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Abstract—The optimisation of the accuracy of classifiers in
pattern recognition is a complex problem that is often poorly
understood. Whilst numerous techniques exist for the optimisa-
tion of weights in artificial neural networks (e.g. the Widrow-Hoff
least mean squares algorithm and back propagation techniques),
there do not exist any hard and fast rules for choosing the
structure of an artificial neural network - in particular for
choosing both the number of the hidden layers used in the
network and the size (in terms of number of neurons) of those
hidden layers. However, this internal structure is one of the key
factors in determining the accuracy of the classification.

This paper proposes taking a multi-objective approach to
the evolutionary design of artificial neural networks using a
powerful optimiser based around the state-of-the-art MOEA/D-
DRA algorithm and a novel method of incorporating decision
maker preferences. In contrast to previous approaches, the novel
approach outlined in this paper allows the intuitive consideration
of trade-offs between classification objectives that are frequently
present in complex classification problems but are often ignored.
The effectiveness of the proposed multi-objective approach to
evolving artificial neural networks is then shown on a real-world
medical classification problem frequently used to benchmark
classification methods.

I. INTRODUCTION

The performance of classification techniques on complex

real-world problems is often reduced to a single performance

metric - that of classification accuracy. However the real

performance of classifiers for use in pattern recognition tasks

(in terms of accuracy and efficiency) is a complex problem

that is often poorly understood [10]. Whilst numerous gradient

based search techniques exist for the optimisation of weights

and biases in artificial neural networks (ANNs), such as the

Widrow-Hoff least mean squares algorithm and Levenberg-

Marquardt back propagation techniques, the literature contains

little in the way of hard and fast rules for choosing the

structure of an artificial neural network. Instead designers have

to rely on rules of thumb for choosing both the number of

hidden layers in an artificial neural network and the size (in

terms of number of neurons) of those layers - factors that

have been shown to have a great impact on the accuracy

of a classifier [18], [27]. In recent years there has been

some interest in using soft computing techniques such as

evolutionary algorithms to provide a solution to this problem

[33], focusing on evolving the structure of an artificial neural

network to solve function approximation problems. However,

complex classification problems often involve trade-offs be-

tween classification objectives that are not well suited to this

kind of single objective approach.

One potential approach to satisfying trade-offs between clas-

sification objectives is to use evolutionary multi-objective opti-

misation (EMO) algorithms to address each of the conflicting

objectives simultaneously. Typically, these EMO algorithms

are run non-interactively, with a decision-maker (DM) setting

the initial parameters of the algorithm and then analysing

the results at the end of the execution process (which can

often take hours or days to complete). This approach has been

common since the late 1990s and leads to a set of potential

solutions distributed across the whole trade-off surface. Whilst

this can be appropriate for problems with a small number

of objectives, when problems involve the consideration of

many objectives (used here to refer to problems with four

or more objectives) this trade-off surface can be very large.

In these cases, the DM is usually more interested in a sub-

region of this solution space that satisfies some domain specific

criteria. However, this can be complicated by a lack of a priori

knowledge about what trade-offs are achievable. To overcome

these problems, progressive preference articulation methods

have been proposed that take into account decision maker

preferences [13], but these can be difficult to integrate with

current state-of-the-art EMO algorithms.

The purpose of this paper is to introduce a novel evo-

lutionary multi-objective approach to optimising the topol-

ogy, weights and biases of an artificial neural network. This

approach not only considers the classification accuracy, but

also the potential trade-offs between classification objectives

(information that is frequently disregarded when designing

classification systems).

The paper is organised as follows: section II will provide

a brief introduction to artificial neural networks, EMO algo-

rithms and decision support in optimisation, and then section

III will introduce the novel Weighted Z-score preference artic-
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ulation method and outline its integration into a state-of-the-

art multi-objective evolutionary algorithm (MOEA/D-DRA).

Section IV will outline the artificial neural network design

problem considered in this paper, how this ANN is applied

to the detection of heart disease, and how the classification

can be improved by using the proposed evolutionary multi-

objective approach to artificial neural network optimisation.

Finally, section V will present some conclusions and outline

some ideas for further work.

