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Abstract

The invention of thermography, in the 1950s, posed a formidable problem to
the research community: What is the relationship between disease and heat ra-
diation captured with Infrared (IR) cameras? The research community responded
with a continuous effort to find this crucial relationship. This effort was aided by ad-
vances in processing techniques, improved sensitivity and spatial resolution of ther-
mal sensors. However, despite this progress fundamental issues with this imaging
modality still remain. The main problem is that the link between disease and heat
radiation is complex and in many cases even nonlinear. Furthermore, the change
in heat radiation as well as the change in radiation pattern, which indicate disease,
is minute. On a technical level, this poses high requirements on image capturing
and processing. On a more abstract level, these problems lead to inter-observer
variability and on an even more abstract level they lead to a lack of trust in this
imaging modality. In this review, we adopt the position that these problems can
only be solved through a strict application of scientific principles and objective per-
formance assessment. Computing machinery is inherently objective; this helps us
to apply scientific principles in a transparent way and to assess the performance
results. As a consequence, we aim to promote thermography based Computer-
Aided Diagnosis (CAD) systems. Another benefit of CAD systems comes from the
fact that the diagnostic accuracy is linked to the capability of the computing ma-
chinery and, in general, computers become ever more potent. We predict that a
pervasive application of computers and networking technology in medicine will help
us to overcome the shortcomings of any single imaging modality and this will pave
the way for integrated health care systems which maximize the quality of patient
care.

Keywords: Thermography, Computer Aided Diagnosis, Feature extraction, Fea-
ture evaluation, Classifier, Performance evaluation

1 Introduction

An unexpected increase of heat indicates that something is wrong. This might be one
of these universal truths which are almost to sweeping and far-reaching to be credible.
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In the world of mechanics, increased friction develops heat and causes wear which can
led to material failure [1]. Therefore, heat pattern and indeed heat pattern changes give
a good indication of machine health [2]. By a striking coincidence, diagnosing via heat
pattern is not limited to mechanical systems both electronic and biological systems
follow the same pattern. Especially, the human body temperature has been linked to
health since the time of Hippocrates [3]. Since then, the diagnostic accuracy was linked
to the instruments used for temperature measurement. Therefore, the discovery and
capture of Infrared (IR) radiation from the human body, by Herschel in 1800, was a big
step forward [3]. These measurements are based on the physical phenomena, that all
objects, including the human body, with a temperature above absolute zero (-273 K)
emit IR radiation from their surface [4]. Experiments showed that human skin emits
IR radiation essentially in the range of 2–20 µm wavelengths, with an average peak
at 9–10 µm. Despite this understanding, it took until 1934 before Hardy described the
physiological role of IR emission from the human body. He put forward that both physi-
ological processes and thermal properties of the skin are influenced by a wide range of
factors, because the skin helps to manage the core body temperature. These factors
change in the presence of disease, hence IR measurements can be used for diagnos-
tic purposes [5]. This fundamental understanding paved the way for IR thermography
as a body imaging modality for medical sciences. The first use of this new technology
was reported in the year 1960, it took so long because quality equipment and tech-
nical knowhow was unavailable [6]. Since 1963 it is known that heat patterns, shown
in thermographic images taken with IR cameras, provide information about physical
anomalies, such as cancer, especially breast cancer, infection, eye disease, diabetes
and pain [7]. However, having a qualitative statement based on general observations
is something different from a quantitative statement, which expresses how useful the
method is for medical diagnosis [8]. In terms of medical applications, the usefulness
of a particular diagnostic method can be expressed in terms of the ability to deliver a
correct diagnosis, the side effects and the cost.

Heat pattern measurement, via thermography, is fast, non-contact, noninvasive, it
is even passive, i.e. no potentially harmful radiation is sent through the biological sys-
tem, only the body heat is captured [9]. The body would give up this heat radiation
in any case, regardless of whether or not it is measured. Passive imaging modal-
ities for medical applications attract much interest, because they are 100% side ef-
fect free [10]. Therefore, the US clinical community viewed medical thermography as
an exciting and very promising technology for a variety of diagnostic applications, in
the decade that followed after the first appearance of IR body images [11]. However,
despite this striking advantage over other imaging modalities and the initial enthusi-
asm, medical thermography has been in decline since 1980 [12]. During this time,
the National Cancer Institute (NCI) started the widely cited Breast Cancer Detection
Demonstration Project (BCDDP) [13]. One major finding of this project was that ther-
mography is ineffective for breast cancer screening [14]. In retrospect, this study had
serious shortcomings in the way thermography images were captured [15]. To be spe-
cific, only five out of 27 participating cancer centers had sufficiently qualified personal
for taking and assessing thermography images. Gautherie et al. pointed out that a
lack of technical skill and expertise for thermography image interpretation leads to a
sharp decline in diagnostic accuracy [16]. The need for quality assurance, during the
act of image acquisition, is further emphasized by the fact that the high false positive
range of 10–30% depends on the disease and the technique used. In recent years,
proper protocol, such as equipment considerations preparation of patient, examina-
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tion environment, and standardization of thermal imager system have been discussed
elaborately in [17, 18, 19, 20]. This lead to the postulation of image capture protocols
[21, 22]. So, on an abstract level, Infrared Thermography (IRT) based diagnosis suf-
fered from interoperator dependency and inadequate equipment. As a consequence,
in 1982 the U.S. Food and Drug Administration (FDA) approved thermography only as
a supplement to mammography for breast cancer screening [23]. The FDA enforced
this judgment in 2011 when the organization issued a press release stating that: “...
the FDA is unaware of any valid scientific evidence showing that thermography, when
used alone, is effective in screening for breast cancer ...” [24].

To overcome the historic prejudices against thermography, and the real problems
with the technology, scientific principles have to be applied in a strict way to build trust
as well as to improve the diagnostic capabilities of IRT. One of these scientific princi-
ples is transparent and objective performance assessment. Therefore, in this review we
report the perforce of thermography based diagnostic systems for diabetes, infection,
cancer, eye diseases and pain. Based on this review, we adopt the position that ther-
mography image interpretation can be aided with computer preprocessing. From there
it is just a small, but important step, to automate the diagnosis process as well. The im-
portance of this step comes from the promise of progress: As computing machines get
more capable, and algorithms improve, the diagnostic accuracy will increase. Another
important benefit of Computer-Aided Diagnosis (CAD) is cost efficiency. Once these
systems are up and running, the operation cost is low, when compared with expert hu-
man labor. Furthermore, CAD systems integrate seamlessly into digital work-flows of
modern hospitals. This high level of integration and the low human interaction results in
two beneficial properties: fast throughput and centralized processing. As a result, there
is a real chance that future thermography based CAD systems will deliver unparalleled
safety together with a high level of reliability and diagnostic accuracy.

