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Digital tanlock loop architecture with no delay 
 

This paper proposes a new architecture for a digital tanlock loop which eliminates the time-

delay block. The π 2⁄   (rad) phase shift relationship between the two channels, which is 

generated by the delay block in the conventional time delay digital tanlock loop (TDTL), is 

preserved by using two quadrature sampling signals for the loop channels. The proposed 

system outperformed the original TDTL architecture, when both systems were tested with 

frequency shift keying (FSK) input signal. The new system demonstrated better linearity 

and acquisition speed as well as improved noise performance compared with the original 

TDTL architecture. Furthermore, the removal of the time-delay block enables all 

processing to be performed digitally which reduces the implementation complexity.  Both 

the original TDTL and the new architecture without the delay block were modelled and 

simulated using MATLAB/Simulink.  Implementation issues, including complexity and 

relation to simulation of both architectures are also addressed.  

 
Keywords: time delay digital tanlock loop, no-delay digital tanlock loop, phase shifter, 

acquisition, locking range, jitters. 

 

1. Introduction 

Phase locked loops (PLLs) are widely used in communication systems for 

modulation, demodulation, and synchronization operations.  For example, the receivers in 

modern wireless communication systems contain PLLs that perform carrier 

synchronization and symbol timing recovery tasks [1-3]. PLLs are also extensively used 

in microprocessors, digital signal processors and control systems [3-6]. 

The basic block diagram of a conventional PLL is shown in Figure 1.  In this 

feedback system, the phase detector (PD) block compares the phase of the input 

“reference” signal (Fref) with the phase of the output signal (FN).  The output of the PD is 

used to drive the voltage controlled oscillator (VCO) block.  When the system is in its 

locked state, the negative feedback adjusts the VCO output so as to maintain a small and 

constant phase difference between the PD input signals.  When this is achieved, the PD 

input signals will have the same frequency. The optional divider block (N) can be used 

to generate a low-noise high-frequency signal that is required in some applications 

[1,2,4]. 
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Early generations of PLLs were designed using a variety of analogue circuit 

techniques. However, due to some inherent drawbacks of analogue circuits such as 

component tolerance and with the emergence of digital integrated circuit technologies, 

the design of an all digital PLL (DPLL) became a reality. 

(PD) Phase 
Detector

(VCO) Voltage 
Controlled 
Oscillator

Divider (÷)

FVCO
Fref

FN

(LF)Low Pass 
Filter

 
Figure 1. Block diagram of a typical analogue PLL. 

 

The DPLL shown in Figure 2 is similar to the analogue PLL of Figure 1 except 

that the blocks are all digitally implemented.  The digital phase detector (DPD) block is a 

phase-to-digital converter that senses the phase difference between input signal Fref and 

the divided version (FN) of the DCO (digital controlled oscillator) output signal (FDCO).  

As stated earlier the divider block is optional.  The output of the DPD is digitally filtered 

by the DLF (digital loop filter) and used to drive the DCO [7-9].  

(DPD) Digital 
Phase 

Detector

(DLF) Digital 
Loop Filter

(DCO) Digital 
Controlled 
Oscillator

Divider (÷)

FDCO
Fref

FN

 
Figure 2. Block diagram of a typical digital PLL (DPLL). 
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The extensive literature on DPLLs has many architectures and implementation 

techniques for the block diagram of Figure 2.  The various approaches depend upon the 

target application and the system implementation technology.  A DPLL architecture that 

has a number of desirable attributes, which include linearity and insensitivity to 

variations in input signal power, is the time delay digital tanlock loop (TDTL) [10]. The 

TDTL solved the practical implementation issues that affected its predecessor, the digital 

tanlock loop (DTL), by replacing the Hilbert transformation (HT) block with a simple 

time delay unit [11]. Essentially, the TDTL consists of two sample and hold blocks, a 

phase detector, a digital filter, a digitally controlled oscillator, and a time-delay block. 

