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Performance evaluation of the time delay digital tanlock loop
architectures

This paper presents the architectures, theoretical analyses and testing results of modified
time delay digital tanlock loops (TDTLs) systems. The modifications to the original
TDTL architecture were introduced to overcome some of the limitations of the original
TDTL and to enhance the overall performance of the particular systems. The limitations
addressed in this paper include the nonlinearity of the phase detector, the restricted width
of the locking range, and the overall system acquisition speed. Each of the modified
architectures was tested through subjecting the system to sudden positive and negative
frequency steps and comparing its response with that of the original TDTL. In addition,
the performance of all the architectures was evaluated under noise-free as well as noisy
environments.  The extensive simulation results using MATLAB/SIMULINK
demonstrate that the new architectures overcome the limitations they addressed and the
overall results confirmed significant improvements in performance compared to the
conventional TDTL system.

Keywords: Acquisition speed, DPLL, jitter, lock range, noise, TDTL.
1. Introduction

Synchronization between two electrical signals is fundamental to the proper
operation of many electronic systems such as communications, signal processing and
control systems (Chyun and Hung, 1996; Lindsey and Chak,1981; Gardner, 2005).
Achieving this kind of synchronization has been achieved using phase-locked loops
(PLL) (Terng-Yin, Bai-Jue, and Chen-Y1,1999; Best,2007;Crawford,2007). More
recently, in the area of renewable energy and localized power generation (Pearce, Al
Zahawi, and Shuttleworth, 2001;Pearce,Al Zahawi, Auckland,and Starr, 1996 ), PLLs
are primarily used for the synchronization of local generators with the low voltage
utility grid (Anani, Al-Kharji Al-Ali, Ponnapalli, Al-Araji, and Al-Qutayri,2012a,
2012b).

Fundamentally, a PLL is an electronic system which operates by detecting the
difference in phase between an incoming signal and the output signal of a local voltage
controlled oscillator (VCO) (Gardner, 2005). The result of this detection is
subsequently employed to minimize or eliminate the phase difference between the said

signals so as to achieve locking.
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Advances in digital and integrated circuit technologies, led to the development
of digital PLLs (DPLLs), which are typically classified as either uniform or a non-
uniform based on the sampling technique they use to sample analogue signals. Non-
uniform DPPLs are more attractive due to the ease of their modelling and circuit
implementation (Lindsey, 1981). The =zero-crossing Digital phase-locked loop
(ZCDPLL) and the DTL (Jae, and Chong, 1982; Hussain, Boashash, Hassan-Ali, and
Al-Araji, 2001; Al-Araji, Al-Qutayri, and Al-Moosa, 2004; Al-Kharji Al-Ali et al.,
2012a) are examples of the non-uniform DPLLs. The advantages of the DTL include
good linearity and reduced sensitivity to variations in the power of the input signal.
However, the DTL uses a Hilbert Transformer (HT), which is clearly a disadvantage
due to its implementation complexity (Guan-Chyun, and Hung, 1996). Later, this
implementation issue was alleviated by the introduction of the time delay digital tanlock
loop (TDTL) (Hussain et al., 2001; Al-Kharji Al-Ali et al., 2012b) in which the HT was

replaced by a fixed time delay unit, Figure 1.
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Figure 1. Block diagram of the first-order TDTL architecture.

However, the conventional TDTL has few shortcomings that limit its
performance. These include the nonlinearity of the phase detector and the finite non-
zero phase error in the locked state of the first-order TDTL system. Additionally, the
second-order loop has a limited locking range and acquisition speed that can be

improved. In this paper, new TDTL architectures are presented so as to mitigate these
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limitations. Comparison between the performances of the original TDTL and the
proposed architectures are also presented. Tests were performed using a variety of input
signals under noisy and noise-free conditions.

Section 2, of this article, gives the mathematical analysis of the original TDTL
and its MATLAB/Simulink simulation results are given in Section 3. The
fundamental limitations of the basic TDTL are analysed in details in Section 4. New
improved TDTL architectures are also presented in this section. The performance of
these new architectures in noisy environment is presented in Section 5. Finally, the

paper is concluded in Section 6.

