
Formal and model driven design of the bright light therapy
system Luxamet

FAUST, Oliver <http://orcid.org/0000-0002-0352-6716> and YU, Wenwei

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/11455/

This document is the Submitted Version

Citation:

FAUST, Oliver and YU, Wenwei (2015). Formal and model driven design of the bright
light therapy system Luxamet. Journal of Mechanics in Medicine and Biology, 16
(05), p. 1650065. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

Formal and model driven design of the bright light therapy system

LUXAMET

Oliver Faust

School of Science and Engineering, Habib University, Karachi, Pakistan

Wenwei Yu

Chiba Graduate School of Engineering, Chiba University, Chiba, Japan

Received (Day Month Year)
Accepted (Day Month Year)

Seasonal depression seriously diminishes the quality of life for many patients. To improve
their condition, we propose LUXAMET, a bright light therapy system. This system has
the potential relieve patients from some of the symptoms caused by seasonal depression.
The system was designed with a formal and model driven design methodology. This
methodology enabled us to minimize systemic hazards, like blinding patients with an
unhealthy dose of light. This was achieved by controlling race conditions and memory
leaks, during design time. We proof that the system specification is deadlock as well as
livelock free and there are no invariant violations. These proves, together with the simi-
larity between specification model and implementation code, make us confident that the
implemented system is a reliable tool which can help patients during seasonal depression.

Keywords: Formal methods, biomedical engineering, Depression, Bright light system

1991 Mathematics Subject Classification: 22E46, 53C35, 57S20

1. Introduction

Major depression is recurrent disorder, which has neurological bases [1]. The conse-

quences of this brain disorder are serious, because patients experience reduced well

being, diminished role functioning, especially in occupational and social roles [2]. As

a consequence, patients face a low quality of life, high medical morbidity and above

average mortality [3, 4]. In a global study, the World Health Organization (WHO)

has identified depression as the fourth leading cause of disability [5]. The same or-

ganization projects that by 2020, depression will be the second leading cause [6].

Unfortunately, direct information on the prevalence of depression does not exist

for most countries and the available data shows a high variation in the prevalence

rates [7]. In the past, depression was not considered to be a serous disease, because

the mortality rate is low, especially when compared with cardiovascular diseases.

Fortunately, recent studies and indeed position papers from relevant organizations

indicate that mortality rate alone is a insufficient indicator for the suffering, caused

1

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

2

by a disease and experienced by the patient as well as his or her social environ-

ment. The Global Burden of Disease (GBD) study was launched, by the WHO in

1996, to find a better indicator for this suffering [8]. A major result of the study

was that unipolar depressive disorders are the forth leading cause of suffering, this

amounts to 3.7% of total Disability Adjusted Life Years (DALYs). Furthermore, the

study identified depression as one of the main reasons for Years Lived with Disabil-

ity (YLD), causing about 10.7% of the total YLD. In 2002, the WHO updated the

report with new data, such as epidemiological estimates [9].

Seasonal Affective Disorder (SAD) is a subgroup of major depression [10], it is

diagnosed when patients, who have normal mental health throughout most of the

year, experience depressive symptoms during specific times of the year [11]. Studies

show that light therapy can provide a potent alternative or adjunct to antidepressant

drug treatment which softens the effect of SAD. Tam et al. state found that 50% of

patients with SAD experience remission within a few days after starting the light

therapy [12]. In a similar study, Terman et al. found an even higher success rate

of 67% [13]. These successes in light treatment of major depression with [14] or

without seasonal pattern [15,16] underscore the need for biomedical systems which

provide this type of treatment to patients.

This paper describes the formal and model driven design of LUXAMET, a bright

light therapy system for seasonal depression. We show that the design methodology

was key in improving the system such that both speed and reliability requirements

could be met. To be specific, the system features shared memory for high speed data

transfer, a technique which can introduce race conditions and system instabilities,

if it is not implemented correctly. In order to ensure formal correctness, the system

creation followed the systems engineering meta model which structures the design

process into different phases. In the specification phase, we have used a formal

CSP||B model to define the system functionality. The model enabled us to control

and ultimately rule out the dangers which are inherent to shared memory data

transfer. With a guiding Communicating Sequential Processes (CSP) model we

prove the absence of deadlock and livelock. With the underlying B-machine we

prove the absence of invariant violations. These proves, together with the similarity

between the specification model and the implementation code, make us confident

that the implemented system is indeed a reliable tool which can help patients during

seasonal depression.

The structure of the paper follows the systems engineering meta model. Section

2 introduces requirements capturing, specification refinement and implementation.

Section 3 presents the results of our design effort. The first set of results comes from

measurements which confirm that the implemented system complies with the re-

quirements. Use and failure case testing yields another set of results with which we

support our claim that the implementation behaves like the specification. These re-

sults are put into a wider perspective when we compare them with other biomedical

system designs in Section 4. We conclude this paper with Section 5.

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

3

2. Materials and methods

Formal and model driven design methods deliver reliable and dependable biomedical

systems which work in real-world scenarios [17]. This section introduces the design

steps of requirements capturing, specification refinement and implementation. With

these design steps we control race conditions and memory leaks which can arise in

the proposed system.

2.1. Requirements

The requirements were captured during stakeholder discussions. These discussions

took place after it was agreed that there is a need and a commercial case for build-

ing a therapeutic system for SAD and major depression patients. Figure 1 shows an

overview diagram of this therapeutic system. On this abstract level, the LUXAMET

system consists of a PC based control program, an embedded Microprocessor Con-

trol Unit (MCU) and Light Emitting Diode (LED) panels which deliver the light

necessary to achieve therapeutic effects. The communication between the embed-

ded MCU is established via Universal Asynchronous Receiver/Transmitter (UART)

over Universal Serial Bus (USB). The brightness of the LED panels is controlled

via Pulse Width Modulation (PWM).

UART over

USB
MCU LEDPWM

Fig. 1. LUXAMET overview block diagram.