This mixed-signal system accepts an analogue signal at its input but performs all the 

processing digitally. This means that the system can be easily implemented in a digital or 

a mixed-signal process.  However, the replacement of the HT by a time delay unit led to a 

slight degradation in the linearity of the locking range characteristic [12,13].  A number 

of possible solutions have been proposed in the literature to overcome this problem 

including the use of a variable time delay block [14-16]. This paper proposes an 

improved TDTL architecture that overcomes the nonlinearity problem through the 

elimination of the time delay block. This new no-delay DTL architecture is referred to as 

NDTL. The NDTL system modifies the design of the DCO circuitry so that two sampling 

signals with 90
o
 phase shift are generated in order to maintain the quadrature relationship 

between the two channels of the system. 

In this paper, section 2 presents the system architecture and analysis, while the 

noise analysis of the system is detailed in section 3. The testing results are presented in 
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section 4. The circuit implementation complexity of the system is discussed in section 5. 

Finally, the conclusions of the paper are given section 6. 

2. NDTL System Architecture and Analysis 

2.1 NDTL Architecture 

 

The architecture of the proposed NDTL system is shown in Figure 3. The centre 

frequency of the DCO is set at twice the overall loop DCO (L-DCO) free-running 

frequency (f0). The DCO signal is then used to drive the two counters whose outputs are 

used to sample the input signal x(t). Since there is a phase shift of 90
o
 between the 

outputs of the counters, the quadrature relationship between the two sampling signals is 

preserved without the need for a phase-shifter in one of the channel’s arms. 

                          

                                  Loop DCO (fo=1/To) 

x(t)

Sample 
and Hold

Sample 
and Hold

Digital 
Filter

Phase 
Detector 

Arctan(x/y)

x(k)

y(k)

Input

Signal

÷ 2( Negative 

edge Trigger)

Digital 
Controlled 
Oscillator 

(DCO To/2)

÷ 2( Positive 

edge Trigger)

 

Figure 3. No delay digital tanlock Loop (NDTL). 

 

2.2 NDTL analysis 

 

Let the input signal to the loop be a sinusoid as given by Equation (1)  

x(t) = Asin[ωot + θ(t)]                                                                                                           (1) 
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where A is the amplitude of the signal, ωo(rad s⁄ ) is the free running frequency of the 

DCO, and θ(t) is the information bearing phase in radians. Following a similar analysis 

to that in [10,12,13], there are two sampling intervals of the DCO between the sampling 

instants 𝑡(𝑘 + 1) and 𝑡(𝑘) which are given by 

𝑇1(𝑘) = 𝑇𝑜 − 𝑐(𝑘 − 1)                                                                                                                  (2)  

𝑇2(𝑘) = 𝑇𝑜 − 𝑐(𝑘 − 1) +
𝜋

2⁄

𝜔𝑜
                                                                                                    (3) 

where 𝑇𝑜 = 2𝜋 𝜔𝑜⁄  is the free-running period of the DCO, and 𝑐(𝑘 − 1) is the output of 

the digital filter at the previous sampling instant. 

The total times up to the k
th

 sampling instant for both sampling intervals can be defined 

as 

𝑡1(𝑘) = ∑ 𝑇(𝑖)

𝑘

𝑖=1

= 𝑘𝑇𝑜 − ∑ 𝑐(𝑖)

𝑘−1

𝑖=0

                                                                                            (4) 

and  

𝑡2(𝑘) = ∑ 𝑇(𝑖)

𝑘

𝑖=1

= 𝑘𝑇𝑜 − ∑ 𝑐(𝑖)

𝑘−1

𝑖=0

+
𝜋

2⁄

𝜔𝑜
                                                                                (5) 

The discretized signals generated by the samplers are  

𝑥(𝑘) = 𝐴𝑠𝑖𝑛[𝜔𝑜𝑡1 + 𝜃(𝑘)]                                                                                                         (6)  