To support our position, we have organized the paper as follows: The next sec-
tion gives an overview of the algorithms used in thermography based CAD systems.
Section 3 reviews to what extent these techniques were used in current and past ther-
mography systems. In Section 4 we discuss the review results. Section 5 provides con-
cluding remarks and an attempt to define the future direction of thermography based
CAD systems.

2 Methodology of the CAD system

CAD plays a significant role in the analysis of IR images. Human examination of IR
images is often imperfect, because it is influenced by various factors like fatigue, being
careless, and sensory overload by the sheer volume of information from this medical
imaging modality. Making the right diagnosis is also constrained by the limits of human
visual perception. For example, optical illusions have a detrimental impact on the di-
agnostic accuracy [25]. Furthermore, there is a shortage of qualified radiologists [26].
These facts manifest an urgent need to develop CAD technologies. Current research
aims to improve the detection accuracy of IR image processing algorithms from three
perspectives: asymmetry analysis of the thermogram including automatic segmenta-
tion approaches, smart image enhancement and restoration algorithms, and feature
extraction and classification [27, 28, 29, 30].

To design such CAD systems, a clear understanding of design patterns and system
structure is needed. To explain the system structure, we have adopted a top down
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Figure 1: Blockdiagram of a CAD system based on thermograms.

approach which introduces the individual design steps necessary to create a generic
thermography based CAD system. The block diagram, shown in Figure 1, introduces
these design steps and the logical connection between them. The diagram is divided
into offline and online systems. In the offline system, all the IR images will be pre-
processed and their greyscale features may be extracted using various techniques.
Subsequently, the extracted greyscale features will be analyzed with statistical methods
to identify which features are significant enough to be used in the classification step.
The significant features, together with the ground truth of each image class, will then
be used to train a classifier. The result from this offline system is a set of classifier
parameters that relates the significant features to the ground truth. The online system
has a pre-processing stage as well and thereafter only those greyscale features, that
were found to be significant in the offline system, are computed for the testing set of
images.

2.1 Pre-processing

Preprocessing deals with the non-uniformity of IR images. Another source of non-
uniformity is fluctuating lighting conditions such as incandescent bulb or direct sun light.
Therefore, it may be required to resize the images using techniques, such as template
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and interpolation methods [31]. Another source of non-uniformity is fluctuating lighting
conditions. The adaptive histogram equalization method can eliminate the discontinu-
ous background, which may result from discontinuous lighting or other inconsistencies
that originate from the IR image capturing technique [32, Chapter 2]. It maps the input
to the output image pixel intensity values such that the output image exhibits uniformly
distributed intensities. This increases the dynamic range of the image histogram.

2.2 Feature Extraction

Textures, entropies, Fourier Spectrum (FS) descriptors, Hu’s invariant moments and
Higher Order Spectra (HOS) methods can be used to extract features [33]. These
methods are briefly explained below.

2.2.1 Texture

Textural changes are a totally new paradigm for feature collection. Gray Level Co-
occurrence Matrix (GLCM) [34], run length matrix [35], Fractal Dimension (FD) [36,
37, 38], Local Binary Pattern (LBP) [39], Locally Linear Embedding (LLE) [40] and
Law’s Texture Energy (LTE) [41, 42] can be used to extract useful information for the
differential diagnosis of normal and abnormal classes.

2.2.2 Entropy

Entropy measures the randomness of the pixel intensity distribution in an image. It pro-
vides insight into both extent and nature of randomness and it shows how disordered
the image pixels are. There are two categories of entropy: Shannon and non-Shannon
[43]. Over a range of scattering conditions, Shannon entropy has a lower dynamic
range than non-Shannon entropies. This makes non-Shannon entropies more useful
in estimating scatter density and regularity. Examples of non-Shannon entropies, that
can be used to extract features for automated disease diagnosis, are: Renyi’s, Kapur’s
and Yager’s entropy [44, 45, 46].

2.2.3 Hu’s invariant moments

The global characteristics of shapes, within an image, are generally represented by a
set of moment functions. This set of moments provides information about the different
types of geometrical image features. Hu’s invariant moments are a set of nonlinear
functions that were developed from regular moments. Their main advantage comes
from the fact that they are invariant to translation, size alteration and rotation. Hu’s
invariants describe a total of seven moment functions, which reach up to the third order
[47].

2.2.4 Discrete Wavelet Transform (DWT)

The Discrete Wavelet Transform (DWT) captures both frequency and location of fea-
tures within a therrmorgraphy image. This is important, because this information helps
the CAD system to identify features of interest. For example, features, such as the
thermographic pattern of breast cancer, have sharp borders. These sharp borders
shape high frequency DWT coefficients with high levels of location (spatial) accuracy.
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In contrast, larger objects with smooth edges shape low frequency coefficients with
low spatial resolution [48]. The DWT coefficients are established by sending a signal
through a sequence of down-sampling low- and high-pass filters [49, 50]. The low- and
high-pass filter output is known as approximation and detail coefficients respectively.
Mookiah et al. used a novel combination of one texture and two DWT-based features
to quantify the nonlinear changes in malignant and normal breast IR images [51].

2.2.5 Higher Order Spectra (HOS)

HOS, usually referred to as polyspectra, consist of higher order moments that have
an order greater than two. Furthermore, polyspectra also include nonlinear combina-
tions of higher order moments, known as cumulants. Third and fourth order spectra
are commonly referred to as bispectrum and trispectrum respectively [52]. Features,
related to the third order spectra, i.e. bispectra, can be used to extract information for
automated diagnosis [53, 54].

Before the extraction of greyscale features via HOS, the images need to be sub-
jected to the Radon transform. This transform will convert 2D images into 1D signals
at various angles and thereafter the calculation of greyscale features, using HOS, will
begin [55].

The Fourier Transform, of the third order 1D signal correlation, will be used to find
the bispectrum. The following formula defines this relationship:

B(f1, f2) = E [X(f1)X(f2)X(f1 + f2)] (1)

where, X(f) is the Fourier transform of the 1D signal and E(.) represents the expec-
tation operation. Both bispectrum phase entropy [56] and normalized bispectrum en-
tropies can be used as features. Various bispectrum entropies, bispctrum phase en-
tropy, Weighted Center Of Bispectrum (WCOB), sum of logarithmic amplitudes can be
evaluated from the bispectrum of the signal [57, 58].