II. BACKGROUND

A. Multi-objective optimisation using evolutionary algorithms

Many real-world optimisation problems involve the sat-

isfaction of multiple objectives which, in a general form,

can be described by a vector of objective functions f and

a corresponding set of design variables x, shown below in

Equation 1.

min
f

(x) = (f1(x), f2(x), . . . , fn(x)) (1)

In real-world problems, conflicts between objectives mean

that it is unlikely that a single ideal solution will be possible.

Instead, the solution of a multi-objective optimisation problem

often consists of a set of Pareto optimal points - where

any improvement in one objective function will result in the

degradation of one or more of the other objective functions.

The quality of this approximation set can be characterised

by considering three measures: proximity, diversity and perti-

nency [28], shown graphically in Fig. 1.
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Fig. 1. Measures of approximation set quality

Conventional multi-objective optimisation techniques fre-

quently fail to satisfy all these criteria, with methods such

as goal-attainment [14] and weighted-sum [20] procedures

unable to provide a diverse set of solutions to the optimi-

sation problem. In contrast, Evolutionary Algorithms (EAs)

utilise principles from natural selection to iteratively evolve

a population of candidate solutions to a given problem [15]

and are thus capable of presenting a diverse approximation

set to a decision maker [5]. Other advantages of EAs include

their robustness to multi-modal search landscapes and their use

of direct objective function pay-off information in calculating

the quality of candidate solutions. In addition, the population-

based nature of EAs has been shown to ensure they are

resilient when faced with noisy search landscapes, as each

generation contains more information about the shape of the

fitness landscape than would be available to conventional, non-

population based methods [24].

Much of the theoretical evolutionary multi-objective opti-

misation literature focuses on solving problems with a small

number of objectives (typically 2 and 3 objective problems).

However, complex problems in the real-world frequently re-

quire the consideration of a larger number of objectives and

this has led to recent interest in many-objective1 optimisation.

In a problem with many conflicting objectives, the global

trade-off surface may contain many solutions that are tech-

nically Pareto-optimal but are not of interest to a decision

maker [28]. An ideal many-objective optimisation procedure

must therefore have the ability to filter out these irrelevant

solutions.

B. Preference articulation and decision making

The role of the decision maker in evolutionary many ob-

jective optimisation is usually to choose a single compromise

solution from the approximation set presented to them. Al-

though there may be a potentially infinite number of Pareto-

optimal solutions in the global trade-off surface, in practice the

decision maker will usually only be interested in a small subset

of these. Therefore, allowing the decision maker to focus the

optimisation process on relevant areas of the search space both

increases the efficiency of the search effort and reduces the

amount of irrelevant information the decision maker has to

consider.

The preferences of a decision maker can be incorporated

into the optimisation process in three ways:

• A posteriori

• A priori

• Progressively

A posteriori methods of preference articulation involve

the decision maker selecting a compromise solution from

the global set of Pareto-optimal solutions found at the end

of the optimisation process, whilst a priori and progressive

preference articulation methods aim to achieve a good repre-

sentation of the trade-off surface in the region of interest of the

decision maker. The key advantage of a priori and progressive

preference articulation methods is the reduction in the size of

the search space explored by the optimiser because the search

is focused on a sub-set of the global trade-off surface.

In a priori articulation of preferences the decision maker

expresses their preferences before the start of the optimisation

process. However, often the decision maker may not be sure

of their preferences prior to optimisation and, by stating their

preferences a priori, the decision maker may not investigate

some areas of the search space that deserve attention. A better

1The phrase many-objective has been used by the operations research
community to refer to problems with four or more objectives.



method is often progressive articulation of preferences, where

the decision maker can alter their preferences during the search

and thus incorporate information that only becomes available

during the search process (such as the exact nature of trade-

offs between objectives).

One of the first schemes for progressive preference articu-

lation in EMO algorithms was introduced by [13]. It extended

the Pareto-based ranking scheme used in the Multiple Objec-

tive Genetic Algorithm (MOGA) [12] to allow preferences to

be expressed throughout the run of a multi-objective evolution-

ary algorithm. These preferences were then used in a modified

version of dominance which combines the concept of Pareto-

optimality with a preference operator to rank the candidate

solutions according to both preference information and Pareto-

dominance. This progressive preference articulation method

has been used in a wide variety of engineering applications

such as the optimisation of robust control strategies for gasifier

power plants [17] and the design of lateral stability controllers

for aircraft [32].