2. TDTL Mathematical Analysis
In this section, the TDTL is mathematically modelled and analyzed under noise-free

environment. The analysis is based on the model presented in (Jae, and Chong,1982;
Al-Kharji Al-Ali et al., 2012). The TDTL loop takes an input sinusoidal signal y(¢) with
a frequency offset Aw=(w—w,), which is converted to a phase shift. This phase shift is
measured with respect to the free-running frequency o, of the DCO (digital controlled
oscillator) as described below

y(t)=Asin[ o,t+0(t)] (1)
where 4 is the amplitude of the signal and 6(7) = Awr+6, is its phase process, whilst 6,
is a constant. The input signal is passed through a time delay unit z, as indicated in
Figure 1, which produces a variable phase shift ‘lag’ y = wr whose value depends on
the frequency of the input signal. As a result, a phase shifted signal x(#) of the incoming
signal is produced as

x(t) = Asin[ @t +6(t)~y | (2)
The input and the phase shifted signals are passed through their corresponding sample

Page 4 of 29



and hold blocks as depicted Figure 1. As a result, sampled versions of the signals are

generated as

y (k)= dsin[ w,t(k)+0(k)] (3)

and
x(k) = Asin @,t(k)+0 (k) -y ] )
where 6(k)=6[(k)]

The sampling period between the sampling instants ¢(k)and (k—-1) is

T(k)=T,—c(k-1) )

where 7, =27/ @, is the nominal period of the DCO whilst ¢(i) s the output of the digital
loop filter at the i™ sampling instant. Assuming 1(0)=0, the required time to the Kk

sampling instant may be written as

(k)= 270 =T, {2@ (6)

Consequently, both y(k) and x(k)may be expressed as

y(k)=Asin {H(k) ~w, kf:c(i) } 7
and
x(k)zAsin{H(k)—a)okZ_]:c(i)—l// } (8)

As a result, the phase error, or difference, between the input signal and output signal of

the Digital Controlled Oscillator can be expressed as

§(0k) =000 -0, Y1)~y ©)

Hence, the above two equations can be given in terms of the phase error as

y(k)zAsin[¢(k)+l//] (10)

and
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x(k) = Asin[¢(k)] (11

The arctan phase detector generates the loop error signal e(k) as

3 ! sin[¢(k)]
e(k)—f{t [sin[gﬁ(k)—i—l/llﬂ (12)

where f(y)=-z+[(y+7)mod2zx. This error signal e(k)has a nonlinearity which
deteriorates as the phase shift y departs further from the value of = /2 (rad). The digital
loop filter whose a transfer function D(z) accepts the error e(k) and generates the

signal c(k) that forces the DCO to the required frequency. Subsequently, the difference

equation of the system can be derived from equations (6) and (9) as

$(k+1)=p(k)—wc(k)+A, (13)

where A, =2n(Aw/w,). Because of the nonlinearity caused by variations in the phase
shift ¥ due to changes in the amplitude of the input signal, it is not possible to solve

the system difference equation using the Z transform, which is necessary to obtain the
locking range as has been done for the DTL(Hussain, Boashash, Hassan-Ali, and Al-
Araji, 2001). Therefore, a numerical solution using the fixed-point theorem (Best
2007;Hussain et al., 2001) can be used to solve the difference equation similar to the
case of the ZC-DPLLs (Osborne,1980a,1980b). The analyses for first-order and
second-order TDTL systems are presented below.

The system difference equation of first-order TDTL loop is given by equation

(14) with the digital filter transfer function D(z) is simply a gain block G, ,
p(k+1)=p(k)-K[c(k)]+A, (14)
where K, = oG, , if K defined as oG, then K, =K, /W where W =w, / . Therefore, the

locking range can be given as

sin’ (a) +sin’ (o +y)

21-W| <K, <2W :
sin(y)

(15)
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sin® (a)+sin*(a+y, | W)

2l-W|< K, <2W : (16)
sin(y, /W)

where y, is the nominal phase lag introduced on the incoming signal by the time
delay unit, « =ran(8),n=A,/K, and

_ [ sin(y )tan(n)] _ [sin(y)]
[l—cos(l//)tan(n)] [cot(n)—cos(l//)}

The locking range of the first-order TDTL with a nominal phase shift /2 is

shown in Figure 2.

