study</td>
<td>Intervention delivery</td>
<td>Number of participants randomised</td>
<td>Number of participants analysed</td>
<td>Intervention group mean (SD)</td>
<td>Control group mean (SD)</td>
<td>Significant difference</td>
<td>Agreed BCT categories</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td>--------------------------------</td>
<td>------------------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Haakstad and Bo 2011 [36]</td>
<td>Qualified instructor</td>
<td>105</td>
<td>105</td>
<td>13 (4)</td>
<td>13.8 (3.8)</td>
<td>NS</td>
<td>$p = 0.31$ Goals and planning, feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution</td>
</tr>
<tr>
<td>Hopkins et al. 2010 [37]</td>
<td>Not stated</td>
<td>98</td>
<td>84</td>
<td>8.2 (3.5)</td>
<td>8 (3.7)</td>
<td>NS</td>
<td>Goals and planning, feedback and monitoring, antecedents</td>
</tr>
<tr>
<td>Marquez-Sterling et al. 2000 [38]</td>
<td>Qualified instructor</td>
<td>20</td>
<td>15</td>
<td>16.2 (3.4)</td>
<td>15.7 (4)</td>
<td>NS $p = 0.649$</td>
<td>Goals and planning, comparison of behaviour, repetition and substitution</td>
</tr>
<tr>
<td>Ong et al. 2009 [39]</td>
<td>Supervised</td>
<td>12</td>
<td>12</td>
<td>3.7 (3.4)</td>
<td>5.2 (1.3)</td>
<td>NS $p = 0.155$</td>
<td>Shaping knowledge, repetition and substitution, antecedents Feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution</td>
</tr>
<tr>
<td>Prevedel et al. 2003 [40]</td>
<td>Not stated</td>
<td>60</td>
<td>41</td>
<td>15 (NR)</td>
<td>12.7 (NR)</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Santos et al. 2005 [41]</td>
<td>Not stated</td>
<td>92</td>
<td>72</td>
<td>5.7 (NR)</td>
<td>6.3 (NR)</td>
<td>NS $p = 0.62$</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution, antecedents</td>
</tr>
</tbody>
</table>
Table 1: Continued.