C. Artificial neural networks for solving classification prob-

lems

Artificial Neural Networks are a class of statistical learning

algorithms inspired by the behaviour of biological neurons

located in the brain and central nervous system [23], [29].

ANNs make use of a set of self-adaptive input weights and

biases that are tuned by some learning algorithm to capture

highly complex and non-linear underlying models of the data

they are applied to. This self-adaptive nature means that they

can detect complex relationships between both dependent and

independent variables without prior knowledge [34].

ANNs have been widely used in a variety of pattern

recognition and classification tasks. In contrast to traditional

classification techniques, such as discriminant analysis, which

require a good understanding of the underlying statistical

model of the system that produced the data, ANNs are a

“black-box” technique capable of adapting to this underlying

model [37]. This makes them particularly useful in fields such

as decision support for medical diagnosis [21] where their

ability to adapt to the data, especially in high dimensional

datasets, overcomes many of the difficulties in model building

associated with conventional classification techniques such as

decision trees and k-nearest neighbour algorithms [7].

A key drawback in the use of ANNs is the difficulty both

in selecting appropriate network structures and in tuning the

weights and biases within the network - both of which have

been shown to have a large impact on the overall accuracy

of classifiers [18]. Often weights and biases in ANNs are

tuned using gradient descent based back propagation methods -

however, these can be prone to premature convergence to local

optima [16]. To overcome some of these problems there has

been much interest over the last decade into evolutionary artifi-

cial neural networks (EANNs) [35]. EANNs can be configured

for parametric learning (evolving the weights and biases within

the ANN) or structural learning (evolving both the number of

hidden layers and the number of neurons within each layer in

an ANN) [36], [2]. More recently, EANNs that perform both

parametric and structural learning, such as the NeuroEvolution

of Augmenting Topologies (NEAT) algorithm [33], have been

used for solving function approximation problems by incre-

mentally growing and pruning the structure of an ANN. The

main limitation of this kind of EANN approach is the focus

on optimising a single performance metric (usually overall

classifier accuracy) and thus disregarding potential trade-offs

between classification objectives.

Whilst some studies into the use of multi-objective evolu-

tionary optimisation methods in ANNs exist, they predomi-

nantly look at trade-offs between the classification accuracy

of the ANN and the complexity of the network [1] rather

than treating trade-offs in classification objectives separately.

Although not technically a EANN method, Everson and Field-

send [9] have used a multi-objective optimisation approach

based around the Pareto archived evolution strategy (PAES)

algorithm [22] to generalise receiver operator characteristic

(ROC) curves to multi-class classification problems. This

method is used to analyse and compare the ROC surfaces

of classifiers with multiple classification objectives. However,

they note that the dimensionality of this comparison increases

rapidly with the number of objectives considered (for example,

a classification problem with 3 target classes will require

consideration of 6 dimensions). Other research into multi-

objective optimisation has shown that, as the dimensionality of

a multi-objective optimisation problem increases, the effective-

ness of Pareto-ranking based optimisation methods decreases

[19].

III. NOVEL PREFERENCE ARTICULATION METHODS IN

ADVANCED EMO ALGORITHMS

A. MOEA/D: decomposition based evolutionary multi-

objective optimisation

The MOEA/D-DRA algorithm [39] is a state-of-the-art

evolutionary multi-objective optimisation algorithm that has

been shown to perform well in problems with complex Pareto

fronts (such as those used in the CEC2009 test suite [40]).

The approach of the basic MOEA/D algorithm [38] is to

decompose a multi-objective optimisation problem into a num-

ber of single-objective optimisation subproblems using ideas

taken from the mathematical programming community. These

single-objective optimisation problems can then be optimised

simultaneously using a population based approach with a

neighbourhood information sharing model.

This state-of-the-art EMO algorithm has been integrated

with a novel, two-phase preference articulation operator using

weighted z-scores (described in the next section). The resulting

WZ-MOEA/D-DRA algorithm is described in section III-C.