Loop gain, K1

0t5 Frequency rat1i.05. w
Figure 2 The locking range of first-order TDTL. K,=G0, and W=o,/o .

The second-order TDTL, shown in Figure 3, uses a proportional accumulation

digital filter whose transfer function D(z) is

D(z)=G +G,/(1-z") (17)
t x(k)
=31 Time Delay T Xt asrﬁjml-rclled
T l
Digital
_»y(t) Controlled | ¢ Digital e(k) Phase
I Oscillator [ riter [ Detector
nput (DCO) Arctan(xly)
Signal
iy—1 T
- > Sample y(k)

and Hold

Figure 3 Block diagram of the second-order TDTL architecture.

where G, and G, are positive constants. Using equations (13) and (17), the difference

equation of the system of the TDTL system can be expressed as
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P(k+2)=2¢(k+1)—¢(k)—rKe(k+1)+Ke(k) (18)
wherer=1+G, /G and K, =K.
Following similar approach to that in (Hussain et al., 2001) with a fixed-point
analysis as in (Al-Araji et al., 2004) the locking range of the second-order TDTL,

Figure 4, may be written as

0<K <t Wsin[l/p/;J (19)
3. First- and Second-order TDTL Simulation Results

The performance of the first-order loop, presented in Figure 1, was
extensively tested using input signals with sudden frequency changes relative to the
free running frequency of the DCO. When the change in the input frequency makes it
higher than that of the DCO, the change will be represented as a positive step,
otherwise it is indicated as a negative step. For testing purposes, the time delay and

the DCO free running frequency values have been chosen so that the initial phase lag

parameter y, =o t=n/2and the gainkK, =Go, =1.

Fd
o s

@

Loop gain, K1
o - o
P S VR U ']

o

W

o'
-
N

3 4 5 6 7
Frequency ratio, W

Figure 4 The second-order TDTL locking range (r =1.2 K,=Go, and W=0,/0).

Figure 5 shows the effect of applying a positive input frequency step of 0.5 V (

W=0,/0, =0.667) to the loop, whilst, Figure 6 shows the results of applying a
negative input step of -0.3 V that corresponds to W =o, /®,, =1.428. As can be seen

from both figures, the phase response of the first-order TDTL converged to steady-
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state within the time of few samples. However, this time may not be acceptable for
some applications requiring fast acquisition speeds. Hence, increasing the acquisition
speed is an important goal for a PLL engineer. An additional goal is to
minimise/eliminate the finite phase error of the first-order TDTL loop. Albeit, this
goal can be achieved using a second-order loop, this will be at the cost of degradation

in the acquisition performance and the locking range as will be demonstrated below.

o

4
o

Frequency Step
e o o
Rw B

L

Time (s)

(2)

Phase Error (rad.)

°
o =

. L
10 20 30 40 50 60
Time (s)

(b)
Figure 5 (a) A 0.5 V input step and (b) first-order TDTL phase-error response.
Similar tests were also carried out to evaluate the performance of the second-
order TDTL system of Figure 3. The results of the phase error tests are shown in
Figure 7 and 8, which show that the steady-state error of the second-order loop
converges to zero. Clearly, improving the loop locking speed is desirable as some

applications require fast synchronization.
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&
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Phase Error(rad.)
2 . &
A W o

s
10 20 30
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(b)
Figure 6 (a) Negative input step of -0.3 V and (b) phase error response of the first-
order TDTL.

Phase Error (rad.)

L . . e .
10 20 30 40 50 60
Time (s)

Figure 7 Phase error response of the second-order TDTL for a positive input
frequency step of 0.3 V.
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Figure 8 Phase error response of the second order TDTL for a negative input
frequency step of -0.3 V.