2.2.6 Fourier Spectrum (FS) descriptors

To quantify changes in the outline (edges or contours) of image regions, the FS de-
scriptor is used, because these descriptors are not invariant to scaling and translation
[59]. For any edge, within an image, having coordinates (Xi, Yi), where i = 1, 2, ..., K
represent the edge points of an object, the FS descriptors are denoted by the following
expression:

S(k) = Xi + jYi (2)

where j =
√
−1. In Equation 2, each point is treated as a complex number [60]. The

FS descriptors are defined as the Discrete Fourier Transform (DFT) coefficients of the
complex vector S(k), which is formed by the edge points. It is expressed by:

F (u) =
K−1∑
k=0

S(k)e−j2πuk/K (3)

2.3 Statistical analysis

Statistical analysis is part of the quantitative approach to knowledge. During the design
of thermography based CAD systems, statistical analysis is used to summarize the
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data and understand the processes which generate the data. In most cases, this is
done by making a mathematical model from which the data generating processes can
be inferred. Furthermore, statistical analysis gives us a way to quantify how confident
we are in these inferences [61, 62, 63].

2.3.1 Feature selection

Student’s t-test can be used to detect the clinical significance of extracted features by
evaluating the p-value. This value indicates whether or not the means of two classes
are statistically different [64]. A lower p-value indicates that the feature has more clini-
cal significance [65]. To evaluate the feature performance for CAD systems, the feature
which has the lowest p-value is ranked first and so on. Subsequently, the ranked fea-
tures are applied one by one until the highest classification accuracy is reached.

2.4 Classification

Automated classification algorithms are a solution to the machine learning and statis-
tics problem of finding the category or class of a new observation. Classifiers have
been used in a wide range of CAD systems [66]. Supervised algorithms call for train-
ing data, which contains observations where the category membership is known, i.e.
the ground truth is available. The main idea behind these classification algorithms is
to extract information, which differentiates the individual categories, from the training
dataset. The act of information extraction is known as learning phase. The extracted
information is used in the classification phase to decide to which category or class a
new observation belongs.

2.4.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) classifiers train easily and they can generalize the train-
ing information to a wide range of classification problems. The algorithm searches for a
hyperplane, which subsequently serves as a decision surface. This surface separates
the datapoints, which belong to distinct classes, from each other with maximum margin.
SVMs are popular, because of their high classification accuracy even under adverse
conditions, such as nonlinear and high dimensional datasets and very few cases for
training the model [66, 67].

If the data is nonlinear, the boundary problems, encountered by the SVM, are non-
linear as well [68, 69]. To handle such data, kernels are used to facilitate a nonlinear
mapping of the input data to a high-dimensional space [70]. Various kernel functions
like, linear, polynomial of order 2, and 3 as well as Radial Basis Function (RBF), can
be used.

2.4.2 Decision Tree (DT)

The Decision Tree (DT) is a simplified model that breaks down a complicated decision
making process into a simple sequence of binary questions. It consists of decision
nodes which extend downwards from a root node [71, Chapter 6]. An attribute is tested
with each outcome in a branch at each decision node. The branches may end at
another decision node or terminate at a leaf node. Nicandro et al. used this classifier
to evaluate the diagnostic power of thermography in breast cancer [72].
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2.4.3 Fuzzy Sugeno

The pattern space, in a Fuzzy Sugeno classifier, is divided into many subspaces. For
each subspace, if-then type rules show the relationship between targeting the patterns
and their corresponding classes. The Fuzzy Sugeno classifier discriminates unknown
patterns with fuzzy inference and rejects pattern of an unknown class [73, 74]. This
type of classifier was successfully used, together with a hybrid feature extraction strat-
egy, for breast cancer detection [51].

2.4.4 k-Nearest Neighbour

k-Nearest Neighbour is a very simple classifier which determines the k nearest neigh-
bors for a specific query instance by calculating the minimum distance to the training
samples [75, 76]. A data point is classified by the majority of votes from these k neigh-
bors. If k is 1, then the data point is assigned to the class of the nearest neighbor. For
well designed algorithms, nearer data points give a higher contribution as compared to
data points which are further apart [51].

2.4.5 Probabilistic Neural Network (PNN)

The Probabilistic Neural Network (PNN) classifier uses four layers of neurons to imple-
ment a kernel discriminant analysis step [77, 78]. Features, extracted from IR images,
are fed from the input layer into a hidden later which computes of the Euclidean dis-
tance of the test data from the center point of the hidden neuron [51]. The RBF kernel
function uses the sigma values, which were computed as part of the Euclidean distance
evaluation in the hidden layer. The results from the hidden layer are fed to the pattern
layer, which contains a pattern neuron for each class. Each weighted vote is added to
the corresponding neuron from the hidden layer in the pattern layer. In the final layer,
the largest votes are used to predict the unknown class by comparing the weighted
votes, for each class, with predetermined values, which are stored in the pattern layer.

2.4.6 Self Organizing Map (SOM)

The Self Organizing Map (SOM) method visualizes high dimensional data by convert-
ing complex, nonlinear statistical relationships into straight forward geometric relation-
ships on a low-dimensional plain [79]. With this conversion, the algorithm compresses
the data while preserving the most important topological and metric relationships of the
initial data elements [80]. This creates a special kind of abstraction. These abilities are
particularly important for extracting information from thermogram images [81, 82].

2.4.7 Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) are parallel-distributed information processing struc-
tures which model the functionality of small biological neural clusters and thereby they
mimic human decision making [83]. In many cases, ANNs are trained with the so called
backpropagation algorithm [84]. Due to its parallel nature, ANN algorithms can reach
a decision after a relatively short processing time. Therefore, they are applied in hard
realtime systems, such as mass fever scanning [82].
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2.4.8 Data resampling and performance evaluation

The cross validation method assesses a classifier with a training dataset [85]. For this
technique, the entire dataset is randomly split into k equal (almost) parts. Each part
contains the same ratio of samples from both classes [86]. In the first iteration (fold),
k−1 data parts are used to train the classifier and the remaining part is used for testing.
The iteration is repeated k−1 times using a different test set (with the remaining folds as
training sets) each time. This procedure is used to develop classifiers for thermography
based CAD systems [87].

In the offline system, the classification results are assessed by performance mea-
sures, such as True Positive (TP), True Negative (TN), False Positive (FP), False Neg-
ative (FN) Accuracy (A), Sensitivity (Se) and Specificity (Sp). This assessment helps
to select the most appropriate classification algorithm for online system. The individual
measures are briefly explained below:

• TN = Number of normal data classified as normal.

• FN = Number of depression data classified as normal.

• TP = Number of depression data correctly classified as they are.

• FP = Number of normal data classified as abnormal (depression).

• A = ( TP + TN ) / ( TP + FN + TN + FP ).

• Se = TP / ( TP + FN ).

• Sp = TN / ( TN + FP ).