<table>
<thead>
<tr>
<th>Study</th>
<th>Intervention delivery</th>
<th>Number of participants randomised</th>
<th>Number of participants analysed</th>
<th>GWG in kg Intervention group mean (SD)</th>
<th>GWG in kg Control group mean (SD)</th>
<th>Significant difference</th>
<th>Agreed BCT categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bell and Palma 2000 [42]</td>
<td>Not applicable</td>
<td>61</td>
<td>61</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Feedback and monitoring, shaping knowledge, natural consequences</td>
</tr>
<tr>
<td>Erkkola and Makela 1976 [43]</td>
<td>Not stated</td>
<td>103</td>
<td>103</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Goals and planning, feedback and monitoring, repetition and substitution, antecedents</td>
</tr>
<tr>
<td>Khaledan et al. 2010 [44]</td>
<td>Not stated</td>
<td>39</td>
<td>—</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution, antecedents</td>
</tr>
<tr>
<td>Lee et al. 1996 [45]</td>
<td>Qualified instructor</td>
<td>370</td>
<td>351</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, comparison of outcomes, reward and threat</td>
</tr>
<tr>
<td>Yeo et al. 2000 [46]</td>
<td>Not stated</td>
<td>17</td>
<td>16</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, reward and threat</td>
</tr>
<tr>
<td>Asbee et al. 2009 [47]</td>
<td>Dietician, physician, nurse</td>
<td>144</td>
<td>100</td>
<td>13.02 (5.67)</td>
<td>16.15 (7.03)</td>
<td>$p = 0.01$</td>
<td>Mixed interventions</td>
</tr>
<tr>
<td>Huang et al. 2011 [48]</td>
<td>Nurse trained in nutrition and fitness</td>
<td>240</td>
<td>189</td>
<td>14.02 (2.38)</td>
<td>16.22 (3.26)</td>
<td>$p < 0.001$</td>
<td>$p = 0.01$ in overweight group but NS in underweight, normal weight or obese</td>
</tr>
<tr>
<td>Jeffries et al. 2009 [49]</td>
<td>Medical student</td>
<td>286</td>
<td>236</td>
<td>10.7 (4.21)</td>
<td>11.5 (4.03)</td>
<td>$p = 0.01$</td>
<td>Goals and planning, feedback and monitoring</td>
</tr>
<tr>
<td>Phelan et al. 2011 [50]</td>
<td>Research assistants, nurses, clinicians</td>
<td>401</td>
<td>363</td>
<td>Normal weight 16.2 (4.6) obese 15.1 (7.5)</td>
<td>Normal weight 15.3 (4.4) obese 14.7 (6.9)</td>
<td>Significant increase in normal weight women exceeding IOM guidelines</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, associations, antecedents</td>
</tr>
<tr>
<td>Study</td>
<td>Intervention delivery</td>
<td>Number of participants randomised</td>
<td>Number of participants analysed</td>
<td>GWG in kg mean (SD)</td>
<td>Significant difference</td>
<td>Agreed BCT categories</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>--</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Polley et al. 2002 [51]</td>
<td>Nutritionist or clinical psychologist</td>
<td>120</td>
<td>110</td>
<td>Normal weight 15.4 (7.1)</td>
<td>significant increase in normal weight women exceeding IOM guidelines</td>
<td>Goals and planning, feedback and monitoring, repetition and substitution</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>over weight 13.6 (7.2)</td>
<td></td>
<td>Goals and planning, shaping knowledge, comparison of behaviour, repetition and substitution, antecedents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Normal weight 16.4 (4.8);</td>
<td></td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, comparison of outcomes, antecedents</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>over weight 10.1 (6.2)</td>
<td></td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, comparison of outcomes, antecedents</td>
<td></td>
</tr>
<tr>
<td>Vinter et al. 2011 [52]</td>
<td>Dietician, physiotherapist</td>
<td>360</td>
<td>304</td>
<td>median {range} 7.0 (4.7–10.6)</td>
<td>$p = 0.014$</td>
<td>Goals and planning, shaping knowledge, comparison of behaviour, repetition and substitution, antecedents</td>
<td></td>
</tr>
<tr>
<td>Guelinckx et al. 2010 [53]</td>
<td>Nutritionist</td>
<td>195</td>
<td>122</td>
<td>Active group 9.8 (7.6)</td>
<td>NS</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, reward and threat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Passive group 10.9 (5.6)</td>
<td></td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution, antecedents</td>
<td></td>
</tr>
<tr>
<td>Hui et al. 2011 [54]</td>
<td>Dietician and fitness trainer</td>
<td>52</td>
<td>45</td>
<td>14.2 (5.3)</td>
<td>NS $p = 1.00$</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, comparison of outcomes, antecedents</td>
<td></td>
</tr>
<tr>
<td>Hui et al. 2006 [55]</td>
<td>Dietician and fitness trainer</td>
<td>224</td>
<td>190</td>
<td>15.2 (5.9)</td>
<td>NS $p = 0.28$</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, comparison of behaviour, repetition and substitution, comparison of outcomes, antecedents</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Intervention delivery</td>
<td>Number of participants randomised</td>
<td>Number of participants analysed</td>
<td>GWG in kg mean (SD) Intervention group</td>
<td>GWG in kg mean (SD) Control group</td>
<td>Significant difference</td>
<td>Agreed BCT categories</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Jackson et al. 2011 [56]</td>
<td>Video doctor simulating health care provider</td>
<td>321</td>
<td>289</td>
<td>15.15 (NR)</td>
<td>15.24 (NR)</td>
<td>NS $p = 0.95$</td>
<td>Goals and planning, feedback and monitoring, shaping knowledge, antecedents</td>
</tr>
<tr>
<td>Bung et al. 1991 [57]</td>
<td>Not stated</td>
<td>41</td>
<td>34</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Goals and planning, shaping knowledge, natural consequences, comparison of outcomes</td>
</tr>
<tr>
<td>Ferrara et al. 2011 [58]</td>
<td>Trained dietician, lactation consultant</td>
<td>197</td>
<td>197</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>Goals and planning, shaping knowledge, natural consequences, comparison of outcomes</td>
</tr>
<tr>
<td>Kulpa et al. 1987 [59]</td>
<td>Nutritionist, exercise physiologist and obstetrician</td>
<td>141</td>
<td>85</td>
<td>Primigravida 14.3 (NR)</td>
<td>Prigravida 14.2 (NR)</td>
<td>NR</td>
<td>Goals and planning</td>
</tr>
</tbody>
</table>