𝑦(𝑘) = 𝐴𝑠𝑖𝑛[𝜔𝑜𝑡2 + 𝜃(𝑘)]                                                                                                        (7) 

Substituting Equations (4) and (5) in Equations (6) and (7) respectively yields 

𝑥(𝑘) = 𝐴𝑠𝑖𝑛 [𝜃(𝑘) − 𝜔𝑜 ∑ 𝑐(𝑖)

𝑘−1

𝑖=0

]                                                                                           (8) 

𝑦(𝑘) = 𝐴𝑠𝑖𝑛 [𝜃(𝑘) − 𝜔𝑜 ∑ 𝑐(𝑖)

𝑘−1

𝑖=0

𝜋𝜔𝑜

2𝜔
] = Acos [𝜃(𝑘) − 𝜔𝑜 ∑ 𝑐(𝑖)

𝑘−1

𝑖=0

]                          (9) 
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The phase error between the input signal and the DCO is given by 

𝜙(𝑘) = 𝜃(𝑘) − 𝜔𝑜 ∑ 𝑐(𝑖)

𝑘−1

𝑖=0

                                                                                                       (10) 

Therefore, both Equations (8) and (9) may be redefined as 

𝑥(𝑘) = 𝐴𝑠𝑖𝑛[𝜙(𝑘)]              (11) 

𝑦(𝑘) = 𝐴𝑐𝑜𝑠[𝜙(𝑘)]              (12) 

When the signals 𝑥(𝑘) and 𝑦(𝑘) are applied to the phase detector, the generated 

error signal 𝑒(𝑘) between the two arms of the loop is  

𝑒(𝑘) = 𝑓 [tan−1 (
sin{𝜙(𝑘)}

cos{𝜙(𝑘)}
)] = 𝑓[tan−1(tan (𝜙(𝑘))] = 𝑓[𝜙(𝑘)]                             (13) 

where  𝑓(𝛾) = −𝜋 + (𝛾 + 𝜋) 𝑚𝑜𝑑 2𝜋  and 𝜙(𝑘) is the phase error.  

Consequently, the degradation in the linearity of the TDTL system caused by the 

time-delay unit is eliminated [10,12,13]. 

Since 𝑐(𝑘) = 𝐷(𝑧)𝑒(𝑘) = 𝐾1
′𝑓[𝜙(𝑘)], where 𝐷(𝑧) is the loop filter transfer 

function and 𝐾1
′ is the loop gain, two system difference equations can be derived from 

Equations (4), (5) and (13) as follows 

𝜙1(𝑘 + 1) = 𝜙(𝑘) − 𝜔𝐷(𝑧)𝑒(𝑘) + Λ𝑜                                                                                  (14) 

𝜙2(𝑘 + 1) = 𝜙(𝑘) − 𝜔𝐷(𝑧)𝑒(𝑘) + Λ𝑜 +
Λ𝑜

4
                                                                      (15) 

From Equations (14) and (15) it can shown that 

𝜙2(𝑘 + 1) = 𝜙1(𝑘 + 1) +
Λ𝑜

4
= 𝜙1(𝑘 + 1) +

𝜋

2
(

𝜔 − 𝜔𝑜

𝜔𝑜
)                                             (16) 

𝜙2(𝑘 + 1) = 𝜙1(𝑘 + 1) +
𝜋

2
(

1 − 𝑊

𝑊
)                                                                                   (17) 

Where 𝑊 = 𝜔𝑜 𝜔⁄   and Λ𝑜 = 2𝜋 (𝜔 − 𝜔𝑜 𝜔𝑜)⁄ .   
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From Equation (17), it is evident that apart from a phase shift of π
2⁄  (rad), 

