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Reconceptualising inquiry in science education 
 

Stuart Bevins and Gareth Price 

Centre for Science Education, Sheffield Hallam University 

Abstract 

 

Decades of discussion and debate about how science is most effectively taught and learned have resulted 

in a number of similar but competing inquiry models. These aim to develop students learning of science 

through approaches which reflect the authenticity of science as practiced by professional scientists while 

being practical and manageable within the school context.  This paper offers a collection of our current 

reflections and suggestions concerning inquiry and its place in science education. We suggest that many 

of the current models of inquiry are too limited in their vision concerning themselves, almost exclusively, 

with constricting scaffolds which reduce inquiry to an algorithmic approach based on a series of 

relatively simple tasks to be performed.  We argue that this restricts students’ experience of authentic 

inquiry to make classroom management and assessment procedures easier. We then speculate that a 

more integrated approach is required through an alternative inquiry model that depends on three 

dimensions (conceptual, procedural and personal) and we propose that it will be more likely to promote 

effective learning and a willingness to engage in inquiry across all facets of a students’ school career and 

beyond. We draw on aspects of Self-Determination Theory (SDT) and existing literature reporting on 

inquiry in science education to support our suggestions and finally, we suggest a way to explore this more 

complex model by working with practitioners to develop it into an efficient, acceptable and resourced 

system for schools . 

 

Key Words 

Inquiry-based teaching; learning environment; secondary school 

 

 

 

 

 

 

 

 

 

 

 



 

  
 page 2 of 14 

Introduction 

The effectiveness of inquiry in science teaching and learning has been supported by a wide range of 

empirical work which reports positive learning outcomes for students in terms of achievement, 

enthusiasm, ownership and scientific skills development (Minner, et al, 2009; Minstrell and Van Zee, 

2000; OFSTED, 2011).  This work represents a continuing focus on inquiry teaching in science 

education and demonstrates its perceived importance by the science education community.  The 

majority of existing work tends to report on structures and processes of inquiry in the science 

classroom and seems to have accepted current models as a fait accompli.  There is, although somewhat 

limited, evidence which identifies the difficulties which teachers can face when attempting to 

implement inquiry approaches in the science classroom. These include time constraints caused by 

over-full curricular demands, assessment procedures and the availability of laboratory resources. 

(Anderson, 2002; Crawford, 2007).  We suggest that these difficulties are, in part, due to the models 

themselves and would argue that some existing models reduce inquiry to a sequence of tasks driven 

by a mechanistic approach which we believe to be unhelpful and ultimately self-defeating in the 

context of what we believe to be authentic inquiry.  We also reject as untenable that the only possible 

response to these scaffolded models is that inquiry must be entirely student-driven and completely 

unsupported by the teacher (Kirschner, Sweller and Clark, 2010).  Instead, we suggest a new model of 

inquiry that identifies three dimensions:  

• scientific knowledge – includes facts and theories 

• evidence-generating and handling procedures – includes data gathering and analysis 

• psychological energy – includes intrinsic and extrinsic motivation 

This model recognises the inquirer as an active agent who is required to navigate within, and manage 

the interactions between, these dimensions to construct a meaningful, productive inquiry that 

supports the construction of new knowledge, development of evidence handling skills and promotes 

student autonomy and exploration.  We explore the nature of this model later after having considered 

what is currently understood by inquiry in the science classroom within existing literature. 

 

The concept of inquiry  

The belief, that an over emphasis on subject facts reduces the space for thinking and developing 

attitudes about science, has been discussed and debated within the science education literature over a 

number of decades.  Over 50 years ago Schwab (1962) argued that school science should more 

accurately represent science as practiced by professional scientists and this argument continues to 

influence science curriculum development globally to this day.  For example, Minner, et al (2009), 

conducting a review of 20 years’ research into the topic, quotes the following description from the 

NRC (2000) paper as a useful summary of much of the current understanding of inquiry in school 

science: 
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 (1) Learners are engaged by scientifically oriented questions.  