2.4.9 Receiver Operating Characteristic (ROC)

The diagnostic accuracy is a measure for the clinical significance of a CAD system [88].
Receiver Operating Characteristic (ROC) plots provide a pure index of accuracy by
demonstrating the limits of a test’s ability to discriminate between alternative states of
health over the complete spectrum of operating conditions. A wide range of studies on
IR thermography used the ROC curve to measure the cutoff point, diagnostic accuracy
(indicated by the area under the curve), sensitivity, and specificity [67, 89]. Despite
these positive characteristics, Cook points out that ROC measures may be mediocre in
assessing models that predict future risk or stratify individuals into risk categories [90].

From the algorithmic perspective, ROC is a method to evaluate the ability of a test
to discriminate diseased cases from normal cases. ROC allows us to perform an ob-
jective comparison between two or more imaging modalities. ROC is a useful approach
because other methods do not quantify diagnostic accuracy in sufficiently complete or
meaningful way. In brief, ROC analysis is used to select the optimal cut point to di-
chotomize a continuous scale. The usual choice of cut points minimizes the overall
number of false positive and false negative errors. The cut point may be shifted if the
cost of false positives is higher than that of false negatives, or vice versa.

Probability of Detection (POD) is based on TN, FN, TP and FP. The best way to
describe a confidence curve, say with 98%, is as follows: If the actual POD curve, were
to be reconstructed repeatedly using the same method and data, then 98% of those
constructed curves would be above the confidence curve (i.e. 2% would be below). As
a consequence, we are 98% sure that the REAL POD curve is above the confidence
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curve. The confidence level must also consider the effects of the full matrix for POD
where we have the potential for false calls.

3 Applications

This section discusses four prominent application areas where thermography is used
for disease diagnosis. The first of these areas is diabetes diagnosis, more specifically
CAD systems for diabetic foot. The next important application area is infection diagno-
sis. Thermography based CAD systems help to screen for fever patients in places with
a high volume of people, such as airports and border crossings. Cancer, especially
breast cancer in woman, is the next application area. In this area, thermography has
a weaker position against the established mammography. However, this fact sparks
some of the most advanced work on thermography based CAD systems. The work on
eye diseases is less advanced, because it suffers from the limited availability of IR im-
ages. The CAD for pain is a very complex concept, because pain itself is very difficult
to diagnose. Despite this fact, there are a number of CAD systems for this application
area.

The review of the thermography systems, from these diverse application areas,
focuses on the building blocks of the CAD system. This strategy ensures transfer-
able and relevant results across the application areas. The assessment begins with
Measurement and Procedure (MP). This performance parameter is composed from an
integer, which indicates the measurement used, and a character, that suggests how
the procedure is applied. In the measurement section (integer) we assess the work
according to the following criteria:

1. Points of interest – One or multiple discrete measurement points on the IR image.

2. Regions Of Interest (ROI) or template – Predefined regions where an average tem-
perature is obtained.

3. Feature obtained via image processing – A single measure which takes into account
the heat distribution structure of the human skin.

4. Feature vector obtained via image processing – Multiple measures which are ob-
tained by assessing the heat distribution structure. The results of the individual
measures form a feature vector.

5. Feature vector whose elements come from diverse sources – This setup represents
the most advanced form of CAD systems. For most systems the resulting feature
vectors are used as input to automated classification algorithms.

The procedure part (character) of the MP criteria, establishes the way in which the
studies were conducted. This is an important assessment criterion, because the false
positive rate of the diagnosis depends, to a large extend, on this setup:

a) Comparison between groups of individuals – Most studies in this category discrimi-
nate between IR images from diseased and normal individuals.

b) Comparison between different symmetrical parts of the human body – This method
is based on the fact that the human thermoregulatory system is substantially sym-
metrical [91]. The advantage of differential over group based methods is that for a
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Authors1 Year2 MP3 PE4 A (%)5 Se (%)6 Sp (%)7

1 Author name and reference.
2 Year of publication.
3 Measurement and Procedure (MP).
4 Performance Evaluation (PE).
5 Accuracy (A) of the classification in percent.
6 Sensitivity (Se) of the classification in percent.
7 Specificity (Sp) of the classification in percent.

Figure 2: Header structure of the result tables

symmetrical measurement there is no need to establish a general ground truth [92].
To be specific, the relevant information is extracted from the discrepancy between
the temperature patterns exhibited by symmetrical parts of the human body. [93]

The Performance Evaluation (PE) criteria assess the work in terms of the following
criteria:

1) Statistical analysis – This analysis can be done with Student’s t-test which assesses
whether or not two or more feature sets are statically different. Less advanced
statistical analysis methods evaluate just mean and variance values.

2) Threshold – Thresholding is the simplest classification method. It takes only a sin-
gle scalar value into account. For thermography, this single scalar value is usually
the temperature measured in one point or in a region of the IR image. A temper-
ature value above the threshold indicates disease and a value below the threshold
indicates a normal sample. More advanced analysis is done using ROC and Area
Under Curve (AUC) [67, 88, 94]. However, both methods are based on scalar thesh-
olding as well.

3) Classifier – Automated classification algorithms represent the most advanced way
to discriminate different signal classes, or in terms of CAD systems, to discriminate
normal from diseased individuals. The reason for this superiority comes from the
fact that classification algorithms take into account feature vectors, which represent
relevant information about the image. In general, each feature vector constitutes
a point in high dimensional vector spaces. This technique is much more flexible,
and truer to the nature of diagnosis1, than simple thresholding methods. To be
specific, thresholding methods are limited to discriminate points on a line, i.e. one
dimensional space. In most practical scenarios, this is insufficient to achieve an
acceptable classification accuracy.

The subsequent Sections describe five different application areas. Each of these
sections contains a table which describes the thermography based CAD methods used
in this application area. Figure 2 shows the table header with additional information.

3.1 Diabetes

Thermography can be used to visualize morphological skin temperature pattern that
depend on blood circulation. In ischemic conditions, where blood perfusion may be

1A practitioner seldom relies on a single observation.
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Table 1: Diabetes diagnosis performance.
Authors Year MP PE A (%) Se (%) Sp (%)
Peregrina et al. [98] 2013 2b 1 – – –
Sivanandam et al. [94] 2013 1a 2 72 90 55
Tamaki [99] 2013 2b 1 – 60 100
Balbinot et al. [100] 2013 1b 1 – – –
Mori et al. [101] 2013 3b 1 – – –
Najafi et al. [102] 2012 2b 1 – – –
Barriga et al. [103] 2012 2b 1 – – –
Balbinot et al. [63] 2012 1b 2 – 81.3 46.2
Nagase et al. [61] 2011 1b 1 – – –
Bagavathiappan et al. [104] 2010 2b 1 – – –
Kaabouch et al. [105] 2009 3b – – – –
Lavery et al. [106] 2007 1a 1 – – –
Sun et al. [107] 2006 2a 1 – – –
Armstrong et al. [108] 2006 3b 1 – – –
Bharara et al. [109] 2006 1b 1 – – –
Marcinkowska-Gapińska and
Kowal [110]