4. Improvements to the Original TDTL
The analytical system models and the simulation results given earlier for the
first- and second-order TDTLs show that the system has some constraints, which
when overcome, the performance of both loops will be enhanced. The main system
limitations that need to be addressed are:
e The nonlinearity in the first- and second-order TDTLs. This is attributed to

having a fixed-time delay unit that results in different phase shifts for different

input frequency signals.
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e The second-order TDTL has a rather restricted locking range which can be
extended.

e The first-order TDTL has relatively low acquisition speed, which can be
improved.

e Phase-error convergence to zero of the second-order TDTL phase error tends to
take a relatively long time.

e The non-zero steady-state phase error of the first-order TDTL is an obvious
disadvantage.

The subsections below propose new TDTL system architectures that overcome

the above limitations of the original TDTL.

4.1 TDTL with new linear phase detector

The fixed-time delay is the primary source of nonlinearity and it severely
influences the locking range of the TDTL system. The idea of eliminating this
nonlinearity problem by substituting the fixed-time delay block with a variable time
delay unit has been proposed in the paper (Al-Qutayri, Al-Araji, Al-Kharji Al-Alj,
and Anani, 2009). In this article, an improved TDTL equipped with a linearized phase
detector (TDTL-LPD) is proposed as shown in Figure 9. It incorporates a controller
for phase linearization as well as a variable ‘adaptive’ time delay block.

The phase linearization controller in the TDTL-LPD estimates the error caused
by fluctuations in the frequency of the incoming signal during the time the loop is in
locked condition. This estimate is then used to compensate for the non-linear changes
in the phase by fine-tuning the adaptive time delay unit in order to preserve the
quadrature relationship between the input signal y(7) and its quadrature version x (¢).

The idea of the TDTL-LPD can be explained by examining the phase shift
relationship with the incoming signal
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y=ot (20)
Where y (rad) is the phase shift, o (rad/s) is the frequency and 7 (s) is the time delay

initiated by the variable time-delay unit.

Phase
Linearization
Controller

A 4
variable | X(® | sample | x(k)
delay and Hold [~

t v

. Digital
y(t) Controlled | Digital Detector
Oscillator Filter

Kk k]
oco) c(k) e(k) |Arctan(x/y)

| A
o | Sample y(k)

| and Hold I
Figure 9 Architecture of the conventional first order TDTL-LPD.

Phase

Input
Signal

The phase linearization controller in the TDTL-LPD compensates for changes in the
input frequency to yield a fixed phase shift y (rad) while the system is working inside
its nominal locking range. Consequently, variations in the input signal frequency will
be counteracted by a suitable value of delay generated by the controller in order to
uphold a /2 (rad) phase shift. As shown in equation (21), for any rise in the incoming

signal frequency, there will be a reduction in the time delay to keep the phase shift y

fixed at z/2 (rad) as demonstrated in Figure 10.

l//=a)r=2><7r><f><1'=%rad (21)

A comparison between the phase detector characteristics of the conventional

TDTL and the TDTL-LPD is depicted in Figure 11. The TDTL has nonlinear parts
while the TDTL-LPD follows a straight line, which indicates the nonlinearities have

been eradicated.
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Figure 10 Variation in the required time delay with the input signal frequency to
preserve a phase shift of /2 (rad).
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Figure 11 Characteristics the TDTL-LPD and TDTL phase detectors.

Preserving the phase shift at the value of z/2(rad) , means that the phase shifted

incoming signal x(k), of equation (4), can be expressed as

x(k)= Asin[a)ot(k)+ (k) —ﬂ = Acos| w,t(k)+0(k) ] (22)
This is similar to the DTL in (Gloria, Grosso, Olivieri, and Restani,1999), therefore,

the discretized signals generated by the samplers are

y(k) = Asin| 6(6) - @, e 23)
then
x(k)=Acos| (k) -, kz_l“c(i) (24)

Consequently, both (23) and (24) can be re-written in terms of the phase error as

y(k)=Asin[ 4(k)] (25)

and

x(k)=Acos[p(k)] (26)