 (2) Learners give priority to evidence, which allows them to develop and evaluate explanations 

that address scientifically oriented questions.  

 (3) Learners formulate explanations from evidence to address scientifically oriented questions. 

 (4) Learners evaluate their explanations in light of alternative explanations, particularly those 

reflecting scientific understanding. 

 (5) Learners communicate and justify their proposed explanations. 

 

The ideology above appears, with minor modifications, in a range of curricula across the world and 

attempts to define science as ‘practised by professional scientists’ through a series of procedures 

which, taken together, are often abbreviated to ‘The scientific method’ (TSM). (Windschitl, Thompson 

and Braaten, 2008) 

 

Alongside the growth of inquiry has been the development of active teaching and learning approaches, 

constructivism and the idea that students should have more control over, and take more responsibility 

for, their own learning. These are often conflated into a single view of science education that could be 

described as student-centred, progressive or inquiry-led.  The term Inquiry-Based Science Education 

(IBSE) is now used extensively to describe curricula which include at least some inquiry activities 

designed to reflect this approach.  This conflation of a range of ideas into a single identity has created 

some of the problems we have encountered when thinking about inquiry because many different 

science education professionals have a highly personal, and distinctive, view of what they mean by 

inquiry ranging from simple practical work to completely unsupported, student-led learning 

programmes (Barrow, 2006). 

 

The value of inquiry as a teaching approach 

We believe that inquiry is currently the best way for students to leverage their existing knowledge and 

their investigative skills to find, and internalise, new knowledge and solutions to questions they have 

formulated. This approach gives students better ownership of their learning and allows them to 

actively navigate the routes to increased understanding, greater motivation, improved attitudes to 

scientific endeavour and growth in their self esteem and their ability to handle new data in an 

increasingly complex world. However, we feel that many of the existing IBSE approaches fail to 

leverage the full power of inquiry and that, while they may be the best strategies currently available 

for learning, we now need to move on to the next, more sophisticated model to reap further benefits. 

Despite the confusion around the formal definition of inquiry the view that helping students to 

reconstruct their knowledge through interaction with objects in the environment and problem-solving 

is paramount for the science teacher is supported by a significant amount of evidence concerning 

teaching and learning science through inquiry (Sadeh and Zion, 2009).  Supporters claim that it 
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deepens students’ understanding of the Nature of Science (NoS), develops critical and higher order 

thinking skills, and promotes autonomous learning (Kaberman and Dori, 2009; Carter 2008).  

However, other authors have questioned the effectiveness of inquiry claiming that many of the 

minimally-led inquiry learning experiences ‘do not work’ (Kirschner et al, 2006) or that models of 

inquiry are too limited, revolve around extensive practical work, and omit the wealth, power and 

complexity of the scientific endeavor. Windschitl et al (2008) describe the poverty of the ‘scientific 

method’ model as practised in many US schools and use this criticism to promote a more sophisticated 

model-based inquiry which recognises the importance of scientific models as a source of predictions 

and ideas to test.  

 

Inquiry is not just an algorithmic process 

Despite the lack of a definitive statement of what inquiry is in school science few topics have 

generated as much heat as inquiry over the last few years since it tends to hit at the heart of what 

many educators regard as ‘a good science education’.  However, it is likely that teachers do not simply 

provide either a totally teacher-led, theoretical exposition nor a completely open inquiry diet for their 

students but instead seek a more practical option taking in to consideration the time demands of 

inquiry approaches within a heavily content-laden curricula.  Even when teachers claim explicitly to be 

using inquiry as their main teaching strategy there are nuances of meaning based broadly on the level 

of control the student enjoys. With the lowest level of student control are confirmation or verification 

activities (these are often not considered inquiry at all) with structured inquiry offering more freedom 

and guided inquiry even more. Only open inquiry offers students the chance to design and carry out 

their own investigations into a topic of their own choosing and interpret them with reference to their 

own scientific knowledge. Detailed descriptions of the different levels of inquiry are given elsewhere 

(Zion and Mendelovici, 2012; refs) however, table 1 shows the essential components of the three 

typical models of inquiry—open, guided and structured. 
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Table 1 Models of Inquiry and Associated Skills 

 

 

Table 1, or variations of it, appear in many papers which discuss the nature of inquiry in science 

education.  We argue that, while the models described are valid and helpful, they constitute only a 

single component of a more complete description of the nature of inquiry—a component we call 

‘procedural’.   