The individual components must meet the following requirements:

• Cost effective. The implemented bright light system must meet all the re-

quirements as cost effective as possible.

• Reliable. The system is used adjacent tool to reduce the symptoms of sea-

sonal depression. Therefore, patients have to trust the system, i.e. it should

work according to specification for a long period of time.

• PC based. That means the system is controlled via a Graphical User Inter-

face (GUI) on a PC.

• Four channels. It must be possible to connect up to four LED panels to one

controller unit.

• Intensity mode. Set the brightness of the LED panels. This intensity control

should be done with PWM which has a period of not more then 100 µs and

a resolution of at least 255 steps.

• Trigger mode. Use buttons to switch the LED panels on and off.

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

4

2.2. Specification

In this specification section we focus on the formal model which defines the MCU

functionality. Formal models help the designer to find fault states in the system state

space [18]. On a very basic level, these fault states can be detected by formalizing

the design, because formal models are more abstract than the implementation. This

abstraction makes the models much more discussable and accessible even for non-

specialists [19, 20]. It also prevents designers from introducing a fault state due to

a lack of overview. The real advantage of formal models comes from the fact that

mechanized model checking can be applied. There are two fundamentally different

methods for this mechanized model checking. The first one is theorem proofing and

the other one is state space checking. These two distinct methods sparked a rich

variety of different tools for a range of applications [21].

During the design of LUXAMET, we have used a CSP||B [22, 23] model to

capture the MCU functionality. The next section introduces the guiding CSP model.

Section 2.2.2 discusses the Abstract Machine Language (AML) which defines the

B-machine that models a shared memory data transfer.

2.2.1. Guiding CSP model

CSP is a process algebra which was conceived by Hoare in 1978 [24, 25]. In their

practical paper Cichocki and J. Górski show how CSP and the associated model

checking tool FDR can be used to support failure modes and effects analysis of soft-

ware intensive systems [26]. Alur and Henzinger show the importance of logic-based

and automata-based languages and techniques for the specification and verifica-

tion of real-time systems [27]. Lightweight formal methods promise to yield modest

analysis results in an extremely rapid manner [28]. The paper by Easterbrook et

al. describes three case studies in the application of lightweight formal methods to

requirements modeling for spacecraft fault protection systems. They conclude that

the benefits gained from early modeling of unstable requirements more than out-

weigh the effort needed to maintain multiple representations [29]. We have selected

CSP as formal modeling method because it captures very well the parallel nature

of the system functionality [30].

The process network, shown in Figure 2, gives just an overview of the possible

communication between the processes. However, such diagrams are by no means

detailed enough to make profound statements about system stability and relia-

bility. To proof these properties, it is necessary to translate the process network

into algebraic equations. This process starts by realizing that the two processes

UART RX and UART TX abstract the UART functionality of the MCU. The

PROTOCOL interprets the commands received from the PC in order to pass on

appropriate information to the CNT process. The CNT process itself assembles the

low level commands for the PWM. In trigger mode, these commands depend on the

TRIGGER input. The FEEDER process fills one side of a double buffer with the

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

5

low level commands from the CNT process. Once this buffer is full it initiates a

buffer change. Both buffer and toggle variables are shared between FEEDER and

PWD processes. There is no synchronized communication between PWM and the

rest of the network, therefore the network diagram in Figure 2 shows PWM as an

unconnected process.

UART RX

UART TX

PROTOCOL CNT

TRIGGER

FEEDER

PWM

uartRX

uartTX

c cnt cmd

trig

.

Fig. 2. MAIN network architecture of LUXAMET

The first step, in the creation of a CSP model, is to define data types. For the

command data type, t indicates trigger mode and i indicates intensity mode.

datatype command = t | i
datatype DchanTX = ack

(1)

Next, all the channels, shown in Figure 2, are defined. The construct

command .{0..1} expresses that a channel communicates the command as well an

intensity value (0 or 1) and these two messages are separated by a dot.

channel c cnt , uartRX , chanRX : command .{0..1}
channel uartTX , chanTX : DchanTX

channel cmd : {0..1}
channel tick , button, trig

(2)

The algebraic expressions for both UART RX and UART TX are straight

forward: Whatever message comes in is transferred to the output channel.

UART RX = uartRX ?x → chanRX !x → UART RX

UART TX = chanTX ?x → uartTX !x → UART TX
(3)

The PROTOCOL process acknowledges each received message (x .y) before the

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

6

message is send on to the c cnt channel.

PROTOCOL = chanRX ?x .y → chanTX !ack

→ c cnt !x .y → PROTOCOL
(4)

The CNT process determines whether the received command (x) is trigger (t)

or intensity (i) mode and branches accordingly to T CNT or I CNT OFF . The

2 construct ensures that the CNT process consumes a trig event without taking

action.

CNT =

c cnt?x .y → (if x == t thenT CNT OFF (y) else I CNT (y))

2trig → CNT

(5)

The I CNT process sends out the intensity value (y) over cmd channel before

the process behaves like CNT again.

I CNT (y) = cmd !y → CNT (6)

The T CNT OFF process sets the intensity value to zero by sending cmd !0, this

effectively switches off the LED panels. Once the trigger event trig is received, the

process behaves like T CNT ON . Furthermore, the T CNT OFF process has to

take care of any new incoming commands from c cnt channel. The external choice

construct 2 ensures that the process reacts to messages from both trig and c cnt

channels.

T CNT OFF (y) = cmd !0→ (

c cnt?x .y → (if x == t thenT CNT OFF (y) else I CNT (y))

2trig → T CNT ON (y)

)

(7)

The T CNT ON process sets the intensity value to the desired value y by send-

ing this value over the cmd channel, this effectively switches on the LED panels.

Once another trigger event trig is received, the process behaves like T CNT OFF .

Furthermore, the T CNT OFF process has to take care of any new incoming com-

mands from c cnt channel.