The loop error e(k)at the output of the phase detector may be evaluated by (27).
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e(k)= f{tan-l (%ﬂ: fp0)] 27

where f(y)=-z+[(y+7)mod2r]. Consequently, the first-order TDTL's locking range

(Jae, and Chong,1982; Al-Qutayri et al., 2009), can be given as

sin® (a) +sin* (a +%)

2M-W|<K, <2w (28)
sin(%)
2
21-W|<K, <2W = (29)
(—2+cos(2a)+cos(r +2a)
which can be simplified as
21-W|< K, <2w (30)

In case of the second-order TDTL-LPD, equation (19) may be expressed as

0<K, PL Wsin(zj (31)
1+r 2
0<K, <— W (32)
" l4r

Both first- and second-order TDTL-LPD locking range with a fixed phase shift of

7 /2 (rad) is shown in Figure 12 and 13. As demonstrated below, the TDTL-LPD

response outperforms that of the conventional TDTL.

Loop gain, K,
o 4 n u & o

0.5 1 1.5 2 2.5
Frequency ratio, W

Figurel2 First order TDTL-LPD locking rang, K, =Gw,, W =aw,/» and y=z/2 (rad).

NoW b onoa oo

Loop gain, P(1

-

Kl 2 6 7

3 4 5
Frequency ratio, W

Figurel3 Second-order TDTL-LPD locking range with (r=1.2), K, =G, ,W =0,/ » and
v=r/2 (rad).
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The responses of first-order TDTL-LPD and the TDTL to the injection of positive and
negative frequency steps are shown in Figure 14 and 15 respectively. It can be seen

from the figures that the TDTL-LPD requires less number of samples to achieve locking

] -
o i o i

Phase Error (rad.)
&
o

10 20 30 40 50 &0

state compared to the TDTL.

(2)

“C 10 20

P

Phase Etror (rad.)
s, b
P

30 40 50 60
Time (s)

(b)
Figure14 Phase error responses for positive input frequency step of 0.3 V (a) first-
order TDTL-LPD and (b) first-order TDTL, k, =G, , W =,/ and y=z/2(rad).

e

[} n

Phase Error (rad.)
LB, 2
fa in A

M
b

b

Phase Error (rad.)
= . 8
th L b o

[} 10 20 30 40 50 60
Time (s)

(b)
Figurel5 Phase error response for negative input frequency step of -0.3 V (a) first-
order TDTL-LPD and (b) first-order TDTL, k, =G, , W =, /0 and y =z/2(rad).
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Both Figures 14 and 15 demonstrate the enhancement in the acquisition time of
the first-order TDTL-LPD architecture, which is obtained by using a fixed phase shift
value for all incoming signal frequencies, which consequently linearizes the phase
detector.

The evaluation of the response of the second-order TDTL-LPD followed a
similar approach to that of the first-order. The responses of the TDTL-LPD and the
TDTL to the application of positive and negative frequency steps are shown in

Figure 16 and 17 respectively.

Phase Error (rad.)

L L L L L
10 20 30 40 50 60
Time (s)

(2)

Phase Error (rad.)

30 40 50 60
Time (s)

(b)
Figure16 Phase error response for positive input frequency step of 0.4 V (a) second-
order TDTL-LPD and (b) second-order TDTL,y =7/2(rad), r=1.2 and «,=1.

Phase Error (rad.}

Time (s)

(2)
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(b)
Figure 17 Phase error response for negative input frequency step of -0.3 V (a)
second-order TDTL-LPD and (b) second-order TDTL, y =z/2 (rad), r =1.2 and K, =1.

The locking range performance of the TDTL-LPD was tested and compared to
that of the original TDTL. Figure 18 shows an example of such tests with a frequency
step of 0.6 V. As can be seen, in Figure 18a, the original TDTL goes out of lock while
in Figure 18b the TDTL-LPD attains the locking condition. A moderate improvement
is achieved in the acquisition time of the second-order TDTL-LPD in comparison with

the conventional TDTL. This will be investigated in detail in the following section.

N

Phase Error (rad.)
Ly o

o

N
T

Phase Error (rad.)