B. Weighted Z-score preference articulation

Weighted Z-score (WZ) preference articulation is a novel

method of preference articulation based around the use of z-

scores (or standard scores) from statistics [30], [31]. Tradi-

tionally, z-score calculations are performed by subtracting the

population mean from a datum and then dividing the result by



the population standard deviation as can be seen in Equation

2. Calculating the z-score in statistics requires knowing the

population parameters and not just the parameters of a sample,

which is often seen as unrealistic in typical statistics; however

this is not an issue in EMO as it is possible to have a complete

representation of the population at each generation.

z =
(x− µ)

σ
(2)

For the z-score to be useful for preference articulation,

some modifications are made to the way z is calculated.

Instead of using the population mean and population standard

deviation to calculate z, the preference information that has

been expressed by the DM is used (as can be seen in Equation

3) where ρm is the goal for a corresponding objective value

xmn, and N is the number of solutions in the population.

zmn =
(xmn − ρm)

√∑
N

n=1
(xmn−ρm)2

N

(3)

This will enable the calculation of zmn for the objective values

of each candidate solution in an approximation set, resolving

the number of standard deviations each solution is from the

DM’s expressed region of interest (ROI), which will be a

positive value when it is outside the ROI, and negative when

within the ROI. Once zmn is calculated for every objective

value of a solution, the zmn values are aggregated into a single

fitness value using Equation 4.

Vn =

∑M
m=1 zmn

M
(4)

The mathematical procedure for the WZ preference articula-

tion operator in its entirety is described herein. M defines the

number of problem objectives whilst N defines the population

size. X is an M by N matrix of entries xmn, where every xmn

refers to a solution’s objective value:

Xn = 〈x1n, x2n, . . . , xMn〉

Z is an M by N matrix of entries zmn, where every zmn refers

to the result of the z-score preference articulation operator

applied to a corresponding objective value xmn:

Zn = 〈z1n, z2n, . . . , zMn〉

To calculate Z, a preference vector P of M entries must be

defined, where every entry ρm refers to the goal which the

corresponding objective values xm must satisfy:

P = 〈ρ1, ρ2, . . . , ρM 〉

S is an M by N matrix of entries smn where every smn

refers to a logical value indicating whether the corresponding

objective value xmn has satisfied the corresponding goal ρmn

(xmn ≤ ρm):

Sn = 〈s1n, s2n, . . . , sMn〉

where smn is calculated using:

smn =

{

1, if xmn ≤ ρm

0, otherwise.

Φ is a vector of N entries, where every φn refers to a logical

value indicating whether all entries of P have been satisfied

by a solution Xn.

Φ = 〈φ1, φ2, . . . , φN 〉

where φn is calculated by the product of the entries of Sn:

φn =

M
∏

m=1

smn

The scalar Ψ refers to the number of solutions Xn in the

population which have satisfied the preference vector P :

Ψ =

N
∑

n=1

φn

T defines the required number of solutions which satisfy the

preference vector before the search changes phase. Whilst

Ψ < T the W-phase of the WZ preference articulation operator

takes effect. In this phase, the weighting (1 − 1
M
) is only

applied to the zmn value if m corresponds to the entry of Ω
with the lowest value. ωm refers to the number of solutions

in the population that have satisfied the corresponding ρm:

Ω = 〈ω1, ω2, . . . , ωM 〉

ωm is the sum of columns M in the matrix S and is calculated

using:

ωm =
N
∑

n=1

smn

With the entries of Ω calculated, the M by N matrix of

weighted scores E can be defined as:

En = 〈ǫ1n, ǫ2n, . . . , ǫmN 〉

where the corresponding weighted score ǫmn for each objec-

tive value xmn can be calculated using:

ǫmn =

{

zmn

(

1− 1
M

)

if f(ωm, Smn) = 0

zmn otherwise.

where zmn and ωm are first normalised to real values between

0 and 1:

zmn = f(|zmn|, |Zm|)

using the function f(k,K) where:

f(k,K) =
k −min(K)

max(K −min(K))

