Modelling the cost-effectiveness of alternative upper age limits for breast cancer screening in England and Wales

RAFIA, R, BRENAN, A, MADAN, Jason, COLLINS, Karen <http://orcid.org/0000-0002-4317-142X>, REED, Malcolm W R, LAWRENCE, Gill, ROBINSON, Thompson, GREENBERG, David and WYLD, Lynda

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/10927/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version


Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Figure 1: Predicted number of breast cancer cases detected and over-diagnosis per 100,000 women invited in each age group to screening (compared with the previous screening strategy).
Figure 2: Incremental life years, QALYs and costs per 100,000 women invited to screening (compared with the previous screening strategy).
Figure 3: Univariate Sensitivity Analysis: testing the robustness of basecase conclusion that screening up to age 78 most cost effective strategy.

Recall rate → 10%
Utility → weight - 10% & duration = 3yr
Discounting → 5%
Cost → scrn mam (£40.4) and invitation (£1.5)
Suv → weib
Cost → primary treatment +20%
Utterity → duration = 3 yr
Recurrence rate → +20%
Suv → loglog
Growth rate → (0.8)
Utility → weight + 10% & duration = 1yr
Sensitivity → all (upper range)
Uptake rate → 100%
Utility → weight - 10%
Utility → weight + 10%
Sensitivity → all (lower range)
Sensitivity → CIS (20%)
Sensitivity → CIS (80%)
Utility → weight + 10% & duration = 2yr
Suv → loglog
Recurrence rate → +20%
Sensitivity → invasive (0.5)
Cost → recurrence +20%
Cost → recurrence -20%
Utility → weight + 10% & duration = 3yr
Recurrence rate → -20%
Uptake rate → 65%
Utility → no disutility scrn mam
Cost → attendance -20%
Cost → attendance +20%
Sensitivity → invasive (0.3)

ICER (£15.072 per QALY gained)