L
10 20 30
Time (s)

(b)
Figurel8 Second-order response for positive input frequency step of 0.6 V (a) TDTL-
LPD and (b) TDTL,y =z/2(rad), r =1.2 and K, =1.
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4.2  Second-order TDTL with Improved locking range and acquisition

As stated earlier and based on the responses in Figures 16 and 17, the acquisition
speed of the second-order TDTL-LPD needs to be improved further. An improvement
in the sampling will enhance the loop acquisition due to the accumulation path nature
of the digital loop filter. This results in speeding up the time to reach the zero steady-
state as proposed in the TDTL with wide locking range and fast acquisition (TDTL-
WFA) architecture (Al-Araji, Al-Kharji Al-Ali, Al-Qutayri, Anani, and Ponnapalli
2010).

In order achieve faster acquisition the DCO unit is revised as illustrated in
Figure 19. The idea is to boost the free running frequency of the DCO by a factor ‘M’,
which is then used to accelerate the response of the loop digital filter. As shown in
Figure 19, the free running frequency of the DCO is subsequently divided by the ‘M’
so as to preserve the loop sampling rate. The remaining blocks of Figure 19 are similar
to the original TDTL-LPD. The performance of the second-order TDTL-LPD was
compared with that of the improved second-order TDTL-WFA through an extensive
set of tests. In those tests the oscillator's free running frequency was doubled by setting

M=2.

Phase
e iet]
Controller

A

A

variable | X(t) | sample x(k)
Time Delay and Hold

.......................

y(t) Digital
Controlled | Digital Phase

.
H .
H .
: :
I_>nput ' +M Oscillator [ Filter A?cett::(t;(’lr)
Signal ' (oco Tom)| ¢ Y Y
H 1]

tecead ccccedecccccccaaas J A

| Sample
"] and Hold

y(k)

Figurel9 Block diagram of the TDTL-WFA system.
As in previous cases, the tests involved subjecting the loop to the same

frequency steps that resemble sudden changes in the frequency of the incoming signal,
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and comparing their responses. The results of the TDTL-WFA response show that it
outperforms the TDTL-LPD. The responses of both loops to a positive frequency step
of 0.4 V and a negative frequency step of -0.3 V, while the loops are inside their locking
range, are shown in Figures 20 and 21 respectively. In both cases, the TDTL-WFA
required considerable less number of sample times compared to the TDTL-LPD to
converge to zero steady-state phase error and hence achieves full locking.

As can be expected, the acquisition speed of the TDTL-WFA can be improved
by increasing the value of “M’. This is demonstrated in Figure 22 by increasing M from
2 to 4 while applying a frequency modulated (FM) input signal, which shows that the

peak of the error for M=4 is nearly half that for M=2.

Phase Error (rad.)
i ]

Phase Error (rad.)
Aoo oaow
B ;
g

(b)
Figure 20 Phase error responses for positive input frequency step of 0.4 V (a) second-
order TDTL-LPD and (b)second-order TDTL-WFA, y =7/2(rad), r =1.2 and «, =1.

0 20 a0 50 60

30
Time (s)

(2)
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(b)
Figure 21 Phase error responses for negative input frequency step of -0.3 V (a)
second-order TDTL-LPD and (b) second-order TDTL-WFA, y =7/2 (rad)., r =1.2 and

K =1.

Phase Etror (rad.)
=

Figure 22 Phase error response of the TDTL-WFA as M is doubled with an FM input
signal,y =r/2(rad), r=1.2 and K, =1.

4.3  An adaptive first-order TDTL with zero phase error (ATDTL-ZPE)

An adaptive TDTL with zero steady-state phase error (ATDTL-ZPE) (Al-Kharji
Al-Ali, Al-Araji, Anani, Al-Qutayri, and Ponnapalli 2010) that overcomes the non-zero
steady-state error of the first-order TDTL is examined in this section. In addition to
eliminating the non-zero phase error, the architecture extends the loop locking range.