Equations (14) and (15) are similar. Therefore, the sampling signal given by Equation (2) 

is used to follow the zero crossing of the incoming input signal whilst the shifted signal 

of Equation (3) samples the input signal with a phase shift of 90
o
. This maintains the 

quadrature relationship between the two channels without the need for a phase shifter for 

the purpose of locking. Therefore the final difference equation is  

𝜙(𝑘 + 1) = 𝜙(𝑘) − 𝜔𝑐(𝑘) + Λ𝑜                                                                                             (18) 

2.2.1 First order locking range analysis 

 

For the first order loop  

𝑐(𝑘) = 𝐷(𝑧)𝑒(𝑘) = 𝐾1
′𝑓[𝜙(𝑘)]            (19) 

Using Equations (1) and (3) and following a similar analysis to that in [10,12,13], the 

difference equation and the locking range, depicted in Figure 4, for the NDTL first-order 

system are given by Equations (20) and (21) respectively. The locking range of the first 

order TDTL is also included in Figure 4 for comparison.  

𝜙(𝑘 + 1) = 𝜙(𝑘) − 𝐾1
′𝜙(𝑘) + Λ𝑜                                                                                          (20) 

2|1 − W| < K1 < 2𝑊                                                                                                                 (21) 

where 𝜙(𝑘) is the phase error at the instant k,  Λo = 2π(ω − ωo)/ωo   ,  K1
′ = ωG1, G1 

is loop filter coefficient, 𝑊 = 𝜔𝑜/𝜔 , and 𝐾1 = 𝑊𝐾1
′. 
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Figure 4. Locking range of both first order NDTL and TDTL. 

 

2.2.2 Second order locking range analysis 

 

Using Equations (1) and (3), for the second-order loop that uses the first-order 

accumulation digital filter with transfer function  D(z) = G1 + G2 (1 − z−1⁄ ), the loop 

difference equation and the locking range, of Figure 5, are given by Equations (22) and 

Equations (23). Figure 5 shows also the locking range of the second order TDTL.  

𝜙(𝑘 + 2) = 2𝜙(𝑘 + 1) − 𝑟𝐾1
′𝑒(𝑘 + 1) + 𝐾1

′𝑒(𝑘) − 𝜙(𝑘)                                              (22) 

0 < 𝐾1 <
4𝑊

1 + 𝑟
𝑎𝑛𝑑  𝑟 > 1                                                                                                        (23) 

where r = 1 + G1 G2⁄ , and G1and G2 are the filter coefficients. 

 

Figure 5.  Locking range of both second order NDTL and TDTL. 
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3. Noise Analysis of the NDTL 

The input signal is corrupted by an AWGN (additive white Gaussian noise) with a 

zero mean and two sided power spectrum density of Gnw(f) = no/2. Therefore, the 

autocorrelation can be given by the inverse Fourier Transform of Gnw(f) as R(τ) =

noδ(τ)/2 [17,18], where δ(τ) represents the Dirac Delta function. As a result,  R(τ) = 0 

for τ ≠ 0 so any two different samples of this kind of noise are uncorrelated and for this 

reason they are statistically independent [19,20]. 

Since the NDTL has a discrete nature, the Chapman-Kolmogorov equation is used 

to study the statistical analysis of the phase error process [10-12]. The noise η(k)’s are 

mutually independent at any k instant. Therefore, the phase error process ϕ(k) can be 

regarded as a first order, discrete time, and continuously variable Markov process which 

is also governed by modulo 2π. The variable Markov process states that the first order 

Markov process depends only on the previous state.  As a result with a given initial phase 

error ϕ(0), the probability density function (pdf) of ϕ(k) will satisfy the Chapman-

Kolmogorov equation [10-12]. 

Assuming that the sampled noise process {𝜂(𝑘)} is a sequence of independent and 

identical disturbances (iid) Gaussian random variables with zero mean and a variance 𝜎𝑛
2, 

the noise samples {𝜂′(𝑘)} (sampled the shifted signal of Equation (3)) is also an iid 

sequence with the same mean and variance.  