T CNT ON (y) = cmd !y → (

c cnt?x .y → (if x == t thenT CNT OFF (y) else I CNT (y))

2trig → T CNT OFF (y)

)

(8)

The functionality of the TRIGGER process is straight forward, a button event

is converted into a trig event.

TRIGGER = button → trig → TRIGGER (9)

The FEEDER process is a placeholder process which just consumes all cmd

messages.

FEEDER = cmd?x → FEEDER (10)

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

7

The PWM simply exhibits a sequence of tick events.

PWM = tick → PWM (11)

The UART process combines UART RX , UART TX and PROTOCOL.

UART RX and UART TX do not share a communication channel, they make

progress independently from each other, therefore they are combined using the |||
statement. However, the combined processes share all messages which are send over

the channels chanRX and chanTX with the PROTOCOL process. Therefore, the

parallel statement ‖ was used to combine the processes.

UART =
(

UART RX |||UART TX
)

‖
{|chanRX ,chanTX |}

PROTOCOL (12)

The MAIN process, shown in Figure 2, combines PWM , TRIGGER, UART ,

CNT and FEEDER. TRIGGER and UART do not share a communication channel,

therefore they are combined with the interleaved statement. However, this combina-

tion shares all events over the channels c cnt and trig with the CNT process. The

FEEDER process is connected via the cmd channel, this is modeled in the second

line of Equation 13. The PWM process can make progress independently from the

rest of the network, therefore the interleaved operator was used to ad this process.

MAIN = PWM

|||
((TRIGGER |||UART

)
‖{|c cnt,trig|}

CNT
)

‖{|cmd|}
FEEDER

 (13)

The MAIN process consists of seven processes and it is modeled with just 13

equations. The main purpose of this straight forward process network is to guide a

B-machine which models the shared memory data communication. This guidance

is based on events, which are communicated over channels when the CSP model

makes progress.

2.2.2. B-machine specification

The B-method is a state-based method, which was developed by Abrial [31,32], for

specifying, designing and coding software systems. It is based on Zermelo-Fraenkel

set theory with the axiom of choice [33]. Sets are used for data modeling, “Gener-

alised Substitutions” are used to describe state modications which model executing

the system. The B-method uses refinement calculus to relate modes at varying levels

of abstraction, furthermore it is equipped with a number of structuring mechanisms

(machine, renement, implementation) which can be used to organize a development.

The B-machine models the shared memory data transfer for the bright light con-

troller. In this case, shared memory means that the FEEDER process communicates

with the PWM over two global variables: buffer and toggle. In AML all variables

are global, i.e. they can be manipulated by all operations. Hence, the setup of the

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

8

SHARED MEMORY B-machine is straight forward.

MACHINE SHARED MEMORY

CONSTANTS

MAX

PROPERTIES

MAX = 2

VARIABLES

output, buff, toggle

INVARIANT

output ∈ 0 .. MAX ∧ buff ∈ J0, 1K → (0 .. 1) ∧ toggle ∈ J0, 1K
INITIALISATION

output := 0 ‖ buff := {0 7→ 0, 1 7→ 0} ‖ toggle := 0

The B-machine has only two operations: tick and cmd(command). These opera-

tions are executed whenever there is a corresponding event from the guiding CSP

model. When there is a new cmd event, the cmd operation will flip the boolean value

of the toggle variable assign a new brightness value to buff(toggle). When there is a

new tick event, the tick operation will execute. When the buffer(toggle) is 0, output

will count upwards. When the buffer(toggle) is 1, output will count downwards.

OPERATIONS

tick =

PRE output ∈ 0 .. MAX ∧ toggle ∈ 0 .. 1

THEN

IF buff(toggle) = 0 THEN output := (output + 1) mod (MAX + 1)

ELSE output := (output + MAX) mod (MAX + 1) END

END;

cmd(command) =

PRE command ∈ 0 .. 1

THEN

toggle := (toggle + 1) mod 2;

buff(toggle) := command

END

END

The B-machine execute as follows: Whenever there is a new command, i.e. a

new output value is set, the buffer, which is not used in the tick operation, is ma-

nipulated. After all changes to this buffer are done, the buffer is switched with

the toggle variable. Having two buffers means that the tick operation can use one

buffer to generate the PWM signals for the LED panels and the cmd operation can

manipulate the other buffer without interfering with the PWM generation. This ef-

fectively implements a double buffer scheme where PWM and FEEDER each ‘own’

one buffer and ownership is switched when a new command has been processed.

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

9

2.3. Implementation

In accordance with the systems engineering design methodology [34,35], this section

describes the translation of the formal CSP||B model into an implementation. Such

a translation is always specific to the targeted MCU architecture. For this study,

we have selected the XS1-G4 processor from XMOS [36] as MCU. This particular

architecture supports two high level languages with which the desired functionality

can be implemented. The first language is the XMOS-originated ‘XC’ language [37]

and the second language is the well known ‘C’ language [38]. ‘XC’ language was

used to implement the CSP specification and ‘C’ was used to implement the B

specification.