 

The procedural dimension depends on a linear Question-Procedure-Result-Interpretation (QPRI) 

understanding of inquiry. We acknowledge that QPRI is a way some scientists conduct some, or much, 

of their day-to-day work. The question, often referred to as a ‘scientific question’ leads to a suitable 

procedure (fair test, literature search, fieldwork etc.) which generates a result that is interpreted in 

terms of the original question. This is a clear and convenient statement of the inquiry process and is 

reflected in many of the rubrics used for assessment of ‘inquiry’ by awarding bodies in the UK (AQA, 

2014). However, we suggest that this can reduce the students’ role in inquiry into a sort of cognitive 

clockwork toy—just wind it up and watch it go through the pre-recorded sequence of events to 

produce the answer.  This perception is supported by Windschitl et al (2008) who state that this 

view….’works too well for teachers’.  And that: 
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The idea of a self-contained procedure, only nominally linked to conceptual content, with 

orderly, predictable steps and much of the epistemological complexity stripped away, is 

actually a useful framework. … this highly prescribed protocol may be the only form of 

investigation seen as manageable in today’s overcrowded classrooms. … one can complete 

the technical aspects of many types of classroom inquiry without knowing the underlying 

content or being pressed to reason scientifically at all.  (p947) 

 

The statement above reveals the two major criticisms of inquiry- that it does not link sensibly to any 

scientific conceptual material and, perhaps more damningly, it does not even require the students to 

reason scientifically. It can fail to deliver both content and process.  

 

Inquiry as it is, not as we would like it to be 

We suggest that Inquiry is more complex than the QPRI model. It does not always start with a clear 

‘scientific’ question that is amenable to simple laboratory experiment. It can begin with an interest, a 

hunch, a problem defined by another party or even the arrival of a new piece of equipment or 

development of a new observational technique. If the question is not always present what of the 

second part - the hypothesis generation, the practical work? These are often labeled as ‘the scientific 

method’ (TSM) as if it is the only way scientific evidence is gathered or that it is somehow unique to 

science.  

 

While there are some procedures that are common to ‘science as practised by professional scientists’ 

not all are always clearly defined at the start of the inquiry and much of a research scientists’ work is 

refining and developing their procedures, methods and equipment. Furthermore, results are very 

often tentative telling us as much about the procedure that produced them as the underlying question 

we may have wanted to answer or the hypothesis we were testing.  Finally, interpretation of these 

results can be so much more than simply answering the original research question (which could have 

been lost in the difficulties and refining of the procedures or data collection). 

 

Organising a messy, complex and dynamic process (which has many twists, turns and reversals) into a 

neat, simple sequence of independent procedures is attractive.  These types of scaffolding systems are 

popular with teachers and can relate to assessment objectives provided by their awarding bodies 

(AQA, 2014) or a conceptual view of TSM like the 5 E’s or 7E’s (Robertson, 2007).  Unfortunately, these 

scaffolds can remove the need for strategic or deep thinking in favour of mechanistic subject content 

coverage. The arguments against this neatening of inquiry and TSM into a set of manageable events or 

simple steps designed to deliver inquiry is set out by Windschitl et al (2008) but fundamentally 

revolve around the fact that it does not reflect authentic science or generate an assessment of scientific 
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reasoning. The scaffold, in some cases, has replaced the building it was meant to support in that the 

method becomes more important than the learning or the evidence generated. 

 

Fruit salad science 

We propose a model of inquiry that relies on three interrelated dimensions.  We believe that this 

model represents a more complete model of inquiry which resists becoming merely a scaffold and 

instead promotes students’ conceptual and strategic thinking. 