Both inputs in Equations (11) and (12) are independent Gaussian random 

variables with the following statistical characteristics [11] 

𝐸[𝑥(𝑘)] = 𝐴𝑠𝑖𝑛(𝜙(𝑘))                                                                                                              (24) 

           

𝐸[𝑦(𝑘)] = 𝐴𝑐𝑜𝑠(𝜙(𝑘))                                                                                                              (25) 
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𝑣𝑎𝑟[𝑥] = 𝑣𝑎𝑟[𝑦] = 𝑣𝑎𝑟[𝑛] = 𝑣𝑎𝑟[𝑛′] = 𝜎𝑛
2                                                                        (26) 

     

Where 𝑛′ is of the noise that is sampled at 90𝑜phase shifts, 𝐸[ ]  represents the 

expectation (mean) and 𝑣𝑎𝑟[ ] represents the variance. Consequently, the joint pdf 

𝑔(𝑥, 𝑦)of the Gaussian random variables x and y is given by 

𝑔(𝑥, 𝑦) =
1

2𝜋𝜎𝑛
2 exp [−

1

2𝜎𝑛
2 {(𝑥 − 𝐴𝑠𝑖𝑛(𝜙(𝑘))2 + (𝑦 − 𝐴𝑐𝑜𝑠(𝜙(𝑘))2}]                         (27) 

    

As AGWN has a disturbance effect on both amplitude and phase, both x and y can 

be redefined as in Equations (28) and (29) respectively. 

𝑥(𝑘) = 𝑅𝑘𝑠𝑖𝑛(𝑒(𝑘))                                                                                                                   (28) 

 

𝑦(𝑘) = 𝑅𝑘𝑐𝑜𝑠(𝑒(𝑘))                                                                                                                   (29) 

    

where both random variables 𝑅𝑘  and 𝑒(𝑘) have the following limits 0 < 𝑅𝑘 < ∞ and 

−𝜋 < 𝑒(𝑘)  < 𝜋. The joint pdf of both random variables 𝑅𝑘 and 𝑒(𝑘) can be obtained 

from Equation (27) and the pdf 𝑝[𝑒(𝑘)] can be computed by integrating over the range 

from zero to infinity with respect to 𝑅𝑘 to get 

𝑝[𝑒(𝑘)] =
1

2𝜋
[exp(−𝛼)

+ 𝑓(𝛼, 𝑘) exp[−𝛼 𝑠𝑖𝑛2{𝑒(𝑘) − 𝜙(𝑘)} ∫ exp (− 𝜔2 2)⁄

𝑓(𝛼,𝑘)

−∞

] 𝑑𝜔]    (30) 

where 𝛼 = 𝐴2/2𝜎𝑛
2 is the signal-to-noise ratio (SNR) and 𝑓(𝛼, 𝑘) = √2𝛼 cos[𝑒(𝑘) −

𝜙(𝑘)]. 
 

It is obvious that the peak of 𝑝[𝑒(𝑘)] occurs at  𝑒(𝑘) = 𝜙(𝑘) in the modulo 2𝜋 sense. 

𝑒(𝑘) is usually around 𝑓[𝑒(𝑘)] in the presence of noise, and therefore can be 

decomposed into the term  𝑓[𝑒(𝑘)] and the random variable 𝜂(𝑘) as in Equation (31). 

𝑒(𝑘) =  𝑓[𝑒(𝑘)] + 𝜂(𝑘)                                                                                                             (31) 
           

where 𝜂(𝑘) lies in the interval (−𝜋 − 𝑓[𝜙(𝑘)], 𝜋 − 𝑓[𝜙(𝑘)]). 