The first step to realize the system was to implement an XThread network, which

reflects the guiding CSP model, as shown in Section 2.2.1. Figure 3 shows the top

level XThread setup of the implemented system. This diagram follows closely the

specification model shown in Figure 2. Each process, in the guiding CSP model,

has been implemented as an XThread. Similarly, each CSP channel has been im-

plemented as XMOS channel. Apart from XThreads and XMOS channels, Figure

3 also shows two buffers buff(0) and buff(1). These two buffers facilitate the

shared memory data transfer between feeder and pwm. Hence, this part of Figure

3 reflects the B-machine.

uart rx

uart tx

protocol cnt

trigger

feeder

pwm
buff(0)

buff(1)

uartRX

uartTX

c cnt cmd

trig

Fig. 3. XThread setup of the LUXAMET implementation

The XThread setup, shown in Figure 3, is implemented in the XC function

main. Listing 1 shows the source code of this function. The commands in Line 2–5

declare the channels uartRX, uartTX, c cnt, cmd and trig. The par statement,

stretching from Line 6 till Line 21, instructs the compiler to interpret all function

calls, within the scope of this command, as XThreads. The on stdcore command

instructs the compiler to map the XThread to a specific XCore. For example, the

commands in Line 16 ensure that the protocol XThread executes on XCore 0. In

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

10

contrast, both pwm and feeder are on XCore 1. These two XThreads were mapped

to XCore 1 because the PWM signals, which were used for the PWM measurements,

come from XCore 1. Furthermore, pwm and feeder share memory, therefore these

two XThreads must execute on the same XCore. Each XMOS channel establishes

a duplex communication between two XThreads. For example, cnt is connected to

the feeder XThread via the cmd channel. The setup for uart rx and uart tx
is marginally more sophisticated, because the UART transfer needs special config-

uration parameters.

int main() {
2 chan chanTX, chanRX;

chan c cnt;
4 chan cmd;

chan trig;
6 par {

on stdcore[0] : {
8 unsigned char tx buffer[64];

unsigned char rx buffer[64];
10 tx <: 1;

par {
12 uart rx(rx, rx buffer, ARRAY SIZE(rx buffer),

BAUD RATE, 8, UART TX PARITY NONE, 1, chanRX);
uart tx(tx, tx buffer, ARRAY SIZE(tx buffer),

BAUD RATE, 8, UART TX PARITY NONE, 1, chanTX);
14 }

}
16 on stdcore[0] : protocol(chanTX, chanRX, c cnt);

on stdcore[0] : trigger(trig);
18 on stdcore[0] : cnt(c cnt, cmd, trig);

on stdcore[1] : pwm();
20 on stdcore[1] : feeder(cmd);
}

22 return 0;
}

The second and final listing, which is discussed in this paper, is concerned with

the source code that writes the PWM values onto the output port of XCore 1. Listing

2 shows the C source code for the pwm process. The function starts by defining the

character variable xa. The while structure implements an infinite loop which feeds

PWM values onto the output port. The function in Line 4 is the heart of this

listing and indeed the heart of the shared memory transfer mechanism. outBuff
is a pointer which points to a character [x] that belongs to either buff(0) or

buff(1). The pointer address changes whenever a buffer switch occurs and this

change is initiated by the the feeder XThread. This implements the pwm part

aThe variable can have a value from 0 to 255

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

11

of the double buffer scheme shown in Figure 3. pushOut(.) is a system function

which puts the values on a predefined output.

void pwm(){
2 unsigned char x = 0;

while(1){
4 pushOut(outBuff[x]);

x++;
6 }
}

3. Results

This section documents the tests which were conducted to verify that the implemen-

tation behaves like the specification. In an initial test, we have established that the

PWM signals are output. Figure 4 shows two measurements of PWM signals. The

pwm10(t) signal is 10 time intervals high and 245 time intervals low. The pwm128(t)

signal is 128 time intervals high and 127 time intervals low. A time interval was

selected to be:

time interval =
1

100 MHz
× 32 = 0.32 µs (14)

The factor 32 was chosen to divide the 100 MHz system clock, because the PWM

signal levels have to be produced according to the commands send by the PC. To be

specific, the loop, shown in Listing 2, takes 21 XMOS assembly instructions for one

cycle, i.e. with a 100 MHz system clock the maximum speed, with which a sample

can be produced, is once every 1/100 MHz× 21 = 0.21 µs. The XMOS architecture

requires the division factor for output clocks to be of the form 2n where n ∈ Z+,

hence we have chosen the nearest clock scaling factor which is both greater than 21

and allowed by the system.

The time interval is important, because it sets the period length of one PWM

cycle. In this case, one these cycles takes 255 time intervals or 81.6 µs.

3.1. Use and Failure Case Testing

Use and failure case testing instills trust in the implemented system, because these

tests establish that the implementation has the same functionality as the specifica-

tion. Use cases test the normal or desired functionality of the implemented system.

In the first use case test we have programed the GUI to steep up the intensity of

all four PWM channels from 0 to 255 one step every 5 s. The results were observed

on the LED panels and the 4 different PWM signals were measured with an os-

cilloscope. The LED panels slowly lit up and the PWM signals were exactly is we

expected them. This test has verified the communication with the PC and the PWM

signal generation. The second use case test is concerned with the trigger function-

ality. We have verified that the LED panels light up and switch off in accordance

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

12

0

pwm10(t)/V

t/µs81.63.2

0

pwm128(t)/V

t/µs81.640.96 122.56

Fig. 4. PWM signals for intesity 10 (pwm10(t)) and for intensity 128 (pwm128(t))

.

with the buttons pressed. With the GUI it was possible to set the brightness of the

panels as stated in the requirements.

Failure case testing was conducted by decreasing the step interval of the first use

case test. To be specific, we have implemented the intensity increments with a hard

loop in the PC system. We found that the MCU could cope with the continuous data

stream from the PC system and a change of intensity took about 1 ms. This timing

was determined by the relatively slow baud-rate of the UART connection. However,

the important point, which was established trough this failure case testing, is that

the embedded system could cope with the highest rate of commands from the PC

system.

4. Discussion

Recent developments in biomedical engineering provided us with new mental dis-

order diagnosis support systems [39–42]. These systems detect symptoms of de-

pression, autism and alcoholism in an early stage of the disease when therapeutic

methods, such as bright light therapy, is most effective. Therefore, the need for safe,

reliable and functional light therapy systems will increase. With LUXAMET we

address that need with a formal and model driven system design.

Bright light therapy for SAD has been investigated and applied for over 20 years

[43]. Physicians and clinicians are increasingly confident that bright light therapy is a

potent, specifically active, non-pharmaceutical treatment modality [44]. In the past,

the studies assessing the efficacy of light therapy in nonseasonal depression have

been controversial. While some controlled studies reported significant improvements

[45,46] others failed to do so [10,47]. Research by Kripke suggests that, at least some

non-seasonal depressives respond to light therapy, however the improvement might

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

13

be less than for SAD [48].