• Dimension 1: A body of knowledge: this informs scientists’ thinking about phenomena and can 

generate questions and suggestions for inquiry. 

• Dimension 2: Evidence-management procedures: these ensure evidence is generated reliably, 

interpreted with reference to the underlying ideas and the observed data and communicated 

appropriately  

• Dimension 3: Psychological energy: this provides the energy to create and manage an authentic 

inquiry. 

 

The three dimensions above have different natures and characteristics and do not link conveniently to 

each other in a simple sequence. One does not ‘lead’ to the other nor ‘depend’ on another in a strict 

linear sense.  All are interrelated but only to the extent that they belong to a system that requires their 

presence. They are as related to each other as the individual fruits in a fruit salad. They are all 

essential to make up the salad but apples are not like bananas and pineapples do not lead to oranges 

or grapes. The system is more than merely the sum of its parts even though the parts might be 

externally still recognisable. 

 

The body of knowledge described as ‘science’ is fairly clearly defined and distinct from the body of 

knowledge familiar to historians or geographers. This includes both the ‘great theories’ of science (e.g. 

evolution or atomic theory) to explain phenomena and verifiable facts about a particular situation (e.g. 

the melting point of sodium). This body of knowledge, both the theories and facts, grows every year 

and is prone to continuous revisions as new data or ways of interpreting it become available. 
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Figure 1 Dimension 1 

 

Dimension 2 includes a range of mechanical skills that scientists may use in particular circumstances, 

(e.g. using a microscope or heating materials with a Bunsen burner). The catalogue of these skills is 

extensive with many used in very specific contexts. Other procedures that make up Dimension 2 (e.g. 

identifying and controlling variables, careful experimentation, hypothesis generation and data 

analysis) are recognisably scientific when linked to scientific knowledge and are named TSM to 

distinguish it from other ways of making sense of the world. Dimension 2 also includes a range of 

other enabling skills that are relevant to inquiry but are not exclusive to science. These include 

communication and teamwork skills, organisational skills and keeping of accurate records.  

 

Figure 2 Dimension 2 

 

 

 

Dimension  attempts to put the ‘inquirer’ back into the ‘inquiry’. This is the dimension that elevates the 

algorithmic procedures of Dimension 2 into a dynamic, active process that has the potential to 

generate new knowledge.  An inquiry is a temporary, purposeful construction built from relevant 
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Dimension 1 knowledge and useful Dimension 2 procedures driven along by the ‘psychological energy’ 

generated by Dimension 3.  So, how is this psychological energy, which is the ability to do investigative 

work, produced in Dimension 3?  We suggest that Self-Determination Theory (SDT) (Deci and Ryan, 

2008) is a useful way of looking at this. 

 

SDT has been used extensively to explore ‘motivation’.  In education, motivation is often perceived as a 

way to encourage students to engage in work that might not otherwise interest them. However, 

motivation as seen through an SDT lens is better understood as the force that supports and drives any 

activity and the development of a healthy self (Lavigne, Vallerand and Miquelon, 2007). Rather than 

seeing motivation as a single factor that can be measured SDT allows for a number of classes of 

motivation from intrinsic (the task is perceived as personally worth doing for its own sake) through 

various types of extrinsic motivation: identified regulation (the task is completed because it fits in with 

longer-term goals, e.g. doing science to make a career as a doctor possible); introjected regulation (the 

task is completed because it seems to be the ‘right thing to do’ even if the justification for it has not 

been entirely accepted, e.g. a student attends a science class because otherwise they will feel guilty, 

they will be letting someone down) and external regulation where the motivation is contingent on 

external rewards or avoidance of punishment (e.g. if you do not pass this examination you will not be 

allowed to graduate). Extensive work on the positive effects of autonomy-supporting motivation 