Compared to the original TDTL, the ATDTL-ZPE shown in Figure 23
incorporates a Frequency Estimator Controller (FEC) and an Adder block. The main
concept behind this architecture is the use of these blocks to initialize the loop DCO to
generate a frequency that matches that of the incoming signal. Hence, the new blocks
in the ATDL-ZPE enable frequency tracking, as the DCO samples the input signal at
its frequency and that frees the loop to work on tracking and correcting the phase error
generated at the arctan phase detector output. This process enables the reduction of the
first-order loop steady-state phase error to zero. An added advantage of this
architecture is the widening of the loop locking range. This is achieved through a
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transparent translation or shift process of the loop locking range to the anticipated
frequency range. To linearize its phase, the ATDTL-ZPE shown in Figure 23 uses a
variable delay block as the case in the TDTL-LPD (Al-Qutayri et al., 2009).

As can be seen in Figure 24, the FEC block of the ATDTL-ZPE consists of a
derivative function, subtractor block, gain block, low-pass filter, multiplier, and a
constant reference value of the DCO free running frequency (F0). The delayed signal
is multiplied with the signal generated by the derivative block. The signal that results
from this multiplication is fed to the low-pass filter which detects its envelope.

The DCO is initialized by the FEC, Figure 25, so that the incoming signal is
sampled at a rate that equals its frequency but with a different phase. Subsequently the
loops works at reducing this phase error, which manifests itself at the output of the

arctan, phase detector.
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Figure24 block diagram of the Frequency estimator controller.

The locking range of the ATDTL-ZPE is similar to that of the first-order TDTL-

LPD depicted in Figure 12. However, due to the initialization process of the DCO
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frequency the ATDTL-ZPE has the ability to swiftly change the locking range to the
exact frequency. As a result, it will constantly operate with W=1 keeping K, at the
initial value of 1. However, K| must be maintained inside the interval 0 < K; <2 for
the loop to remain locked.

As in previous cases, the performance of the ATDTL-ZPE was compared to that
of the original first-order TDTL by subjecting both loops to the same input frequency
steps. The response of both loops to a positive frequency step of 0.3 V is illustrated in
Figure 25. In addition to the input frequency step, Figure 25 shows the output of the
carrier estimator controller, and the phase errors of both loops. It is evident from Figure
25 that the ATDTL-ZPE achieves the desired zero steady-state phase error. A similar
test was performed using a negative step of -0.3 V and the results are shown in Figure
26. In both Figures 25 and 26, the ATDTL-ZPE achieves faster acquisition time

compared to original TDTL. As indicated earlier this is due to the initialization process.
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Figure 25 First order TDTL phase-error to positive frequency step input 0.3 V (a)
FEC, (b) ATDTL-ZPE and (¢) TDTL, y =/2(rad). and «, 1.
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Figure 26 First order TDTL response to negative frequency step input -0.3 V, (a)
FEC, (b) ATDTL-ZPE and (¢) TDTL, y =z/2(rad).and «,=1.
5. Noise, Jitter and BER Performance Tests
The effects of noise on the operation of the different TDTL architectures
presented above are presented in this section. The noise performances are assessed
using the probability density function (pdf). In the assessment, the input signal is
assumed to have been corrupted by a zero mean additive white Gaussian noise (AWGN)

which has two-sided power spectrum density of G, (f)=n, /2 (Peyton, and Peeblesand,
1993; Haykin, and Moher, 2009; Skiller, and Huang, 2000). Therefore, autocorrelation

may be obtained using the inverse Fourier Transform of G, (f)Gpuw(f)as

R(t)=n,8(t)/2, where §(t) represents the unit impulse function. Consequently,
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R(t)=0for t#0, hence any two samples of this form of noise are uncorrelated and

therefore, they are statistically independent (Hussain, 2005; Pomalaza-Raez, 1988;
Mehrotra, 2002; Ibrahim, and Hamadamin, 2006; Al-Kharji Al-Ali, Anani, Al-Araji,
Al-Qutayri, and Ponnapalli, 2012).

Figures 27 and 28 show some specimens of the extensive simulation results. In
Figure 27, the TDTL-LPD outperforms the original TDTL for an SNR over 5 dBs. This
is due to the fact that the use of the fixed delay block, in the TDTL, increases the phase-
detector nonlinearity as the SNR increases.