Having a good medical agreement on the therapy, the biomedical engineers need

to step in and build the therapy system. The design must follow a well thought out

process in order to create reliable and safe systems for humans to use [49–51]. There-

fore, we have extended the systems engineering methodology with formal methods

in the specification phase [52]. The beauty of this approach is that we can fill all the

different design phases with meaning. In the need definition phase we have discussed

the medical evidence for bright light therapy systems. This need was translated

into a requirements list which contained all the system properties. Once this list

was compiled, we refined the information into a formal CSP||B model which serves

as specification [53]. Based on this formal model we prove the absence of deadlock

and livelock as well as the absence of invariant violations. Having these proves is

an important achievement, because they document that it is possible to create the

specified functionality in a reliable and safe way. The next step in the systems en-

gineering design process is implementation. In our case, the implementation was a

translation of the formal model into source code for the MCU target. We conclude

the description of the design process with use and fault case testing which estab-

lishes that the implementation behaves like the specification. Hence, we are fairly

confident that we have created a reliable bright light therapy system which is safe

for humans to use. The discussion of the design process does not include consider-

ations about product life-cycle support and considerations about sustainability of

both design and system. These limitations need to be addressed in another context

where the focus is more on an holistic approach to design.

With the current design we had to solve practical engineering problems as we

progressed with the systems engineering design methodology. The biggest engineer-

ing problem, we were phasing, was caused by standard data transfer mechanisms

which were not fast enough to create the required PWM period length of 100 µs.

To solve the problem, we had to abandon the slow, but safe, channel communica-

tion and replace it with a shared memory approach. Shared memory is the fastest

way of transferring data between threads. However, shared memory, like any shared

resource, has the potential to introduce race conditions because it can be accessed

by multiple entities [54,55]. The general solution for this problem is to synchronize

access to the shared resource, in this case shared memory [56]. Unfortunately, syn-

chronization techniques cost runtime, i.e. they are slow. In case of the PWM process,

taking care of access synchronization during runtime impacts on the performance.

To be specific, the PWM, synchronized via channels, was around 4.6 times slower

as the PWM with shared memory. That means, using synchronized data transfer,

the PWM period was longer than 375 µs.

To solve the problem of shared memory is a formidable challenge, because the

selected MCU does not provide hardware support for detecting race conditions

and memory leaks. We have solved the problem with formal and model driven

design. Conceptually, we have shifted the task of ensuring that no race conditions

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

14

are possible from the run-time to design time. In other words, there is no need for

the implemented system to check and establish synchronized data transfer, because

with the CSP||B model we could prove the absence of race conditions during the

specification phase of the design.

The formal CSP||B model is composed from just 13 equations in the CSP part

and 25 lines of AML code for the B-model. That means, the formal model is not

opaque, on the contrary, it is short and abstract. We regard this as an advantage,

because a formal model should be a medium for communication and discussion

amongst stake holders in the project. Larger models, which use hundreds or even

thousands of lines of formal description, are not understandable for non-experts.

The drawback of this abstraction comes from the fact that the model does not

contain enough information to cover the complete implementation. For example,

the formal model implies that the buffer switch between buff(1) and buff(1)
must be atomicb but it does not indicate how to establish or ensure this requirement

in the implementation.

In general, electronic processing is used extensively in biomedical engineering

[57–59]. Therefore, formal and model driven design can benefit a wide range of

different application areas. For example, breast imaging for cancer detection relies

on sophisticated image processing algorithms [60, 61]. Similarly, Computer-Aided

Diagnosis (CAD) systems for plaque [62–65], cardiac disease [66, 67] and diabetes

[68, 69] relay also heavily on computerized processing. Hence, these CAD systems

stand to benefit from formal and model driven biomedical systems design, because

the design methodology helps us to realize systemic safety and reliability.

5. Conclusion

This paper describes the formal and model driven design process of LUXAMET,

a bright light therapy system. The process starts with need definition, where we

collect the medical evidence that bright light can relieve the symptoms of seasonal

depression. Once the need for a physical problem solution was established, the

next step is requirement capturing. The requirements answer the question: What

system do we want to build? In this case the system is based on a micro-controller

which receives commands from a PC and which controls LED panels via PWM. The

specification phase refines the requirements into a formal CSP||B model. This model

answers the question: How do we build the system? During the implementation

phase we have translated the formal model into source code for the target micro-

controller. Tests and measurements confirmed that this translation was indeed a

truthful representation of the specification.

With the design of LUXAMET we show that formal and model driven design is

an easy way to create biomedical systems which are safe and reliable. The design

bOne processor instruction.

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

15

process was governed by the systems engineering methodology. During the design

process we have advanced scientific understanding by modeling a shared memory

system with CSP||B. The benefits of this model come from a deeper insight into

the system, i.e. we learned how to tackle the dangers of shared memory during

design time and not during runtime. This conceptional shift enabled us to speed up

the system by 4.6 times and only through this speedup we were able to meet all

the requirements. Furthermore, having formal proves, instilled confidence that the

proposed system will work as a real world problem solution. This confidence was

further boosted by the fact that the formal model corresponded very well with the

implementation.

We feel, contrary to wide spread believec, that formal and model driven design,

within a well thought out design strategy, helped us to focus on the innovations

necessary to build a physical solution for the medical problem of seasonal depression.

Having made this experience, we predict that formal and model driven design will

get more and more important for biomedical engineering. Another reason to support

this statement comes from the area of reliability and quality of service. We have used

this technique to model and ultimately overcome the dangers of shared memory.

Such dangers lurk in most electronic support systems and for biomedical support

systems these dangers might directly endanger human well being or even human life.