(intrinsic motivation and identified regulation) compared with controlling motivation (introjected and 

controlling regulation) exists reviewing persistence in science courses, (Lavigne, et al, 2007), 

achievement (Ratelle et al 2007) and a range of other positive behavioural, cognitive and affective 

outcomes (Guay, et al, 2008).   For example, Lavigne, et al, (2007) tested a motivational model of 

persistence in science education.  The authors posited that science teachers’ support of students’ 

autonomy positively influences students’ self-perceptions of autonomy and competence.  In turn, these 

self-perceptions have a positive impact on students’ self-determined motivation to participate in 

science education and their level of achievement.  In short, it would appear that the most self-

determined kind of motivation is intrinsic motivation (Deci and Ryan, 2000). 

 

In order to generate this intrinsic motivation SDT identifies three basic psychological needs:  

• autonomy 

• a sense of competence  

• relatedness to significant others 

Where these three needs are met intrinsic motivation can develop but where they are thwarted to 

some extent motivation is reduced or converted from the useful intrinsic motivation into the less 

productive external regulation. A detailed discussion of SDT can be found elsewhere (Deci and Ryan, 

2012) but for our purposes we feel that it is the insight into ‘motivation’ as a driving factor for self-

development that fits well with our proposed third dimension.  This moves inquiry from a process to 
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be completed to an outpouring of an inquirer’s central identity.  Therefore, it is the motivation to 

inquire, to find out and to explore, coupled with a collection of useful procedures and a store of 

relevant knowledge that allows inquirers to inquire.  

 

Constructing inquiry in three dimensions 

Operationalising the third dimension means that the inquirer organises together aspects from all three 

dimensions to create a temporary, dynamic cognitive object that exists and has meaning as long as the 

inquiry progresses. Thus, bringing the 3D inquiry into existence requires a student to draw on all of 

the dimensions purposefully selecting and using knowledge, skills and psychological energy 

(motivation) to ensure the inquiry remains viable. Just as they select items of knowledge from 

Dimension 1 so they will select particular procedures from Dimension 2 and develop a dynamic, 

temporary complex using energy from Dimension 3.  Figure 3 shows our proposed model of a 3D 

inquiry. 

 

 

Figure 3 Creating an inquiry complex in 3 dimensions 

 

The above model recognizes and requires active integration of the three dimensions which we feel is 

more likely to promote reflection on tasks, processes and emergent knowledge than simply following a 

procedure (even one that has been designed by the student).  We believe that it would reduce the 

chance of students ‘drifting’ through practical work in a manner identified by Osborne (1998).   Of 

great importance is that the 3D model places the student as an agent within the inquiry process and 

therefore, should have greater opportunity for encouraging a more positive attitude to science and 

personal growth (Guay, et al, 2008).  Student ownership of their learning is strongly advocated among 

those who favour inquiry approaches to school science and is seen as crucial to developing a sense of 
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value of science and positive dispositions towards scientific study and careers (Sadeh and Zion, 2009; 

Kaberman and Dori, 2008; Carter 2008).  In emphasising motivation, contained in dimension three of 

our model, we would argue that opportunities for encouraging student ownership of their learning are 

greatly enhanced. 

 

We are mindful that, in arguing for acceptance of the 3D model of inquiry, two key obstacles may 

prevent its wider dissemination in the UK—science education policy and the traditional school science 

culture.  Unfortunately the emphasis on high stakes assessment has twisted many actual classroom 

inquiries into mechanisms for generating marks in a highly structured assessment model.  Students 

are trained to carry out pre-designed ‘investigations’ to ensure they fit into the requirements of the 

mark scheme.  For example, in one commonly used qualification in the UK, students are required to 

state a clear hypothesis (1 mark), identify variables (1 mark) , make a comment about accuracy (1 

mark) and, ideally, produce quantitative data that is easy to graph or chart.  An investigation that 

produced complex quantitative data or even qualitative data will often fail to gain these marks even if 

the quality of the student’s work is exemplary.  Additionally, traditional student and teacher roles may 

also be problematic.  Nuthall (2005) noted that fixed patterns can arise from ‘ritualised routines’ 

within classroom learning and are typically born of the difficulty of managing large cohorts of learners 

with diverse needs and learning styles.  This means that both teachers and students identify 

parameters within the classroom which become fixed and they are able to, for the most part, 

comfortably negotiate within these parameters or boundaries.  Therefore, we accept that it may be 

difficult for both teachers and students to move from these more traditional patterns of teaching and 

learning to a more open inquiry approach.   