 

Using Equations (30) and (31), the pdf of the random phase error noise 

disturbance p[η(k)]can be expressed from as 
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𝑝(𝑒) =
1

2𝜋
[exp(−𝛼) +

√𝛼 cos 𝜂

√𝜋
exp{−𝛼 𝑠𝑖𝑛2𝜂} {

1

2
+ erf[√2𝛼 𝑐𝑜𝑠𝜂]}                             (32) 

     

where erf[x] =
1

√2𝜋
∫ exp(− 𝜔2 2⁄ ) 𝑑𝜔

𝑥

0
 

3.1 Statistical behaviour of the first order NDTL in AGWN 

 

From Equation (20) the difference characteristic equation in the presence of noise of the 

first order NDTL can be expressed as 

𝜙(𝑘 + 1) = 𝜙(𝑘) − 𝐾1
′ 𝑓[𝜙(𝑘)] + Λ𝑜 + 𝐾1

′ 𝜂(𝑘)                                                                  (33)  

The noise  𝜂(𝑘)’s are mutually independent for different values of k. Therefore, 

the phase error process 𝜙(𝑘) can be regarded as a first order discrete time and 

continuously variable Markov process.  The first order Markov process depends only on 

the previous state, so with a given initial phase error 𝜙(0), the pdf of 𝜙(𝑘)will satisfy 

Chapman-Kolmogorov equation [10-12] in Equation (34). 

𝑝𝑘+1(𝜙|𝜙𝑜) = ∫ 𝑞𝑘(𝜙|𝑢)𝑝𝑘(𝑢|𝜙𝑜)𝑑𝑢

∞

−∞

                                                                                (34) 

where 𝑝𝑘+1(𝜙|𝜙𝑜)is the pdf of 𝜙(𝑘)given an initial condition 𝜙(0) and 𝑞𝑘(𝜙|𝑢) is the 

transition pdf of 𝜙(𝑘 + 1) given  𝜙(𝑘). 

If 𝜙(𝑘)is limited to (−𝜋, 𝜋), Equation (33) can be given by 

𝜙(𝑘 + 1) = 𝜙(𝑘) − 𝐾1
′ 𝜙(𝑘) + Λ𝑜 + 𝐾1

′ 𝜂(𝑘)                                                                       (35)  

By squaring both sides of Equation (35) and  then taking the statistical expectation, the 

steady state variance can be attained as follows [11,19] 

𝑉𝑎𝑟[𝜙𝑠𝑠] =
𝐾1

′

2 − 𝐾1
′

𝐸[𝜂2] = ∫ 𝜂2

𝜋−𝐸[𝜙𝑠𝑠]

−𝜋−𝐸[𝜙𝑠𝑠]

𝑝(𝜂)𝑑𝜂                                                               (36) 
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3.2  Statistical behaviour of the second order NDTL in AGWN 

 

In the presence of noise and from Equation (22) the difference equation of the second-

order NDTL is  

𝜙(𝑘 + 1) = 2𝜙(𝑘 + 1) − 𝑟𝐾1
′ 𝑒(𝑘 + 1) + 𝐾1

′ 𝑒(𝑘) − 𝜙(𝑘) − 𝑟𝐾1
′ 𝜂(𝑘 + 1)

+ 𝐾1
′ 𝜂(𝑘)                                                                                                             (37) 

Equation (37) consists of two first-order difference equations that describe two 

Markov processes, which can be solved in a manner similar to the first-order DTL [11]. 

The mean and variance are given by Equations (38) and (39) respectively. 

 

𝐸[𝜙𝑠𝑠] = 0                                                                                                                                     (38) 
          

𝑉𝑎𝑟[𝜙𝑠𝑠] =
2(𝑟 − 1) + 𝐾1

′ (𝑟 + 1)

4 − 𝐾1
′ (𝑟 + 1)

𝐸[𝜂2]                                                                               (39) 

 

 

4. Simulation Results 

 The TDTL and the NDTL were modelled and subsequently simulated using 

MATLAB/Simulink.  This enabled extensive performance evaluation of each architecture 

and subsequent comparison between them under the same input conditions. This section 

presents some of the extensive set of results used to compare NDTL and TDTL. The 

simulations were performed in both noisy and noise-free environments.  