Formal models can help to understand critical sections of the system functionality

and they are abstract and clear enough to invite a wide audience to participate in

the solution of these problems. Hence, the proposed formal and model driven design

methodology can lead to more reliable systems which serve human needs.

Appendix A. Acronyms

AML Abstract Machine Language

CAD Computer-Aided Diagnosis

CSP Communicating Sequential Processes

DALY Disability Adjusted Life Year

GBD Global Burden of Disease

GUI Graphical User Interface

LED Light Emitting Diode

MCU Microprocessor Control Unit

PWM Pulse Width Modulation

SAD Seasonal Affective Disorder

UART Universal Asynchronous Receiver/Transmitter

USB Universal Serial Bus

WHO World Health Organization

YLD Years Lived with Disability

cThink outside the box.

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

16

Appendix B. References

References

1. W. C. Drevets, J. L. Price, and M. L. Furey, “Brain structural and functional ab-
normalities in mood disorders: implications for neurocircuitry models of depression,”
Brain structure and function, vol. 213, no. 1-2, pp. 93–118, 2008.

2. J. Spijker, R. de Graaf, R. V. Bijl, A. T. F. Beekman, J. Ormel, and W. A. Nolen,
“Functional disability and depression in the general population. results from the
netherlands mental health survey and incidence study (nemesis),” Acta Psychiatrica
Scandinavica, vol. 110, no. 3, pp. 208–214, 2004.

3. T. B. Üstün, J. L. Ayuso-Mateos, S. Chatterji, C. Mathers, and C. J. L. Murray,
“Global burden of depressive disorders in the year 2000,” The British Journal of
Psychiatry, vol. 184, no. 5, pp. 386–392, 2004.

4. O. Faust, P. C. A. Ang, S. D. Puthankattil, and P. K. Joseph, “Depression diagnosis
support system based on eeg signal entropies,” Journal of Mechanics in Medicine and
Biology, vol. 14, no. 03, 2014.

5. C. J. L. Murray and A. D. Lopez, “Evidence-based health policy–lessons from the
global burden of disease study,” Science, vol. 274, no. 5288, pp. 740–743, 1996.

6. ——, “Alternative projections of mortality and disability by cause 1990–2020: Global
burden of disease study,” The Lancet, vol. 349, no. 9064, pp. 1498–1504, 1997.

7. E. Bromet, L. Andrade, I. Hwang, N. Sampson, J. Alonso, G. de Girolamo, R. de Graaf,
K. Demyttenaere, C. Hu, N. Iwata, A. Karam, J. Kaur, S. Kostyuchenko, J.-P. Lep-
ine, D. Levinson, H. Matschinger, M. Mora, M. Browne, J. Posada-Villa, M. Viana,
D. Williams, and R. Kessler, “Cross-national epidemiology of dsm-iv major depressive
episode,” BMC Medicine, vol. 9, no. 1, pp. 1–16, 2011.

8. C. J. L. Murray, A. D. Lopez, World Health Organization, World Bank, and Harvard
School of Public Health, Global health statistics: a compendium of incidence, preva-
lence, and mortality estimates for over 200 conditions, ser. Global burden of disease
and injury series. Published by the Harvard School of Public Health on behalf of the
World Health Organization and the World Bank, 1996.

9. World Health Organization, “World health report 2002. reducing risks, promoting
healthy life,” 2002, geneva, Switzerland.

10. A. Magnusson and D. Boivin, “Seasonal affective disorder: An overview,” Chronobi-
ology International, vol. 20, no. 2, pp. 189–207, 2003.

11. S. J. Lurie, B. Gawinski, D. Pierce, and S. J. Rousseau, “Seasonal affective disorder,”
American Family Physician, vol. 74, no. 9, pp. 1521–1524, 2006.

12. E. M. Tam, R. W. Law, and A. J. Levitt, “Treatment of seasonal affective disorder: a
review,” Canadian Journal of Psychiatry, vol. 40, pp. 457–466, 1995.

13. M. Terman, J. S. Terman, F. M. Quitkin, P. J. McGrath, J. W. Stewart, and B. Raf-
ferty, “Light therapy for seasonal affective disorder. a review of efficacy.” Neuropsy-
chopharmacology, vol. 2, no. 1, pp. 1–22, 1989.

14. K. Kräuchi, A. Wirz-Justice, and P. Graw, “High intake of sweets late in the day pre-
dicts a rapid and persistent response to light therapy in winter depression,” Psychiatry
Research, vol. 46, no. 2, pp. 107–117, 1993.

15. A. Tuunainen, D. F. Kripke, and T. Endo, Light therapy for nonseasonal depression.
John Wiley & Sons, Ltd, 2004.

16. M. Fritzsche, R. Heller, H. Hill, and H. Kick, “Sleep deprivation as a predictor of
response to light therapy in major depression,” Journal of Affective Disorders, vol. 62,
no. 3, pp. 207–215, 2001.

17. O. Faust, U. R. Acharya, and T. Tamura, “Formal design methods for reliable

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

17

computer-aided diagnosis: a review,” Biomedical Engineering, IEEE Reviews in, vol. 5,
pp. 15–28, 2012.

18. O. Faust, U. R. Acharya, B. H. C. Sputh, and L. C. Min, “Systems engineering prin-
ciples for the design of biomedical signal processing systems,” Computer Methods and
Programs in Biomedicine, vol. 102, no. 3, pp. 267–276, 2011.

19. R. W. Butler and G. B. Finelli, “The infeasibility of quantifying the reliability of
life-critical real-time software,” IEEE Trans. Softw. Eng., vol. 19, no. 1, pp. 3–12,
1993.

20. M. C. B. Alves, D. Drusinsky, J. B. Michael, and M.-T. Shing, “End-to-end formal
specification, validation, and verification process: A case study of space flight soft-
ware,” Systems Journal, IEEE, vol. 7, no. 4, pp. 632–641, 2013.