The results in Figure 28 demonstrate that the performance of the ATDTL-ZPE
surpasses that of the TDTL-WFA due to the fact that the ATDTL-ZPE is only used for
phase synchronization as explained earlier. Furthermore, Figure 28 demonstrates that
the ATDTL-ZPE and the TDTL-WFA outperform the second-order TDTL for SNR
above 5 dBs. This is because when the TDTL-WFA is subjected to a fairly noisy
environment, the fast acquisition characteristic will produce a reverse effect in
delivering a fast settling time to the steady-state condition. However, since the ATDTL-
ZPE makes use of the FEC to accomplish frequency tracking, the loop is only required
to attain phase synchronizing.

In very noisy environments i.e. when the SNR is less than 5 dBs, the FEC block
cannot deliver the exact frequency value required by the TDTL loop and this results in
degraded noise performance. Figure 29 illustrates the effect of noise on the jitter
performance. From the figure, the ATDTL-ZPE gives the best performance while the
original second-order TDTL gives the worse jitter. The reasons for these variations are
the additional blocks that were introduced to the ATDTL-ZPE, TDTL-WFA and

TDTL-LPD to improve various aspects of their individual performance.
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Figure 27 Noise performance od the first order architectures (a) SNR=5 dB (b)
SNR=10 dB and (c) SNR=15 dB.k, =1 and frequency step of 0.1 V.
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Figure 29 Variation of the Jitter with SNR (a) linear scale and (b) Logarithmic scale,
K, =1 and step inputs of 0.1 V.

The performance of all the proposed TDTL based architectures, including the
original TDTL, was evaluated under slow as well as fast fading channel conditions. In
the case of slow fading channels, the performance of the various architectures was
found to be almost similar. This is an expected result because under slow fading, the
particular system loop will only need to deal with relatively small changes in the input
signal. However, under fast fading conditions the performance of the improved TDTL
architectures showed noticeable improvement compared to the original TDTL. This is
due to the improved characteristics of the proposed architectures, such as wider locking
range and higher acquisition speed, which enable them to cope with the relatively larger
changes in the input signal. The improvement under fast fading conditions is
demonstrated by the BER results in Figure 30. The BER performance was evaluated
using a constant envelope orthogonal frequency division multiplexing (CEOFDM) with

a phase shift keying (8-PSK) mapping at the transmitter.
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Figure 30 BER performance of different TDTL enhanced architectures for CEOFDM
modulations under fast varying channel.

6. Conclusions

This paper presented a variety of system architectures to overcome some of the
limitations of the original first- and second-order TDTL systems. The proposed TDTL-
LPD overcame the nonlinearity associated with the original TDTLs by incorporating a
phase linearization block. The TDTL-WFA system resolved the acquisition speed
limitation of the second-order TDTL-LPD through the introduction of a modified DCO
that over drives the digital loop filter. A widening of the lock range was achieved as
an additional advantage of this process by seamlessly shifting the TDTL lock range to
a specific frequency and hence preserving locking by maintaining the loop operating
frequency at W=1. The non-zero phase error convergence of the first order TDTL was
resolved by the ATDTL-ZPE, which has an adaptive mechanism targeted at solving
this problem. The ATDTL-ZPE also achieved wider locking range than the original
TDTL.

All the proposed systems architectures, TDTL-LPD, TDTL-WFA and TDTL-
ZPE, achieved significantly better overall performance than the original TDTL when
evaluated under noisy conditions. Each of the said architectures was targeted at
improving a particular aspect of the system performance. Consequently, the choice of

an individual system will vary according to a given set of requirements. For applications
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that demand high acquisition speeds, the TDTL-WFA system can be employed.
However, the ATDTL-ZPE delivers best noise performance. Finally, improved
linearity was the objective of the TDTL-LPD. The performance of all TDTL
architectures was assessed under fast fading channel conditions. The results
demonstrated that the modified architectures provided improved BER performance

over the original TDTL architecture.
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