2006 2a 1 – – –

Sun et al. [111] 2005 2a 1 – – –
Armstrong et al. [112] 2003 1b 1 – – –
Jiang et al. [113] 2002 2a 1 – – –
Fujiwara et al. [114] 2000 2a 1 – – –
Hosaki et al. [115] 1999 2b – – –
Armstrong et al. [116] 1997 1b 1 – – –
Benbow et al. [62] 1994 1b 1 – – –
Stess et al. [117] 1986 2a 1 – – –
Fushimi et al. [118] 1985 3b 1 – – –
Sandrow et al. [119] 1972 2- – – – –
Brånemark et al. [120] 1967 1a – – – –

reduced, especially at the periphery of the human body and limbs (hands and feet),
these temperature pattern change [95]. Diabetic foot complications are expensive and
they reduce the quality of life for many patients [96]. More specifically, neuropathic foot
ulceration is a major cause of morbidity in patients with diabetes and it commonly leads
to prolonged hospital stays [97]. Table 1 represents the work published on CAD sys-
tems for diabetes detection. Each row details one study and this study was assessed
in terms of MP, PE, A, Se and Sp. For example, the study by Peregrina et al. was
done in 2013 [98]. MP = 2b indicates that they used ROI or a template to determine
the temperature from an IR image and that they compare the temperature differences
of symmetrical body parts2. The temperature results were analyzed with statistical
methods. Neither threshold nor classification methods were used, therefore A, Se and
Sp were not reported.

2In this case, the symmetrical body parts were the feet
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3.2 Fever

At any one time, during the temperature regulation process, the human body estab-
lishes a temperature value as its so-called “set point” [121]. Fever happens if the hy-
pothalamus detects pyrogens and then raises the set point. IR thermography systems
are very well suited for non-contact blind mass fever scanning, because image captur-
ing is fast, noninvasive, and it is able to reliably detect people with fever. Therefore,
this technique was used to detect inflammatory abnormalities and it has the potential
to become a tool for mass scanning of fever [122]. Figure 3 shows three thermogram
images captured during a fever scanning exercise. The square box in the thermograms
indicates the ROI. Users need to carry out pre-screening system verification to verify
and fine tune the settings by comparing the screening result with a calibrated clinical
thermometer. Since the thermal imager measures the skin temperature and not the
body core temperature, the threshold setting needs to take into consideration the phys-
iological site offset and the performance characteristics of the thermal imager in order
to obtain a reliable screening operation. Studies show that there is a correlation be-
tween the human skin surface temperature and the body core temperature. However,
the extent of correlation depends on the changes in skin temperature. Skin temperature
may be altered at different environmental and physiological conditions. Skin tempera-
ture may not have direct relationship to the infectious stages of the diseases. Table 2
details the work published on CAD systems for infection detection and fever scanning.

(a) 36.3 ◦C. (b) 37.8 ◦C. (c) 38.3 ◦C.

Figure 3: Examples of temperature profiles using fever thermal imager with tempera-
ture reading (Reproduced with permission of SPRING Singapore. Copyright remains
with SS 582 :Part 2 : 2013 – ‘Specification for thermal imagers for human temperature
scanning’). The picture captions report the mean body temperature, measured by an
aural thermometer.

3.3 Cancer

The surface temperature around the area of cancerous cells is slightly higher than nor-
mal tissues and this area is seen as hot spots on thermograms [33]. This temperature
increase is caused by the high metabolic activity of cancer cells [142]. IR imaging has
frequently been used in clinics to detect changes in skin surface temperature associ-
ated with some superficial tumors [143]. We found 32 studies on thermography based
breast cancer detection. These studies are discussed in the next section. Section 3.3.2
details thermography based skin cancer CAD systems.
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Table 2: Infection results.
Authors Year MP PE A (%) Se (%) Sp (%)
Sun et al. [81] 2013 5a 3 – 92.3 92.3
Singler et al. [123] 2013 2a 2 – – –
Chan et al. [124] 2013 2a 2 – 74 79
Romano et al. [125] 2013 2b 2 90 89 91
Priest et al. [126] 2011 2a 2 – 86 71
Nishiura and Kamiya [127] 2011 2a 2 – 72.4 81.7
Matsui et al. [128] 2009 5a 1 – – –
Hausfater et al. [129] 2008 2a 2 90 82 90
Chiang et al. [130] 2008 2a 2 – 40 77
Ng [131] 2007 2a 3 100 94.3
Kee and Ng [132] 2007 2a 3 96, 95 85.6
Ng et al. [133] 2005 2a 3 98 – –
Chiu et al. [134] 2005 2a 2 – 75 99.6
Ng et al. [135] 2005 2a 2 – 89.4 75.4
Ng [136] 2005 2a 2 – 90.7 75.8
Ng et al. [137] 2004 2a 2 – 85.4 95
Ng et al. [138] 2004 2a 2 – 85 95
Chan et al. [139] 2004 2a 2 – 67 96
Ng and Chong [82] 2006 2a 3 97.5 – –
Liu et al. [140] 2004 2a 2 24 17.3 98.2
Clark and Stothers [141] 1980 1a 1 – – –

3.3.1 Breast cancer

On a global scale, breast cancer accounts for 22.9% of all cancers (excluding non-
melanoma skin cancers) in women [144]. In 2008, breast cancer caused 458,503
deaths worldwide (13.7% of cancer deaths in women) [145]. These statistics highlight
the importance of breast cancer research. The research community has responded
with a substantial body of work on this specific disease and IRT is at the forefront of
this effort.