The initial calculation of zmn is the same in both phases

(W-phase and Z-phase) and is defined in Equation 3. The

final score Wn of a single solution is the aggregation of the

corresponding ǫmn entries:

Wn =

∑M
m=1 ǫmn

M
(5)

This two-phase method attempts to move the search towards

the production of solutions that are close in proximity to

the ROI and within it, but does not attempt to minimise the



solutions beyond the edges of the ROI. When the number of

solutions within the ROI has satisfied the threshold (Ψ ≥ T )

the Z-phase takes effect. This phase uses Equation 3 to

calculate Zn and then Equation 4 to aggregate the scores into

the scalar Vn, this is because there are adequate solutions

(defined by T ) that have satisfied all entries of P . These

solutions can then be further minimised within the ROI.

C. WZ-MOEA/D-DRA

The weighted z-score preference articulation operator de-

scribed in the previous section has been incorporated into

the state-of-the-art MOEA/D-DRA algorithm [39], in order

to allow selection pressure towards a desired ROI during the

optimisation process. The new preference driven algorithm

(WZ-MOEA/D-DRA) has been benchmarked on a selection

of synthetic test problems and applied successfully to a

real-world many-objective problem regarding the optimisa-

tion of classifiers for concealed weapon detection [30]. WZ-

MOEA/D-DRA has been shown to offer robust performance

on complex many-objective problems consisting of less than

seven objectives.

WZ-MOEA/D-DRA operates in one of two phases (W-

phase and Z-phase) dictated by the WZ preference articulation

operator, which take effect depending on when certain criteria

are satisfied, allowing the optimisation process to efficiently

spend the function evaluation budget depending on the current

optimisation context.

Whilst the number of solutions satisfying the preference

vector P is below the threshold (Ψ < T ) the W-phase of

the WZ preference articulation operator takes effect. In this

phase the MOEA/D-DRA’s utility selection is replaced with

a selection of solutions based on their Wn score calculated

using Equation 5.

If during the optimisation process the threshold (Ψ ≥ T ) is

satisfied then the Z-phase of the WZ preference articulation

operator takes effect, whilst in this phase a modified imple-

mentation of MOEA/D-DRA’s utility selection is used, where

the edging sub-problems are no longer considered as elite and

solutions that do not satisfy (φn = 0) the DM’s expressed

preferences P are discarded.

Using these two phases WZ-MOEA/D-DRA is able to get

close in proximity to the DM’s expressed ROI within a small

number of function evaluations, and then produce solutions

within the ROI and minimise solutions whilst retaining the

diversity features of MOEA/D-DRA.

The contributing hypervolume indicator [8] is used post-

optimisation in order to cull the approximation set to a more

digestible size, in order to allow the DM to make a decision

without being overwhelmed with choice. This process has been

illustrated in Fig. 2.

IV. CLASSIFYING THE SEVERITY OF INSTANCES OF HEART

DISEASE

A. Problem description

Coronary Heart Disease (CHD) is one of the leading causes

of death both in the UK and globally [26]. It is responsible
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Fig. 2. The execution life-cycle of a EMO process allowing for the
incorporation of decision maker preferences

for approximately 73,000 deaths per in the UK every year

[3] and, in the UK alone, it is estimated that 2.5 million

people are living with the condition. To accurately diagnose

the presence and severity of coronary heart disease generally

involves the use of a coronary angiogram - an expensive and

invasive procedure that is unsuitable for large scale screening

of the population. One possible solution to this is to use

computational methods of predicting heart disease instances

to provide an initial estimate of the likely-hood of CHD.

Detrano et. al. [6] collected heart disease data from 303

cases at V.A. Medical Center, Long Beach & Cleveland

Clinic Foundation to build a discriminant function model for

estimating probabilities of coronary heart disease. This data

set is widely used in the classification literature to benchmark

new classifiers [4], [25] and consists of 76 problem attributes

in total. The majority of studies based on this dataset consider

14 of these attributes, summarised in [25]. In this paper a

subset of 297 cases from this dataset is considered (discarding

the 6 cases where the attribute information is incomplete).