21. E. M. Clarke and J. M. Wing, “Formal methods: State of the art and future directions,”
ACM Computing Surveys, vol. 28, pp. 626–643, 1996.

22. M. Leuschel and M. Butler, “Prob: an automated analysis toolset for the b method,”
International Journal on Software Tools for Technology Transfer, vol. 10, no. 2, pp.
185–203, Feb. 2008.

23. ——, “Combining csp and b for specification and property verification,” in Formal
Methods, I. Hayes, A. Tarlecki, and J. Fitzgerald, Eds. Springer-Verlag, LNCS 3582,
January 2005, pp. 221–236.

24. C. A. R. Hoare, “Communicating sequential processes,” Communications of the ACM,
vol. 21, no. 8, pp. 666–677, 1978.

25. ——, Communicating Sequential Processes, 1st ed. Upper Saddle River, New Jersey
07485 United States of America: Prentice Hall, 1978.

26. T. Cichocki and J. Górski, “Formal support for fault modelling and analysis,” in
SAFECOMP, 2001, pp. 190–199.

27. R. Alur and T. A. Henzinger, “Logics and models of real time: A survey,” in Proceed-
ings of the Real-Time: Theory in Practice, REX Workshop. London, UK: Springer-
Verlag, 1992, pp. 74–106.

28. M. S. Feather, “Rapid application of lightweight formal methods for consistency anal-
yses,” IEEE Trans. Softw. Eng., vol. 24, no. 11, pp. 949–959, 1998.

29. S. Easterbrook, R. Lutz, R. Covington, J. Kelly, Y. Ampo, and D. Hamilton, “Expe-
riences using lightweight formal methods for requirements modeling,” IEEE Transac-
tions on Software Engineering, vol. 24, pp. 4–14, 1998.

30. B. H. C. Sputh, O. Faust, and A. R. Allen, “Portable csp based design for embedded
multi-core systems,” in CPA 2006, F. R. M. Barnes, J. M. Kerridge, and P. H. Welch,
Eds., Sep. 2006, pp. 123–134.

31. J. Abrial, M. Lee, D. Neilson, P. Scharbach, and I. Srensen, “The b-method,” in VDM
’91 Formal Software Development Methods, ser. Lecture Notes in Computer Science,
S. Prehn and H. Toetenel, Eds. Springer Berlin / Heidelberg, 1991, vol. 552, pp.
398–405.

32. J. R. Abrial, A. Hoare, and P. Chapron, The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 2005.

33. E. Zermelo, “Untersuchungen ber die grundlagen der mengenlehre. i,” Mathematische
Annalen, vol. 65, pp. 261–281, 1908.

34. A. Gorod, B. J. Sauser, and J. T. Boardman, “System-of-systems engineering man-
agement: A review of modern history and a path forward.” IEEE Systems Journal,
vol. 2, no. 4, pp. 484–499, 2008.

35. S. C. Ekpo and D. George, “A system engineering analysis of highly adaptive small
satellites,” Systems Journal, IEEE, vol. 7, no. 4, pp. 642–648, 2013.

36. XS1-G4 512 BGA Datasheet, 3rd ed., XMOS, Bristol, UK, 2009.

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

18

37. D. Watt, Programming XC on XMOS Devices. Published by XMOS Limited, 2009.
38. B. W. Kernighan and D. M. Ritchie, The C Programming Language. Prentice Hall

Professional Technical Reference, 1988.
39. S. Bhat, U. R. Acharya, H. Adeli, G. M. Bairy, and A. Adeli, “Automated diagnosis

of autism: in search of a mathematical marker,” Reviews in the Neurosciences, vol. 25,
no. 6, pp. 851–861, 2014.

40. ——, “Autism: cause factors, early diagnosis and therapies,” Reviews in the Neuro-
sciences, vol. 25, no. 6, pp. 841–850, 2014.

41. U. R. Acharya, S. Bhat, H. Adeli, A. Adeli et al., “Computer-aided diagnosis of
alcoholism-related eeg signals,” Epilepsy & Behavior, vol. 41, pp. 257–263, 2014.

42. U. R. Acharya, V. Sudarshan, H. Adeli, J. Santhosh, J. Koh, and A. Adeli, “Computer-
aided diagnosis of depression using eeg signals,” European neurology, vol. 73, no. 5-6,
pp. 329–336, 2015.

43. R. N. Golden, B. N. Gaynes, R. D. Ekstrom, R. M. Hamer, F. M. Jacobsen, T. Suppes,
K. L. Wisner, and C. B. Nemeroff, “The efficacy of light therapy in the treatment of
mood disorders: a review and meta-analysis of the evidence.” The American journal
of psychiatry, vol. 162, no. 4, pp. 656–662, 2005.

44. M. Terman and J. S. S. Terman, “Light therapy for seasonal and nonseasonal depres-
sion: efficacy, protocol, safety, and side effects.” CNS spectrums, vol. 10, no. 8, Aug.
2005.

45. D. F. Kripke, S. Risch, and D. Janowsky, “Bright white light alleviates depression,”
Psychiatry Research, vol. 10, no. 2, pp. 105–112, 1983.

46. D. F. Kripke, D. J. Mullaney, M. R. Klauber, S. C. Risch, and J. C. Gillin, “Controlled
trial of bright light for nonseasonal major depressive disorders,” Biological Psychiatry,
vol. 31, no. 2, pp. 119–134, 1992.

47. B. E. Thalén, B. F. Kjellman, L. Mørkrid, R. Wibom, and L. Wetterberg, “Light
treatment in seasonal and nonseasonal depression,” Acta Psychiatrica Scandinavica,
vol. 91, no. 5, pp. 352–360, 1995.

48. D. F. Kripke, “Light treatment for nonseasonal depression: speed, efficacy, and com-
bined treatment,” Journal of Affective Disorders, vol. 49, no. 2, pp. 109–117, 1998.