 

We are also aware that teachers whom seek to support inquiry work in the science classroom may 

simply claim they are just practicing ‘good teaching’ and that the 3D model is merely another 

description of this. However, while we believe that there is an extensive, and encouraging, catalogue of 

work looking at SDT and education the full power of this motivational approach has not been used in 

the context of inquiry. Many of the scaffolding systems and approaches to inquiry work in science 

education explicitly state that they are designed to increase motivation. But the reduction of inquiry 

into a series of smaller, simpler steps seems to us to isolate the student and reduce autonomy-support 

and, in turn, intrinsic motivation.  Since autonomy is a central feature of SDT, anything that reduces 

autonomy, and we would argue that some of the scaffolds do exactly that, will tend to reduce the 

opportunity for, and performance in, inquiry replacing it instead with the 2D model.  In this way, our 

3D model shows its utility by allowing us to suggest new ways to support inquiry by supporting the 

inquirer rather than merely making inquiry more attractive (providing real world contexts) or easier 

to navigate (scaffolded procedures) or have a more obvious payoff for teachers and students (guided 
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inquiry towards a piece of Dimension 1 knowledge from the curriculum or assessed inquiry towards a 

mark for public examinations). 

 

Implications and the way forward 

We accept that the 3D model does not seek to make the teaching of inquiry easier. Indeed, it arguably 

makes it more difficult as it identifies yet another area which needs coverage—the personal 

dimension.  We are also aware that to merely claim the existence of a dimension (3D) and not be able 

to describe in detail its nature, components and ways of operating can be less than helpful. However, 

we believe that the benefits of pursuing this alternative inquiry model can outweigh its operational 

difficulties and that we have the beginnings of an understanding of Dimension 3 through SDT.  We 

propose that using the 3D inquiry model is an effective way of avoiding algorithmic and passive 

learning and is essential for classroom science inquiry as it reflects more closely, than other inquiry 

models, authentic science.  Also it promotes motivation in learners and has the potential for 

encouraging student autonomy and, therefore, greater potential for developing ownership of, positive 

attitudes towards, and interest in, science study and careers.   

 

Our intention is to pursue the development of the model through a pilot study with a number of 

schools within the UK.  We will use an action research approach to develop the 3D model with 

classroom teachers and students.  We anticipate that working collaboratively with classroom 

practitioners will identify contexts in which the 3D model of inquiry is most appropriate, enable us to 

develop strategies to support classroom implementation of it and to find solutions to both the known 

and, as yet, unknown problems that any new initiative generates.  

 

There is no shortage of inquiry models available in the literature, educational textbooks or Continuing 

Professional Development courses. Does the world need yet another one? We justify presenting our 

3D model as a stimulus to conversation and reflection. We also draw support from Simonton’s 

discussion of the US Patent Office’s criteria for deciding if something is worth a patent (Simonton, 

2012). These criteria require an invention to be new (N), useful (U) and non-obvious or surprising (S). 

Creativity (C) is then defined as the product of these three factors where each factor can vary from 0 to 

1.  C = N x U x S 

We argue that the 3D model in total is novel even if components are familiar and potentially very 

useful as it informs development of more engaging and effective curricula leading to more competent 

and confident citizens. We argue that there is a degree of surprise in that, while so much of the 

discussion around inquiry concerns detailed definitions of skills, cataloguing of required content, 

assessment components and scaffolding strategies, the central message of 3D is that it is the inquirer 

themselves, potentially drowning in the thoughtful advice about the inquiry process, that is central to 

what we really mean by inquiry. 
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