GWG = gestational weight gain.
SD = standard deviation.
BCT = Behaviour Change Technique.
NR = not reported.
NS = not significant.
IOM = Institute of Medicine.
the 6 most commonly used BCT categories being the same as those found within this study. Others have used Michie’s previous taxonomy [8] to code pregnancy and postpartum lifestyle interventions. All of these found behaviour change techniques within the categories of “goals and planning” and “feedback and monitoring” were the most frequently used [5–7]. Hill et al. [6] and Gilinsky et al. [7] both also noted “instruction on how to perform the behavior” was often utilised which sits within the “shaping knowledge” cluster in the Michie et al. BCT taxonomy [4]. Gilinsky et al. [7] also identified “set graded tasks” which is often used in physical activity trials and is classified under the “repetition and substitution” cluster. Hill et al. [6] found studies often provided “information on the consequences of behavior” which corresponds with behaviours in the “natural consequences” cluster. With the exception of Hill et al.’s [6] “natural consequences” category, these behaviour change techniques correspond closely with those found in our study.

When assessing BCT taxonomy categories, there were disputes among the authors (Table 2), mostly around the “goal setting (behavior)” technique. This categorisation was disagreed on for 15 out of the 18 physical activity interventional studies which could account for “goals and planning” appearing to be more often incorporated into dietary based and mixed interventions compared to physical activity interventions. In the majority of these disputed studies there was no explicit reference to goal setting within the descriptions of the intervention procedures provided according to the BCT taxonomy definition: “set or agree on a goal defined in terms of the behaviour to be achieved” [4]. Participants had been assigned to the intervention condition as part of the research protocol. Although the intervention description included exercise classes or similar, it was not clear whether or not a goal had been set or agreed to attend/engage in these classes, even though this seemed likely to have occurred. These disagreements may reflect health psychologists stricter
Table 3: Prevalence of BCT categories within successful and unsuccessful interventions at reducing gestational weight gain.

<table>
<thead>
<tr>
<th>BCTs present in successful intervention (% of 12 studies)</th>
<th>BCTs present in unsuccessful intervention (% of 16 studies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goals and planning</td>
<td>75.0</td>
</tr>
<tr>
<td>Feedback and monitoring</td>
<td>91.7</td>
</tr>
<tr>
<td>Shaping knowledge</td>
<td>50.0</td>
</tr>
<tr>
<td>Natural consequences</td>
<td>0</td>
</tr>
<tr>
<td>Comparison of behaviour</td>
<td>8.3</td>
</tr>
<tr>
<td>Associations</td>
<td>8.3</td>
</tr>
<tr>
<td>Repetition and substitution</td>
<td>16.7</td>
</tr>
<tr>
<td>Comparison of outcomes</td>
<td>25.0</td>
</tr>
<tr>
<td>Reward and threat</td>
<td>16.7</td>
</tr>
<tr>
<td>Regulation</td>
<td>8.3</td>
</tr>
<tr>
<td>Antecedents</td>
<td>25.0</td>
</tr>
</tbody>
</table>

BCT = Behaviour Change Technique.

Figure 3: Success of intervention on gestational weight gain across intervention type.
The lack of clear and consistent reporting of which behaviour change techniques were undertaken within each intervention was a recurrent theme across this study. Poor reporting, making classification of BCTs difficult, was noted to occur within three main areas: lack of differentiation between the intervention processes and the research processes of the study; difficulties in determining which components were delivered only to the intervention group rather than to both the intervention and control groups; and finally poor or vague definitions of the behaviour change components used. Each of these areas will be discussed in turn.

Some studies were noted to lack clarity over whether the incorporated behaviours were part of the intervention or just part of the study design, for example, glucose monitoring, blood pressure measurements, and completing questionnaires. If these activities were purely for the researchers own benefit to determine clinical outcome measures for the study they would not be part of the intervention and therefore should not be part of the behaviour change technique classification; however if participants were given feedback on the results of blood pressure readings or their current weight in order to promote behaviour change then these procedures would be part of the intervention and their component techniques should be classified. This lack of clarity across the studies made BCT classification difficult. The importance of clear reporting was also highlighted due to difficulties in determining which behavioural processes were solely applied to the intervention group. For example, statements such as ‘participants were weighed at each appointment’ did not make it clear if everyone was weighed or just the intervention group.

Behaviour change technique coding was difficult as some studies used vague phrases such as ‘nutrition counselling’ or ‘education’ to describe their interventions and did not clearly specify what techniques these interventions included. Furthermore, interventions such as water aerobics sessions or gym access were usually present in both the intervention and the control groups, and it was not clear whether these sessions just provided information or worked through problems to provide solutions (i.e., if you feel sick, then drink water or go for a walk). No code could therefore be applied.