A breast harboring a cancer can produce an increase in IR emission causing a dis-
parity in the thermographic skin pattern of the two breasts [146]. Therefore, in normal
breast thermograms, symmetric heat patterns are observed in both breasts, but in the
case of an unilateral abnormality, asymmetry is observed. Thermography is especially
well suited for picking up tumors in their early stages or tumors in dense tissue and in
these scenarios it outperforms other modalities, such as mammography [142]. Figure
4 shows normal (Figure 4a) and malignant (Figure 4b) thermography images of the
female breast. The malignant part is clearly visible in Figure 4b. Studies have shown a
high correlation between obviously abnormal thermograms and increased breast can-
cer risk as well as a poorer prognosis for the breast cancer patient [14, 16]. A constant
irregular thermogram carries a 22 times higher risk than its regular counterpart and it
is 10 times more indicative than a first-order family history of the illness as a future risk
signal for breast cancer. Studies have indicated that an irregular IR image is probably
the single most crucial risk marker for the presence, or future growth, of breast cancer
[147]. Table 3 details the work published on CAD systems for breast cancer detection.
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Table 3: Breast cancer diagnosis results.
Authors Year MP PE A (%) Se (%) Sp (%)
Kolarić et al. [148] 2013 2b 2 92 100 79
Francis and Sasikala [33] 2013 3b 3 – 88.1 85.71
EtehadTavakol et al. [55] 2013 3b 3 95 – –
EtehadTavakol et al. [48] 2013 3b 3 86 – –
Zore et al. [149] 2013 2b 1 – – –
Nicandro et al. [72] 2013 4b 3 71.88 82 37
Sella et al. [67] 2013 3b 3 – 90.9 72.5
Francis and Sasikala [150] 2013 3b 3 85.19 88.89 77.78
Acharya et al. [151] 2012 3b 3 90 76 84
Boquete et al. [152] 2012 3b 4 – 100 94.7
Zore et al. [153] 2012 b 1 – – –
Acharya et al. [87] 2012 3b 3 88.10 85.71 90.48
Mookiah et al. [51] 2012 3b 3 93.3 86.70 100
Kontos et al. [154] 2011 3b 2 – 25 85
Grubisic et al. [155] 2011 4b – – – –
Wishart et al. [156] 2010 3b 3 – 78 75
Wiecek et al. [157] 2010 3b 3 86.60 – –
Schaefer et al. [142] 2009 3b 3 80 93.10 99.15
Arora et al. [158] 2008 3b 3 – 97 44
Tan et al. [89] 2007 3b 4 94.74 100 60
Qi et al. [159] 2007 3b 1 – – –
Ng and Kee [160] 2007 3b 3 80.95 81.2 88.2
Yang et al. [161] 2007 2a 1 – – –
Jakubowska et al. [162] 2003 4b 1 – – –
Ng et al. [163] 2002 3b 3 61.54 68.97 40
Frize et al. [164] 2002 2b 1 – – –
Kuruganti and Qi [165] 2002 3b 1 – – –
Ng et al. [166] 2001 3b 2 59 54 67
Ng et al. [167] 2001 3b – – – –
Keyserlingk et al. [168] 1998 2a 1 – – –
Thompson et al. [169] 1978 2b 1 – – –
Folberth and Heim [170] 1984 2a 1 – – –
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(a) Typical thermogram of an
asymptomatic volunteer age 35.

(b) Asymmetric thermogram of a
52 year old woman with left breast
abnormality.

Figure 4: Typical breast themograms (The figure is reproduced from International Jour-
nal of Thermal Sciences 48 (2009) 849–859 from Elsevier Masson SAS. All rights re-
served.)

Table 4: Skin Cancer diagnosis results.
Authors Year MP PE A (%) Se (%) Sp (%)
Cholewka et al. [172] 2013 2a 1 – – –
Garcia-Romero et al. [174] 2013 2a 1 – – –
Shada et al. [173] 2013 2a 2 – 95 100
Cholewka et al. [175] 2012 2a 1 – – –
Flores-Sahagun et al. [171] 2011 1a 1 – – –
Aweda et al. [176] 2010 2a 1 – – –
Buzug et al. [177] 2006 3a 1 – – –
Button et al. [59] 2004 2a 1 – – –

3.3.2 Skin cancer

Flores-Sahagun et al. showed that there are significant differences in skin thermal
mapping between patients suffering from basal cell carcinoma and seborrhoeic kerato-
sis [171]. These differences come from the fact that benign skin lesions have a lower
mean temperature than the surrounding healthy skin and cancerous skin mutations
have a higher mean temperature [172]. IRT can be used to capture the heat patterns
of the skin and the resulting images can be used for diagnosis. The sensitivity of the
CAD system depends on the lesion diameter [173]. Table 4 details the work published
on CAD systems for skin cancer detection.

3.4 Eye

Eye thermography measures temperature changes in the vascular tissues. These tem-
perature changes can be linked to eye diseases, such as dry eye and dry eye after eye
lid reconstruction [178]. Therefore, this technique is beginning to play an important role
in the field of ophthalmology [179]. Figure 5 shows an example of thermography based
dry eye detection. Table 5 details the work published on CAD systems for eye disease
detection.
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(a) Normal eye. (b) Dry eye.

Figure 5: IR images of the human eye.

3.5 Pain and inflammation

One symptom of pain is excessive body heat, which can be measured with thermog-
raphy. Such measurements are important, because in some cases it is difficult to
locate the physical source of pain. For example, the Complex Regional Pain Syn-
drome (CRPS) develops after a minor trauma of the distal limbs. A gold standard in
diagnosing CRPS has not been found yet, diagnostics are based on the patient’s med-
ical history and correlating clinical signs [199]. IRT can help medical practitioners to
detect areas of cutaneous thermal changes of neural origin and it can lead to a high
degree of interexaminer agreement for assessing skin temperature differences in pa-
tients with CRPS [200, 201]. Kang et al. show that IRT can be used in the diagnosis
and assessment of therapeutic results for erythromelalgia [202]. Table 6 details the
work published on CAD systems for pain detection.

4 Discussion

In this paper we reviewed thermography based CAD systems. We found that over the
years tremendous progress was made in terms of accuracy, sensitivity and specificity
of these systems. This progress was fueled by better sensors [207, 156], diagnostic
procedure [221, 222, 169, 223], more computing power and a deeper understanding
of the processing algorithms [224, 225, 226, 227]. Standardization and quality assur-
ance efforts, such as the human skin temperature atlas database, have deepened and
solidified this progress [228, 229, 230, 231, 232]. However, in terms of applicability
of thermography based CAD systems, there is still a mixed picture. On the one hand
there are the novel applications, such as dry eye and pain indication, where thermogra-
phy is the only viable imaging modality, on the other hand there are applications where
thermography stands in direct competition with active imaging modalities, such as ul-
trasound and X-ray. When the CAD systems, for the novel applications, reach majority
they will be a great help for physicians to diagnose diseases, such as pain, for which it
was historically difficult to reach a conclusive diagnosis [233]. The picture is different
for applications of thermography where there is direct competition from active imag-
ing modalities. The main advantage of active imaging modalities comes from the fact
that an active system knows what signal was send out and what signal was received.
So, these systems can analyze the changes the human body did to these signals.
Thermography does not have the benefit of knowing the signal source, because it is
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Table 5: Eye disease diagnosis results.
Authors Year MP PE A (%) Se (%) Sp (%)
Klamann et al. [180] 2013 2a 1 – – –
Arita et al. [181] 2013 2a 1 – – –
Purslow [182] 2013 1a 1 – – –
Klamann et al. [183] 2013 2a 1 – – –
Petznick et al. [184] 2013 2a 1 – – –
Gonnermann et al. [178] 2012 2a 1 – – –
Kottaiyan et al. [185] 2012 2a 1 – – –
Tan et al. [186] 2011 4a 1 – – –
Kamao et al. [187] 2011 2a 2 – 83 80
Tan et al. [188] 2010 4a 1 – – –
Tan et al. [189] 2010 3a 1 – – –
Tan et al. [190] 2010 2a 1 – – –
Acharya et al. [191] 2009 4a 1 – – –
Chiang et al. [192] 2006 2a 2 – 79.3 75
Purslow et al. [193] 2005 2a 2 – – –
Cherkas et al. [194] 2003 2a 1 – – –
Morgan et al. [195] 1999 1a – – – –
Mori et al. [196] 1997 1a 1 – – –
Morgan et al. [197] 1996 2a 1 – – –
Morgan et al. [198] 1995 2a 1 – – –