This data set categorises the severity of heart disease from

0 (no heart disease) to 1 through 4 (increasing severity of

heart disease). Although this data set has been widely used

in the classification literature, all published experiments have

focused on distinguishing the presence of heart disease (1-4)

from the absence (0). In contrast, our multi-objective approach

to evolving artificial neural networks for classification tasks

aims to not only classify presence / absence of heart disease,

but also to identify the severity of heart disease and minimise

the number of mis-classifications.

The 6 objectives used in our approach are shown in Table

I. Note that these have been converted into minimisation

objectives for the purpose of optimisation.

B. Encoding the problem

In order to use evolutionary methods to optimise the topol-

ogy and weights of the ANN classifier for heart disease



TABLE I
PERFORMANCE OBJECTIVES

Objective 1 Classified normal correctly
Objective 2 Misclassified heart disease as normal
Objective 3 Classified heart disease correctly
Objective 4 Misclassified normal as heart disease
Objective 5 Classified mild heart disease correctly
Objective 6 Classified severe heart disease correctly

detection, the ANNs topology and weights must be encoded

into a real-valued chromosome, which can then be subjected

to the various evolutionary operators used in the optimisation

process and then decoded for evaluation. Fig. 3 illustrates the

chromosome structure used to store the encoding of an ANN

with 5 output neurons, a maximum of 3 hidden layers, and a

minimum of 13 input neurons.

Parameter boundaries are also required to restrict the num-

ber of hidden layers, neurons per hidden layer, and ranges for

the weights and biases within a lower and upper limit. All

hidden layers but the last can contain a number of neurons

ranging from none to twice the number of input neurons, as

seen in Equation 6, and the last hidden layer must contain a

minimum of neurons equal to the number of input neurons

as seen in Equation 7. This means each candidate network

generated by the optimiser must have at least one hidden layer,

preventing the generation of benign networks which would

waste function evaluations throughout the entire optimisation

process. Finally, each weight and bias is restricted to the same

boundary shown in Equation 8.

b(1...(HL− 1)) = {x ∈ Z | 0 ≤ x ≤ 2i} (6)

b(HL) = {x ∈ Z | i ≤ x ≤ 2i} (7)

w = {x ∈ R | −5 ≤ x ≤ 5} (8)

For the ANN used in this network, each candidate solution

contains 1906 variables, with the first 3 defining the number of

hidden layers and the number of neurons on each respectively,

the following 338 variables defining the weights for the input

layer, 676 for the first and second hidden layer, and 130 for

the third and final hidden layer.

Regardless of the topology of the candidate solution ANN

(which in this case is defined by the first three genes of

the encoded chromosome) the maximum number of weights

and biases will be stored with each chromosome; however,

not all genotypes will manifest themselves and be expressed

as phenotypes as only the weights and biases required to

configure the candidate solutions ANN topology will be

decoded and used. These unused weights and biases will

remain unexpressed in the phenotype until the first three genes

allow them to manifest and can go through many generations

as dormant genes. This introduces the interesting feature of

atavism2.

At each function evaluation, a chromosome is decoded from

its encoded state (as described in Fig. 3) and used to instantiate

an ANN. This ANN is then used to classify the training

data and the results of this assessed against the performance

objectives specified in Table I. Following the completion of

the optimisation process, the final generation of candidate

solutions is decoded and used to create ANNs which are then

run on the unseen testing data to obtain the final results (i.e.

those shown in Figs. 4, 5, and 6).

C. Optimisation results and discussion

The ANN encoding was optimised using the WZ-MOEA/D-

DRA algorithm described in Section III with the parameters

shown in Table II. The performance was then evaluated using

the objectives specified in Table I. A real-valued representation

for the ANN encoding parameters shown in Fig. 3 was used,

since Fogel and Ghozeil [11] have shown that there is no

intrinsic advantage in choosing one bijective representation

over another, although particular representations may be more

computationally tractable or efficient for certain problems.

As a consequence of this, modern EMO practice emphasises

choosing a representation that is appropriate for the problem

under consideration [24] and, in this application, the ANN

parameters in our encoding are real-valued.