When developing intervention studies researchers should ‘clearly define and provide a rationale for all behaviour change techniques that have been included’ [62]. Future studies should use frameworks for intervention design such as the Behaviour Change Wheel [63] that guide developers through the process of developing a clear rationale based on evidence. Reporting behaviour change interventions stating what has been done using the standardised terms found
in the behaviour taxonomy would enable other researchers
to understand exactly what the intervention included and
would allow statistical analysis to evaluate the effectiveness
of specific study components. This would provide a more robust
conclusion of the effectiveness of specific BCT categories
at preventing excessive gestational weight gain, facilitating
the replication of successful interventions or intervention
components. The lack of standardised terms in the maternal
obesity intervention literature, and the use of vague terms
such as “nutrition counselling” means that we cannot under-
stand what aspects of the intervention made it successful
and that we cannot properly replicate it in future research.
Without the ability to build on knowledge in this way
researchers will not be able to improve intervention design
in the future.

5. Conclusions
Coding interventions using the BCT taxonomy is valuable
in the field of gestational weight management. However a
better understanding of these techniques, clarity in their
implementation, and reporting in a standard format are
necessary to allow a robust and reliable evaluation of their
efficacy.

Disclaimer
The views and opinions expressed are those of the authors,
and not necessarily those of the NHS, the NIHR, or the
Department of Health.

Conflict of Interests
The authors declare that there is no known conflict of
interests.

Acknowledgments
The authors acknowledge S. Thangaratinam and K. S. Khan
for allowing us to use their original review paper. They
would like to thank the National Institute for Health Research
Collaboration for Leadership in Applied Health Research
and Care for Yorkshire and Humber (NIHR CLAHRC YH)
for supporting them in conducting this research. Further
details about the new NIHR CLAHRC YH can be found at
http://clahrc-yh.nihr.ac.uk/.

References
obesity: pregnancy complications, gestational weight gain
and nutrition,” *Obesity Reviews*, vol. 9, no. 2, pp. 140–150, 2008.
comes of maternal weight gain," *Evidence Report/Technology
Assessment 168*, Agency for Healthcare Research and Quality,
Rockville, Md, USA, 2008.
interventions in pregnancy on maternal weight and obstetric
outcomes: meta-analysis of randomised evidence,” *British Med-
change technique taxonomy (v1) of 93 hierarchically clustered
techniques: building an international consensus for the report-
ing of behavior change interventions,” *Annals of Behavioral
and physical activity to reduce gestational weight gain: a meta-
analysis,” *Obesity Reviews*, vol. 12, no. 7, pp. e602–e620, 2011.
designed to limit gestational weight gain: a systematic review
of theory and meta-analysis of intervention components,” *Obesity
and D. Lavallee, "Efficacy of physical activity interventions
in postnatal populations: systematic review, meta-analysis
and content coding of behaviour change techniques," *Health Psy-
chology Review*, vol. 9, no. 2, pp. 244–263, 2015.
Bishop, and D. P. French, "A refined taxonomy of behaviour
change techniques to help people change their physical activity
and healthy eating behaviours: the CALO-RE taxonomy," *Psy-
[9] S. Currie, M. Sinclair, M. H. Murphy, E. Madden, L. Dunwoody,
and D. Liddle, "Reducing the decline in physical activity
during pregnancy: a systematic review of behaviour change
weight gain be modified by increasing physical activity and diet
counseling? A meta-analysis of intervention trials,” *American
excessive gestational weight gain: a systematic review of inter-
“Lifestyle interventions for overweight and obese pregnant
women to improve pregnancy outcome: systematic review and
activity and physical activity plus diet interventions on body
weight in overweight or obese women who are pregnant
or in postpartum: a systematic review and meta-analysis of
randomized controlled trials,” *Preventive Medicine*, vol. 56, no.
[14] M. J. Brown, M. Sinclair, D. Liddle, A. J. Hill, E. Madden,
and J. Stockdale, “A systematic review investigating healthy
lifestyle interventions incorporating goal setting strategies for
preventing excess gestational weight gain,” *PLoS ONE*, vol. 7, no.
7, Article ID e39503, 2012.
diabetes mellitus on pregnancy outcomes,” *The New England
randomized trial of treatment for mild gestational diabetes,” *The
New England Journal of Medicine*, vol. 361, no. 14, pp. 1339–1348,
2009.