Table 6: Pain and inflammation diagnosis results.
Authors Year MP PE A (%) Se (%) Sp (%)
Jeong et al. [203] 2013 2b – – – –
Dibai Filho et al. [204] 2013 1b 1 – – –
Kang et al. [202] 2013 2b – – – –
Rodrigues-Bigaton et al. [88] 2013 1a 2 – 62.2 75.6
Dibai Filho et al. [205] 2013 1a 2 60 55.8 55.8
Zaproudina et al. [206] 2013 2a 1 – – –
Roy et al. [207] 2013 2a 1 – – –
Choi et al. [201] 2013 2b 1 – – –
Zaproudina et al. [208] 2013 2a 1 – – –
Frize and Ogungbemile [209] 2012 3b 3 – 96 92
Hildebrandt et al. [210] 2012 2b – – – –
Laino [211] 2012 2b – – – –
Wu et al. [212] 2009 2b 1 – – –
Chang et al. [213] 2008 1b 1 – – –
Niehof et al. [214] 2007 2a 2 – 74.3 83.9
Park et al. [215] 2007 2b 1 – – –
Herry and Frize [216] 2004 2a 2 – 78 83
canavan1995electronic [217] 1995 2b 2 89 85 92
Tchou et al. [218] 1992 2a 1 – – –
Ben-Eliyahu [219] 1991 2a 2 – 97 90
Herrick and Herrick [220] 1987 2b 2 – 97 100
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the body itself which radiates the signals. Unfortunately, the ways in which the body
generates heat are only rudimentarily understood.

In each of the five investigated areas, thermography has a different standing when
compared with other diagnostic tools. During our review, we recognized that the most
advanced analysis methods were used in areas where thermography has a strong
competition. There is a strong correlation between competition and system quality in
the area of breast cancer screening, where thermography is recognized only as an
adjunct tool to mammography [234, 235]. Mammography is accepted as the most
reliable and cost-effective imaging modality, however its contribution continues to be
challenged with persistent false-negative rates ranging up to 30% [236]. In light of
the continued controversy surrounding established breast imaging modalities, such
as mammography [237, 238], a number of new and emerging technologies are be-
ing developed for breast cancer screening and diagnosis [239]. Even back in 1973,
it was established that the combination of thermography and mammography achieves
better results, for diagnosing asymptomatic breast cancer, then each method individ-
ually [240]. However, the interpretation of thermograms is heavily dependent on the
analysts, which may be inconsistent and error-prone [89]. Therefore, breast cancer
screening with IR imaging has still a weaker position [241]. But as a consequence of
this struggle, IR based breast cancer screening is the area where most of the progress
was made. The progress in this field is documented by the fact that in this review
20 studies, out of 32, report a measure of diagnostic quality, i.e. either A, Se or Sp.
The increase in diagnostic quality is fuelled by two facts: a) IR cameras are getting
better and cheaper, b) Computing machinery is getting ever more powerful and there
are better algorithms [242, 243]. At least the later point is also true for mammography,
but for this imaging modality the margins of improvement are rather slim. Therefore,
we predict that over the coming years the progress of thermography will outpace the
progress of mammography for breast cancer diagnosis. Furthermore, the image of
thermography for breast cancer screening might be better in the general public than
in the research community, because a survey shows that online advertising for ther-
mography is effective and woman consider the uptake of alternative breast imaging
services over mammography [244].

Thermography is an important tool to measure diabetes induced changes in the
human body physiognomy. 16 out of the 27 studies on thermography based CAD
systems for diabetes assessed temperature differences in symmetrical parts of the
human body, in most cases the foot. For these different measurements, there is no
need for to establish the symmetrical heat pattern for a large group of normal subjects,
i.e. there is no need to establish or indeed rely on a pre-established heat pattern atlas.
For contralateral asymmetry based studies normal subjects are used to establish the
control group. Diagnostic progress is made by applying image processing and feature
extraction algorithms which extract information from the differences in skin temperature
pattern between the two feet. However, our review shows that these feature extraction
algorithms and the subsequent machine classification is not applied consistently. To be
specific, the PE column of Table 1 shows that no classification algorithms were used
for performance evaluation.

Thermography is the imaging modality of choice for fever scanning, because this
method of data acquisition has several distinct advantages, such as imaging speed,
non-contact measurement and passiveness [245]. The most significant problem asso-
ciated with the use of thermal imagers comes from the fact that there is no objective
way to determine the body temperature of an individual [246]. The correlation of IRT
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temperatures with the core temperature is significant but weak [247]. The measure-
ments do not depend on skin color, they depend on skin surface properties such as
wrinkled or shiny skin, dry or sweaty skin, emissivity, reflectivity and transmissivity
[248]. On the positive side, this imaging modality saves time (temperature is displayed
within a few seconds) and it reduces close contacts with infected individuals [249].
However, the effectiveness in a practical setting is hard to asses. For example, during
the Severe Acute Respiratory Syndrome (SARS) epidemic of 2003, thermal scanning
of over 35 million international travelers entering Canada, China, Hong Kong SAR, and
Singapore did not pick up a single SARS case [250]. One reason for this mediocre
performance might be the simple thresholding methods which were used during the
fever scanning. More advanced feature extraction algorithms and the combination of
multi-sensor data, similar to the system proposed by Sun et al. [81], might improve the
performance of these CAD systems.

Thermography is a novel method to measure the anterior segment temperature of
a human eye. It is generally agreed that the applications of ocular surface tempera-
ture measurement can include dry eye, contact lenswear, corneal sensitivity, refractive
surgery, and other ocular surface disorders. All studies, discussed in Section 3.4, were
based on the comparison of IR eye images from healthy normal and diseased individ-
uals. Most of these studies were based on a small sample size, especially the number
of IR images from diseased patients was low. This lack of images is a big problem, be-
cause non-symmetric IR measurements demand a large sample size to be statistically
significant.