49. O. Faust, R. Shetty, V. S. Sree, S. Acharya, U. R. Acharya, E. Ng, C. Poo, and
J. S. Suri, “Towards the systematic development of medical networking technology,”
Journal of Medical Systems, pp. 1–15, 2010.

50. O. Faust, B. H. C. Sputh, U. R. Acharya, and A. R. Allen, “A pervasive design strategy
for distributed health care system,” The Open Medical Informatics Journal, vol. 2, pp.
58–69, 2008.

51. U. R. Acharya, O. Faust, D. N. Ghista, S. V. Sree, A. P. C. Alvin, S. Chattopadhyay,
T.-C. Lim, E. Y.-K. Ng, and W. Yu, “A systems approach to cardiac health diagnosis,”
Journal of Medical Imaging and Health Informatics, vol. 3, no. 2, pp. 261–267, 2013.

52. O. Faust, U. Acharya, B. Sputh, and T. Tamura, “Design of a fault-tolerant decision-
making system for biomedical applications.” Computer Methods in Biomechanics and
Biomedical Engineering, p. In press, 2012.

53. Z. Song, Z. Ji, J.-G. Maa, B. H. C. Sputh, U. R. Acharya, and O. Faust, “A systematic
approach to embedded biomedical decision making,” Computer Methods and Programs
in Biomedicine, vol. –, p. In press, 2011.

54. K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and J. Hennessy,
“Memory consistency and event ordering in scalable shared-memory multiprocessors,”
ACM SIGARCH Computer Architecture News, vol. 18, no. 3a, pp. 15–26, May 1990.

55. S. Adve and M. D. Hill, “A unified formalization of four shared-memory models,”
IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 6, pp. 613–624,

July 26, 2017 12:3 WSPC/WS-JMMB LUXAMET

19

1993.
56. R. H. B. Netzer and B. P. Miller, “What are race conditions?: Some issues and for-

malizations,” ACM Letters on Programming Languages and Systems, vol. 1, no. 1, pp.
74–88, Mar. 1992.

57. O. Faust, U. R. Acharya, F. Molinari, S. Chattopadhyay, and T. Tamura, “Linear and
non-linear analysis of cardiac health in diabetic subjects,” Biomedical Signal Process-
ing and Control, vol. 7, no. 3, pp. 295–302, 2012.

58. O. Faust, A. U. Rajendra, S. Krishnan, and M. Lim, “Analysis of cardiac signals using
spatial filling index and time-frequency domain,” BioMedical Engineering OnLine,
vol. 3, no. 30, pp. 1–11, 2004.

59. O. Faust, U. R. Acharya, H. Adeli, and A. Adeli, “Wavelet-based eeg processing for
computer-aided seizure detection and epilepsy diagnosis,” Seizure, vol. 26, pp. 56–64,
2015.

60. S. V. Sree, E. Y.-K. Ng, R. U. Acharya, and O. Faust, “Breast imaging: a survey,”
World journal of clinical oncology, vol. 2, no. 4, p. 171, 2011.

61. U. R. Acharya, E. Y.-K. Ng, J.-H. Tan, and S. V. Sree, “Thermography based breast
cancer detection using texture features and support vector machine,” Journal of med-
ical systems, vol. 36, no. 3, pp. 1503–1510, 2012.

62. U. R. Acharya, O. Faust, S. V. Sree, F. Molinari, L. Saba, A. Nicolaides, and J. S.
Suri, “An accurate and generalized approach to plaque characterization in 346 carotid
ultrasound scans,” Instrumentation and Measurement, IEEE Transactions on, vol. 61,
no. 4, pp. 1045–1053, 2012.

63. R. U. Acharya, O. Faust, A. P. C. Alvin, S. V. Sree, F. Molinari, L. Saba, A. Nico-
laides, and J. S. Suri, “Symptomatic vs. asymptomatic plaque classification in carotid
ultrasound,” Journal of medical systems, vol. 36, no. 3, pp. 1861–1871, 2012.

64. U. Acharya, O. Faust, S. V. Sree, F. Molinari, R. Garberoglio, and J. Suri, “Cost-
effective and non-invasive automated benign & malignant thyroid lesion classification
in 3d contrast-enhanced ultrasound using combination of wavelets and textures: a
class of thyroscan algorithms,” Technology in cancer research & treatment, vol. 10,
no. 4, pp. 371–380, 2011.

65. U. R. Acharya, O. Faust, S. V. Sree, F. Molinari, and J. S. Suri, “Thyroscreen system:
high resolution ultrasound thyroid image characterization into benign and malignant
classes using novel combination of texture and discrete wavelet transform,” Computer
methods and programs in biomedicine, vol. 107, no. 2, pp. 233–241, 2012.

66. U. R. Acharya, E. C.-P. Chua, O. Faust, T.-C. Lim, and L. F. B. Lim, “Automated
detection of sleep apnea from electrocardiogram signals using nonlinear parameters,”
Physiological measurement, vol. 32, no. 3, p. 287, 2011.

67. U. R. Acharya, O. Faust, S. V. Sree, D. N. Ghista, S. Dua, P. Joseph, V. T. Ahamed,
N. Janarthanan, and T. Tamura, “An integrated diabetic index using heart rate vari-
ability signal features for diagnosis of diabetes,” Computer methods in biomechanics
and biomedical engineering, vol. 16, no. 2, pp. 222–234, 2013.

68. U. R. Acharya, O. Faust, N. A. Kadri, J. S. Suri, and W. Yu, “Automated identification
of normal and diabetes heart rate signals using nonlinear measures,” Computers in
biology and medicine, vol. 43, no. 10, pp. 1523–1529, 2013.

69. U. R. Acharya, E. Y.-K. Ng, J.-H. Tan, S. V. Sree, and K.-H. Ng, “An integrated
index for the identification of diabetic retinopathy stages using texture parameters,”
Journal of medical systems, vol. 36, no. 3, pp. 2011–2020, 2012.