 The performance of the first- and second-order NDTL systems was evaluated in 

comparison with that of the respective first- and second-order TDTL systems.  The 

evaluation process included applying various sudden frequency steps and FSK input 

signals. The sudden frequency changes, which are either less or higher than the DCO free 

running frequency are indicated by a negative or a positive step respectively. This test is 

usually used to evaluate the acquisition time required by the system to reach its steady 

state [12]. 
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Starting with frequency step test, in the noise free environment, Figure 6 

illustrates the response to positive frequency steps for both the NDTL and the TDTL 

respectively. It can be seen that NDTL requires nearly one third of the time needed by the 

TDTL to achieve locking state.  This is reflected in the much reduced number of samples 

that the NDTL requires to reach steady state. Another way to express the same results is 

to use phase plane plots which show the consecutive phase error samples 𝜙(𝑘) and 

𝜙(𝑘 + 1) of both the NDTL and TDTL.  The phase plane plots, following the application 

of a positive step, for the first- and second-order NDTL and TDTL are depicted in 

Figure 7 and Figure 8 respectively. The improvement in the acquisition time is more 

profound with the second order compared with the first order topology. This is due to the 

fact that the loop filter of the second order loop is triggered by double the loop DCO free 

running frequency. This will improve the climbing mechanism of the accumulation filter 

to reach the steady state in half the time required by the TDTL. 

 
Figure 6 (a) 
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Figure 6 (b) 

 
Figure 6 (c) 

Figure 6. (a) Positive frequency step input (b) First-order NDTL and TDTL phase error 

responses and (c) Second-order NDTL and TDTL phase error responses with a positive 

frequency step of 0.2. 

 

Figure 7(a) 
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Figure 7(b) 

Figure 7. First-order phase planes of (a) NDTL (b) TDTL with a positive frequency step 

of 0.2. 

 

Figure 8(a) 

 

Figure 8(b) 

Figure 8. Second order phase planes of (a) NDTL (b) TDTL with a positive frequency 

step of 0.2. 

 

The NDTL system was also tested with FSK input signal in noise-free 

environment and the results, for FSK demodulation, are shown in Figure 9.  It is clear 

that the acquisition time of the NDTL is three times faster that of the TDTL.  This is 
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attributed to the fact that the NDTL uses a DCO with double free running frequency, i.e. 

shorter intervals between the zero crossing, which reduces both the phase error and 

acquisition time.  

 
Figure 9(a) 

 
Figure 9(b) 

 
Figure 9(c) 

Figure9. (a) FSK input (b) First-order NDTL and TDTL phase error responses and (c) 

Second order NDTL and TDTL phase error responses.   
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Another performance test was carried out under AWGN where both the first- and 

second-order NDTL were evaluated and compared with TDTL of the same order. 

Figure 10 shows the phase noise pdf for the first-order NDTL and TDTL for input 

SNR=7 dB. The figure shows the pdf for various input frequency steps. It is clear, from 

Figure 10 that the first-order NDTL has better performance than the TDTL when positive 

or negative frequency steps were applied. Furthermore, it is evident from Figure 10, that 

the NDTL margin of performance improvement increases with the increase in the input 

frequency step. This results from the additional phase error that the time delay block in 

the TDTL brings to the system as the input signal frequency increases.  Figure 11 shows 

the phase noise pdf for the second order NDTL and TDTL systems for an input of 

SNR=7 dB when applying various step inputs. It is clear that the NDTL system 

outperformed the TDTL especially for higher frequency steps.  