TABLE II
ALGORITHM PARAMETERS

Population size 50
Maximum generations 250
Z-score threshold (T ) 5
MOEA/D neighbourhood 30

Fig. 4 shows that there is a clear trade-off between max-

imising the accuracy of positively diagnosing heart disease

and minimising the misdiagnosis of cases of heart disease,

as well as between maximising the accuracy of diagnosing

the absence of heart disease and misdiagnosing the absence

of heart disease. These results were taken from 25 runs of

the optimiser with no goals specified. Each data point on Fig.

4 represents a single candidate solution ANN from the final

generation produced by the optimiser. This set of ANNs was

then run on an unseen testing data set to produce the points

in Fig. 4.

Fig. 5 shows the initial parallel coordinate plot presented to

a decision maker representing the potential trade-offs between

the classification objectives (as described in Table I). This was

generated using the goals shown in Table III. The highlighted

solutions are the 6 best solutions from this set in terms of the

contributing hyper-volume metric.

Having seen what is achievable from Fig. 5, it is possible to

tighten some of the goals (using domain specific knowledge)

2In biology, atavism is a tendency for evolutionary traits to lie dormant (for
example, remaining present in DNA but not being expressed as a phenotypical
feature) but remain intact. In these cases it is possible for a fault in the genetic
feature suppressing the trait (possibly through a mutation of that gene) to lead
to it reasserting itself.
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Fig. 3. Encoded chromosome for the six-objective ANN consisting of 3 hidden layers (HL), an input layer (IL), 5 neurons on the output layer (OL), and
associated biases, totalling to 1906 variables
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Fig. 4. Trade-offs between classification objectives

Objective

1 2 3 4 5 6

C
o
o
rd

in
a
te

 V
a
lu

e

0

0.05

0.1

0.15

0.2

0.25

Fig. 5. Parallel coordinate plot of results

TABLE III
INITIAL GOALS

Objective 1 2 3 4 5 6
Goal (accu-
racy in %)

>50 <20 >50 <30 >60 >40

to reduce the number of solutions presented to the decision

maker. In this case, it is better to err on the side of caution so

a decision maker would be prepared to accept an increase in

the percentage of false positive diagnoses of heart disease if it

results in a lower percentage of cases of heart disease missed.

Fig. 6 shows the revised parallel coordinate plot presented to

a decision maker using a stricter set of goals (shown in Table

IV). The highlighted solutions are again the 6 best solutions

from this set in terms of the contributing hyper-volume metric.

Note that, in this figure, there are many less solutions presented

to the decision maker. Table V shows a summary of the results

from 100 independent runs of the optimisation routine. Over

these 100 runs, the optimiser found solutions within the stricter

ROI (shown in Table IV) 93 times (and within the original

ROI every time), proving that the proposed evolutionary multi-

objective optimisation of ANNs exhibits robust performance.
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Fig. 6. Parallel coordinate plot of results with stricter goals

TABLE IV
STRICTER GOALS

Objective 1 2 3 4 5 6
Goal (accu-
racy in %)

>80 <20 >90 <15 >60 >40

TABLE V
SUMMARY OF 100 RUNS OF THE OPTIMISATION ALGORITHM

Average number of solutions in ROI 13.79
Standard deviation of number of solutions in ROI 11.86
Maximum number of solutions in ROI 41
Minimum number of solutions in ROI 0

V. CONCLUSIONS AND FURTHER WORK

In this paper a novel method of optimising the weights,

biases and topology of an artificial neural network by consid-

ering classification trade-offs in a multi-objective way has been



introduced. This multi-objective optimiser is based around

the state-of-the-art MOEA/D-DRA optimisation algorithm and

the recently introduced Weighted Z-score method of handling

decision maker preferences.

The application of the WZ-MOEA/D-DRA optimisation

algorithm to the training and optimisation of the topology,

weights and biases of an ANN intended for use in the diagnosis

of heart disease has been presented. It has been shown that,

by handling classification tasks with multiple target classes

in a multi-objective way, it is possible to not only achieve

good classification accuracy overall but also minimise mis-

classifications. This multi-objective optimisation technique

with the integration of preferences has been shown to provide

the decision maker with a number of solutions (trained ANNs)

with trade-offs that are well distributed across the Pareto front.

The decision maker can then select an optimised solution

which balances false positive diagnoses of heart disease with

cases where heart disease is missed.
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