It is very difficult to objectify pain. The difference of skin temperature in symmetrical
body parts gives an objective indication that something is wrong. Therefore, thermog-
raphy may be used in pain diagnosis. However, there was only limited research on CAD
systems for point and inflammation diagnosis. Table 6 shows that the study on rheuma-
toid arthritis activity, by Frize and Ogungbemile, was the only work that used automated
decision making with a classification algorithm [209]. Both sensitivity and specificity re-
sults, reported in this study, were very good. Therefore, more work is needed to support
and to compete with this study, especially work with a strong methodology where the
results are obtained by automated classification algorithms.

All the reviewed material focused on algorithms and systems building, thereby har-
vesting the advantages of modern computing machinery for medical diagnosis. How-
ever, such work can only establish maximum performance figures which are rarely
achieved with deployed CAD systems [251]. In terms of systems design, theoretical
and applied research can only provide evidence that a specific method, or a specific
way of building a system, can serve in a practical problem solution which helps medical
practitioners and patients [252, 253]. Once implemented, these practical CAD systems
can only meet the promises, established through the theoretical research work, when
they function according to specification [254]. Therefore, it is so important to design
and develop these systems with a formal and model driven approach [255, 256].

In the review we focused on selected disease categories, thereby we neglected ex-
cellent work in related areas, such as surgery follow up [257] and dentistry [258, 259].
The work that was included in this study was reviewed with a special focus on feature
extraction algorithms, statistical feature performance, classification and overall perfor-
mance. This strict selection did not include important parameters, such as sample
size and level of randomization. Hence, care should be taken when dealing with the
reported performance values. In general, a larger sample size and more variety will
lead to better or more conclusive results. Therefore, more work is needed in this area
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to improve the quality of thermography based CAD systems which, in the long run,
re-establishes trust in this useful imaging modality.

5 Conclusion

Computer aided interpretation of thermogram images is of eminent importance, be-
cause the link between disease and body heat pattern is subtle and in many cases
nonlinear. Data mining and knowledge discovery algorithms help to improve thermo-
gram based diagnosis in three key areas. The first of these areas is the imminent
visual overload of screening professionals. Computer support reduces the diagnos-
tic workload and the experts can focus on the hard cases and thereby increase the
level of care. The second area is inter-observer variability. Relying entirely on the hu-
man brain, thermogram based diagnosis tends to be subjective and the quality varies
widely. Objective methods, from the area of computer science and mathematics, can
help to objectify the diagnosis and thereby reduce the inter-observer variability. The
last area is concerned with the diagnosis quality. Human based diagnosis is largely
based on both experience as well as mental state of the screening practitioner and to
a lesser extent from equipment and diagnostic method. Hence, progress depends on
the level of training and the experience in the field. For algorithm supported diagnosis
progress is made in terms of hardware and software. Computing machinery will get
more and more potent; this is independent of any individual application area. Progress
in the software domain will come from integrating and to a lesser extent from inventing
signal processing algorithms as well as managing an ever growing knowledge base.
Therefore, we predict that one day CAD systems will outperform human practitioners
in terms of accuracy, speed and cost.

This review describes some of the algorithms used in state of the art thermogra-
phy based CAD systems. These algorithms come from the domains of pre-processing,
feature extraction, statistical feature analysis, classification, and result assessment.
Both statistical feature analysis and result assessment steps are very important, be-
cause the resulting performance figures foster competition between research groups
and thereby drive thermography as a medical imaging modality forward. The idea
of competition is most evident in areas where thermography based diagnosis is not
the standard imaging modality, such as breast cancer diagnosis. The majority of re-
searchers in this area published performance results in terms or sensitivity and speci-
ficity. The resulting competition has driven thermography based breast cancer systems
to include the most advanced signal processing algorithms. Another area which uses
performance measures extensively are CAD systems for influenza screening. The very
act of publishing these measures builds up trust and thermography is widely seen as
the most promising imaging modality for this application.

We adopt the position that CAD systems objectify thermography based diagnosis.
The benefits of this objective approach are threefold. The reduction of inter-observer
variability is an initial and very tangible benefit. The progress, which can be achieved
with computer based systems, outpaces the progress of human observation. Finally,
the performance of objective systems can be measured, which creates competition
and this competition instills trust and fosters progress. This is especially important for
thermography based diagnosis, because much trust was destroyed in the 1980s due
to human error; lack of judgment and foremost the desire to cut corners for personal
benefit. Since then, tremendous progress was made by applying scientific methods
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and sticking to scientific principles.
CAD systems are the future. We are living in exciting times where computers move

from being a peripheral tool for administration and data storage towards the center of
medical diagnosis and patient care. State of the art CAD systems mimic human diag-
nosis. This role model based development is important, because it guarantees a fast
rate of progress during the initial phase of technology development. In layman’s terms:
the apprentice mimics the master. However, there are distinct limitations of how much
information even the most skilled human can process. These restrictions do not, or at
least to a much lesser extent, apply to computing machinery. From this perspective,
the direction for thermography diagnosis is clear: more data. This data can come from
higher resolution IR scanning, but the main contribution will be existing datasets and
case studies. For a human it is impossible to make sense of all available thermography
images; however machines can process these images and extract relevant informa-
tion. Staying with the idea of more or big data, there is no need to limit CAD systems
to one data source alone. Computer based systems can make sense of data from
various sources, such as thermography, X-ray, ultrasound, etc. At the end, the work
is not about thermography or indeed any other imaging modality, it is about alleviating
human suffering in patients and loved ones. This leaves no space for an unreasonable
focus on just one imaging modality.

6 Acronyms

A Accuracy
ANN Artificial Neural Network
AUC Area Under Curve
BCDDP Breast Cancer Detection Demonstration Project
CAD Computer-Aided Diagnosis
DFT Discrete Fourier Transform
CRPS Complex Regional Pain Syndrome
DT Decision Tree
DWT Discrete Wavelet Transform
FD Fractal Dimension
FDA U.S. Food and Drug Administration
FN False Negative
FP False Positive
FS Fourier Spectrum
GLCM Gray Level Co-occurrence Matrix
HOS Higher Order Spectra
IR Infrared
IRT Infrared Thermography
LBP Local Binary Pattern
LLE Locally Linear Embedding
LTE Law’s Texture Energy
MP Measurement and Procedure
NCI National Cancer Institute
PE Performance Evaluation
PNN Probabilistic Neural Network
POD Probability of Detection
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RBF Radial Basis Function
ROC Receiver Operating Characteristic
ROI Regions Of Interest
SARS Severe Acute Respiratory Syndrome
Se Sensitivity
SOM Self Organizing Map
Sp Specificity
SVM Support Vector Machine
TN True Negative
TP True Positive
WCOB Weighted Center Of Bispectrum
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