The final test is jitter performance, which is evaluated by comparing the 

difference in time of the zero crossing point between the original signal in noise-free 

environment and the NDTL output affected by the AWGN noise. Jitter values have a 

critical impact on many communication systems. The impact of noise on the jitter 

performance was tested and the results are illustrated in Figure 12 which indicates that 

the NDTL outperforms the TDTL as the SNR ratio decreases. For the second-order loop, 

the NDTL is slightly better than the TDTL.  
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Figure 10. Steady-state pdf of phase error of first-order system for different frequency 

steps and SNR=7dB. 

 

Figure 11. Steady-state pdf of phase error of second-order system for different frequency 

steps and SNR=7dB. 

 
Figure 12 (a) 

 
Figure 12 (b) 

Figure 12. Jitter performance for a range of SNR (a) First order (b) Second order , 

frequency step of 0.1, and 𝐾1 = 1 .  
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5. TDTL and NDTL Implementation 

The viability of implementing the TDTL on a reconfigurable platform that uses an 

FPGA (field programmable gate array) was investigated in previous work [13,21]. It was 

demonstrated that the real time performance of the TDTL closely resembles the 

simulation results achieved using the model developed for MATLAB/Simulink.  The 

synthesis process of the prototype TDTL used a Xilinx System Generator to generate the 

necessary HDL (hardware description language) for the device-optimized block-set from 

within Simulink.  The structure of the reconfigurable first-order TDTL is shown in 

Figure 13 [13]. 

 

 
Figure 13. Structure of the reconfigurable TDTL 

 

In the FPGA implementation depicted in Figure 13, the system block that is 

relatively complex to implement is the arctan phase detector.  This was implemented 
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using the CORDIC algorithm, which can translate trigonometric functions into the 

necessary digital circuits [22].  Overall the TDTL used a small part of the FPGA chip. 

The focus of the research work in this paper is on the system architecture.  The 

validity of the simulation model of the original TDTL was verified through comparison 

with physical implementation in the earlier work outlined above.  Having said that, 

comparing the NDTL and the TDTL it is possible to see that the modified DCO only 

requires two additional flip-flops which is a very small cost in terms of gate count.  At the 

same time, the NDTL does not require the delay block which may need to be a true 

analogue block in some applications.  Optimized implementation of the NDTL, as well as 

other TDTL architectures, in a practical system will depend on the overall system 

specifications and the target technology.  For example, synthesis for full-custom or ASIC 

(application specific integrated circuit) implementation can result in more optimized 

circuitry compared with that for an FPGA.    

 

6. Conclusion 

A digital tanlock loop with no time delay unit (NDTL) has been proposed. The system 

uses two sampling frequencies with a phase shift of π 2⁄  (rad) to preserve the quadrature 

sampling relationship between the two loop channels.  This enhances the linearity of the 

phase detector characteristics of the TDTL.  The system was evaluated in the presence as 

well as in the absence of noise. The acquisition performance was assessed, in a noise-free 

environment, by subjecting it to frequency steps that cause sudden changes in the DCO 

free running frequency. In addition, the acquisition performance was also evaluated using 

FSK input signal. The NDTL system performance showed a clear improvement in the 

acquisition time compared with the TDTL. The improvements in the results are even more 
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pronounced with the second-order NDTL.  The acquisition is shown to be three times 

faster with the new loop compared to the TDTL system.  

 By adding AWGN to the input signal, two performance evaluation tests were 

performed.  They included the pdf and phase noise (jitter). Both tests indicated that the 

NDTL system outperformed the TDTL. For the pdf test, the first-order NDTL has better 

performance than the TDTL when positive or negative frequency steps were applied.  The 

margin of improvement increases with the increase of the input frequency step. This 

results in additional phase error (i.e. non-linearity) that the time delay block in the TDTL 

brings to the system as the input signal frequency increases.  For the second-order 

systems, the NDTL system outperformed the TDTL especially for higher frequency steps. 

The impact of noise on the jitter performance shows that both first- and second- order 

NDTL systems have better jitter compared with TDTL. Further, the proposed NDTL 

system can be entirely digitally implemented which reduces circuit complexity.  
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